Skip to main content

Advertisement

Log in

Diabetes Warriors from Heart Wood: Unveiling Dalbergin and Isoliquiritigenin from Dalbergia latifolia as Potential Antidiabetic Agents in-vitro and in-vivo

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a serious and complex metabolic disorder characterized by hyperglycemia. In recent years natural products has gained much more interest by researchers as alternative sources for diabetes treatment. Though many potential agents are identified so far but their clinical utility is limited because of their adverse effects. Therefore, there is a keen interest in discovering natural compounds to treat diabetes efficiently with less side effects. Dalbergia latifolia is well explored because of its diverse pharmacological activities including diabetes. Therefore, the present research work aimed to identify and isolate the potential antidiabetic agents from the heart wood of Dalbergia latifolia. We successfully extracted DGN and ISG from the heartwood and evaluated their antidiabetic potential both in-vivo and in-vitro. Alpha amylase activity inhibition of ISG and DGN was found to be 99.05 ± 8.54% (IC50 = 0.6025 µg/mL) and 84.68 ± 5.2% (IC50 = 0.0216 µg/mL) respectively. Glucose uptake assay revealed DGN (158%) promoted maximum uptake than ISG (77%) over control. In vivo anti diabetic activity was evaluated by inducing diabetes in SD rats with the help of HFD and STZ (35 mg/kg body weight). After the continuous administration of DGN (5 mg/kg, 10 mg/kg) and ISG (5 mg/kg, 10 mg/kg) for 14 days, we observed the reduction in the blood glucose levels, body weight, total cholesterol, low density lipoprotein, very low-density lipoprotein, blood urea, serum creatinine, serum glutamate oxaloacetic transaminase, serum glutamate pyruvate transaminase and alkaline phosphatase levels than vehicle group indicates the potency of ISG and DGN against diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

ADMET:

Absorption, Distribution, Metabolism, Elimination, Toxicity

ALP:

Alkaline phosphatase

ANOVA:

Analysis of variance

DGN:

Dalbergin; DL: Dalbergia Latifolia

DM:

Diabetes mellitus

DMEM:

Dulbecco’s modified eagle’s medium

DPP-4:

Dipeptidyl peptidase 4

EMA:

European Medical Agency

FBS:

Fetal bovine serum

GLP-1:

Glucose like peptide 1

GLUT-4:

Glucose transporter 4

GOD-POD:

Glucose oxidase and peroxidase

HDL:

High density lipoprotein

HFD:

High fat diet

ISG:

Isoliquiritigenin

LDL:

Low density lipoprotein

NCCS:

National center for cell science

NMR:

Nuclear magnetic resonance

NRU:

Neutral red uptake

PBS:

Phosphate buffer solution

SC:

Serum creatinine

SD:

Sprague Dawley

SGOT:

Serum glutamic oxaloacetic transaminase

SGPT:

Serum glutamate pyruvate transaminase

STZ:

Streptozotocin

T2D:

Type 2 diabetes

TC:

Total cholesterol

TG:

Triglycerides

VLDL:

Very low-density lipoprotein

WHO:

World health organization

References

  1. Katovich, M. J., Meldrum, M. J., & Vasselli, J. R. (1991). Beneficial Effects of Dietary Acarbose in the Streptozotocin-Induced Diabetic Rat. Metabolism, 40(12), 1275–1282.

    Article  CAS  PubMed  Google Scholar 

  2. Röder, P. V., Wu, B., Liu, Y., & Han, W. (2016). Pancreatic regulation of glucose homeostasis. Experimental and Molecular Medicine, 48(219), 1–19.

    Google Scholar 

  3. Giri, B., Dey, S., Das, T., Sarkar, M., Banerjee, J., & Dash, S. K. (2018). Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomedicine and Pharmacotherapy, 107, 306–328.

    Article  CAS  PubMed  Google Scholar 

  4. Ong, K. L., Stafford, L. K., McLaughlin, S. A., Boyko, E. J., Vollset, S. E., & Smith, A. E., et al. (2023). Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. The Lancet, 402, 203–234.

    Article  Google Scholar 

  5. George, F., Cahill, J. M. D., Donnell, D., & Etzwiler, M. D. (1976). Norbert Freinkel M.D. Control and Diabetes. The New England Journal of Medicine, 294(18), 1004–1005.

    Google Scholar 

  6. Hinnen, D. A. (2015). Therapeutic options for the management of postprandial glucose in patients with type 2 diabetes on basal insulin. Clinical Diabetes, 33(4), 175–180.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nellaiappan, K., Preeti, K., Khatri, D. K., & Singh, S. B. (2022). Diabetic complications: an update on pathobiology and therapeutic strategies. Current Diabetes Review, 18(1), 31–44.

    Article  Google Scholar 

  8. Janardhan, S., & Narahari Sastry, G. (2014). Dipeptidyl peptidase IV inhibitors: a new paradigm in type 2 diabetes treatment. Current Drug Targets, 15(6), 600–621.

    Article  CAS  PubMed  Google Scholar 

  9. Bragagni, A., Piani, F., & Borghi, C. (2021). Surprises in cardiology: Efficacy of gliflozines in heart failure even in the absence of diabetes. European Heart Journal, Supplement, 23, 40–E44.

    Article  Google Scholar 

  10. Salama, M., Mohammed Ezzat, S., & salem, M. (2020). Bioactive lead compounds and molecular targets for the treatment of heart disease. Phytochemicals as Lead Compounds for New Drug Discovery, 488, 1–381.

    Google Scholar 

  11. Mirmiran, P., Bahadoran, Z., & Azizi, F. (2014). Functional foods-based diet as a novel dietary approach for management of type 2 diabetes and its complications: A review. World Journal of Diabetes, 5(3), 267–281.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tundis, R., Loizzo, M. R., & Menichini, F. (2010). Natural Products as -Amylase and -Glucosidase Inhibitors and their Hypoglycaemic Potential in the Treatment of Diabetes: An Update. Mini-Reviews in Medicinal Chemistry, 10(4), 315–331.

    Article  CAS  PubMed  Google Scholar 

  13. Mojsov K. D. Aspergillus Enzymes for Food Industries. Aspergillus Enzymes for Food Industries. New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier B.V.; 2016. p. 215–222

  14. Vasudeva, N., Vats, M., Sharma, S. K., & Sardana, S. (2009). Chemistry and Biological Activities of the Genus Dalbergia-A Review. Pharmacognosy Review, 3(6), 307–319.

    CAS  Google Scholar 

  15. Soudahmini, E., Senthil, G. M., Panayappan, L., & Divakar, M. C. (2005). Herbal remedies of Madugga tribes of Siruvani forest, South India. Natural Product Radiance, 4(6), 492–499.

    Google Scholar 

  16. Martha, R., Mubarok, M., Darmawan, W., Syafii, W., Dumarcay, S., & Charbonnier, C. G., et al. (2021). Biomolecules of interest present in the main industrial wood species used in indonesia-a review. Journal of Renewable Materials, 9(3), 399–449.

    Article  CAS  Google Scholar 

  17. Padal S. B., Prayaga Murty P., Rao D. S., Venkaiah M. Ethnomedicinal plants from paderu division of visakhapatnam district, A.P, India. Journal of Phytology [Internet]. 2010(8):70–91. Available from: www.journal-phytology.com

  18. Panda, S. K. (2014). Ethno-medicinal uses and screening of plants for antibacterial activity from Similipal Biosphere Reserve, Odisha, India. Journal of Ethnopharmacology, 151(1), 158–175.

    Article  PubMed  Google Scholar 

  19. Syafii, W.(2000). Antitermitic compounds from the heartwood of Sonokeling wood (Dalbergia latifolia Roxb.). Indonesian Journal of Tropical Agriculture (IJTA), 9(03), 55–58.

    Google Scholar 

  20. Daryatmo, J., Hartadi, H., Orskov, E. R., Adiwimarta, K., & Nurcahyo, W. (2010). In vitro screening of various forages for anthelmintic activity on Haemonchus contortus eggs. Advances in Animal Biosciences, 1(1), 113.

    Article  Google Scholar 

  21. Kulkarni, S. C., Pkm, N., Sainadh, N. S., & Vasanthakumar, C. (2013). Evaluation of Cerebroprotective Effect of Flavonoid of Dalbergia Latifolia Against Cerebral Ischemia Re-Perfusion Induced Cerebral Infarction in Rats by BCCAO Method. RRJPTS, 1(1), 8–14.

    Google Scholar 

  22. Khalid, M., Shoaib, A., Akhtar, J., Alqarni, M. H., Siddiqui, H. H., & Foudah, A. I. (2020). Anti obesity prospective of Dalbergia latifolia (Roxb.) hydroalcoholic bark extract in high fat diet induced obese rats. 3 Biotech, 10(11), 1–12.

    Article  Google Scholar 

  23. Niwa, Y., Matsui, C., Sukumwang, N., Iinuma, H., Ikeda, Y., & Koyano, T., et al. (2012). Inhibition of lysenin-induced hemolysis by all-E-lutein derived from the plant Dalbergia latifolia. Planta Medicine, 78(10), 957–961.

    Article  CAS  Google Scholar 

  24. Yadav, S. K., Nagarathna PKM, & Yadav, C. K. (2015). Research article of evaluation of immunomodulatory activity of Dalbergia latifolia on Swiss albino mice. Journal of Pharmaceutical Biological & Science, 10, 58–64.

    Google Scholar 

  25. Prasad, D. P., Suba, V., kavimani, S., & Ravichandran, V. (2013). Neuropharmacological profile of ethanolic extract of dalbergia latifolia roxb in swiss albino mice. JGTPS, 4(3), 1193–1197.

    Google Scholar 

  26. Pkm, N., Kumar Yadav, C., & Kumar Yadav, S. (2015). Evaluation of Mutagenic Effect (Antimutagenic) of Dalbergia Latifolia on Swiss Albino Mice. IJPTR, 7(2), 80–84.

    Google Scholar 

  27. Tiwari, A., & Choudhary, N. K. (2021). Phytopharmacological evaluation of dalbergia latifolia roxb. for antidiabetic activity and its effect on lipid profile and hepatic enzymes of glucose metabolism in diabetic rats. Journal of Advanced Science Research, 12(3), 95–109.

    CAS  Google Scholar 

  28. Jemiseye, O. T., Idowu, P. A., & Agidigbi, T. S. (2017). In vitro Assessment of Selected Antibiotics, Crude Extract of Dalbergia latifolia Leaf and Their Combination on MDR Salmonella enterica Strain. Journal of Complementary and Alternative Medical Research, 4(3), 1–9.

    Article  Google Scholar 

  29. Mishra, M. P., & Padhy, R. N. (2013). In vitro antibacterial efficacy of 21 Indian timber-yielding plants against multidrug-resistant bacteria causing urinary tract infection. Osong Public Health Research Perspective, 4(6), 347–357.

    Article  Google Scholar 

  30. Tripathi, R. (2018). In Vitro Α-Glucosidase Inhibitory Potential and Free Radical Quenching Activity of Some Selected Medicinal Plants Total Poly Phenolic Content and Its Pharmacological Activity of Medicinal Plant. JETIR, 5(7), 538–548.

    Google Scholar 

  31. Donnelly, D. M., Criodain, T. O., & O’ Sullivan, M. (1983). Dalbergia species: XV. dalcriodain, a binary neoflavanoid. In Proceedings of the Royal Irish Academy. Section B: Biological, Geological, and Chemical Science. pp. 39–48.

  32. Udomputtimekakul, P., Pompimon, W., Baison, W., Sombutsiri, P., Funnimid, N., & Chanadee, A., et al. (2017). Profiling of secondary metabolites in aerial parts of phanera bracteata. American Journal of Plant Science, 08(05), 1100–1134.

    Article  CAS  Google Scholar 

  33. Khamsan, S., Liawruangrath, S., Teerawutkulrag, A., Pyne, S., Garson, M., & Liawruangrath, B. (2012). The isolation of bioactive flavonoids from Jacaranda obtusifolia H. B. K. ssp. rhombifolia (G. F. W. Meijer) Gentry. Acta Pharmaceutica, 62(2), 181–190.

    Article  CAS  PubMed  Google Scholar 

  34. Sano, S., Okubo, Y., Handa, A., Nakao, M., Kitaike, S., & Nagao, Y., et al. (2011). Reinvestigation of the Synthesis of Isoliquiritigenin: Application of Horner-Wadsworth-Emmons Reaction and Claisen-Schmidt Condensation. Chemical and Pharmaceutical Bulletin, 59(7), 885–888.

    Article  CAS  PubMed  Google Scholar 

  35. Ma, C. J., Li, G. S., Zhang, D. L., Liu, K., & Fan, X. (2005). One step isolation and purification of liquiritigenin and isoliquiritigenin from Glycyrrhiza uralensis Risch. using high-speed counter-current chromatography. Journal of Chromatography A, 1078, 188–192.

    Article  CAS  PubMed  Google Scholar 

  36. Visvanathan, R., Jayathilake, C., Liyanage, R., & Sivakanesan, R. (2018). Applicability and reliability of the glucose oxidase method in assessing α-amylase activity. Food Chemistry, 275(3), 1–29.

    Google Scholar 

  37. Yap, A., Nishiumi, S., Yoshida, K. I., & Ashida, H. (2007). Rat L6 myotubes as an in vitro model system to study GLUT4-dependent glucose uptake stimulated by inositol derivatives. Cytotechnology, 55, 103–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cudazzo, G., Smart, D. J., McHugh, D., & Vanscheeuwijck, P. (2019). Lysosomotropic-related limitations of the BALB/c 3T3 cell-based neutral red uptake assay and an alternative testing approach for assessing e-liquid cytotoxicity. Toxicology in Vitro, 61, 1–8.

    Article  Google Scholar 

  39. Srinivasan, K., Viswanad, B., Asrat, L., Kaul, C. L., & Ramarao, P. (2005). Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacology Research, 52(4), 313–320.

    Article  CAS  Google Scholar 

  40. Volcko, K. L., Carroll, Q. E., Brakey, D. J., & Daniels, D. (2020). High-fat diet alters fluid intake without reducing sensitivity to glucagon-like peptide-1 receptor agonist effects. Physiology Behaviour, 221(112β910), 1–9.

    Google Scholar 

  41. Kong, W., Sun, R., Gao, Y., Nan, G., Yang, G., & Li, Y. (2015). Dissociation Constants and Solubilities of Dalbergin and Nordalbergin in Different Solvents. Journal of Chemical & Engineering Data, 60(9), 2585–2593.

    Article  CAS  Google Scholar 

  42. Tadera, K., Minami, Y., Takamatsu, K., & Matsuoka, T. (2006). Inhibition of alpha glucosidase and alpha amylase by flavonoids. Journal of Nutritional Science Vitaminology, 52(2), 149–153.

    Article  CAS  PubMed  Google Scholar 

  43. Borenfreund, E., & Puerner, J. A. (1985). A simple quantitative procedure using monolayer cultures for cytotoxicity assays. Journal of tissue culture methods, 9(1), 7–9.

    Article  Google Scholar 

  44. van de Venter, M., Roux, S., Bungu, L. C., Louw, J., Crouch, N. R., & Grace, O. M., et al. (2008). Antidiabetic screening and scoring of 11 plants traditionally used in South Africa. Journal of Ethnopharmacology, 119(1), 81–86.

    Article  PubMed  Google Scholar 

  45. Tortorella, L. L., & Pilch, P. F. (2002). C2C12 myocytes lack an insulin-responsive vesicular compartment despite dexamethasone-induced GLUT4 expression. American Journal of Physiology Endocrinology Metabolism, 283(3), e514–e524.

    Article  CAS  PubMed  Google Scholar 

  46. Zheng, Y., Scow, J. S., Duenes, J. A., & Sarr, M. G. (2012). Mechanisms of glucose uptake in intestinal cell lines: Role of GLUT2. Surgery, 151(1), 13–25.

    Article  PubMed  Google Scholar 

  47. Gupta, R. N., Pareek, A., Manish Suthar, Rathore, G., & Basniwal, P. K. (2009). Study of glucose uptake activity of Helicteres isora Linn. fruits in L-6 cell lines. International Journal of Diabetes in Developing Countries, 29(4), 172–176.

    Google Scholar 

  48. Al-Goblan, A. S., Al-Alfi, M. A., & Khan, M. Z. (2014). Mechanism linking diabetes mellitus and obesity. Diabetes Metabolic Syndrome Obesity, 7, 587–591.

    Article  Google Scholar 

  49. Chang, W. C., Wu, J. S. B., Chen, C. W., Kuo, P. L., Chien, H. M., & Wang, Y. T., et al. (2015). Protective effect of vanillic acid against hyperinsulinemia, hyperglycemia and hyperlipidemia via alleviating hepatic insulin resistance and inflammation in High-Fat Diet (HFD)-fed rats. Nutrients, 7, 9946–9959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nambirajan, G., Karunanidhi, K., Ganesan, A., Rajendran, R., Kandasamy, R., & Elangovan, A., et al. (2018). Evaluation of antidiabetic activity of bud and flower of Avaram Senna (Cassia auriculata L.) In high fat diet and streptozotocin induced diabetic rats. Biomedicine and Pharmacotherapy, 108, 1495–1506.

    Article  CAS  PubMed  Google Scholar 

  51. Gaur, R., Yadav, K. S., Verma, R. K., Yadav, N. P., & Bhakuni, R. S. (2014). In vivo anti-diabetic activity of derivatives of isoliquiritigenin and liquiritigenin. Phytomedicine, 21, 415–422.

    Article  CAS  PubMed  Google Scholar 

  52. Pandey, N. K., Singh, S. K., Kumar, B., Gulati, M., Vishwas, S., & Khursheed, R., et al. (2022). Expanding arsenal against diabetes mellitus through nanoformulations loaded with glimepiride and simvastatin: A comparative study. Environmental Science and Pollution Research, 29(34), 1–21.

    Article  Google Scholar 

  53. Joerin, L., Kauschka, M., Bonnländer, B., Pischel, I., Benedek, B., & Butterweck, V. (2014). Ficus carica leaf extract modulates the lipid profile of rats fed with a high-fat diet through an increase of HDL-C. Phytotherapy Research, 28(2), 261–267.

    Article  CAS  PubMed  Google Scholar 

  54. Sankeerthi C H, S. L. V., Biri, S. R. K., Rani T, S., Gundu, R., & Vadlakonda, A. (2021). A study on evaluating blood urea and serum creatinine in diabetes mellitus patients. International Journal of Clinical Biochemistry and Research, 8(4), 285–288.

    Article  Google Scholar 

  55. Han, H. S., Kang, G., Kim, J. S., Choi, B. H., & Koo, S. H. (2016). Regulation of glucose metabolism from a liver-centric perspective. Experimental & Molecular Medicine, 48, 1–10.

    Article  Google Scholar 

  56. Graham, D. S., Liu, G., Arasteh, A., Yin, X. M., & Yan, S. (2023). Ability of high fat diet to induce liver pathology correlates with the level of linoleic acid and Vitamin E in the diet. PLoS One, 18(6), 1–15.

    Article  Google Scholar 

  57. Bae, C. S., Lee, Y., & Ahn, T. (2023). Therapeutic treatments for diabetes mellitus-induced liver injury by regulating oxidative stress and inflammation. Applied Microscopy, 53(4), 1–11.

    Google Scholar 

  58. Cao, W., Liu, H. Y., Hong, T., & Liu, Z. (2009). Excess exposure to insulin may be the primary cause of insulin resistance. American Journal of Physiology-Endocrinology Metabolism, 298(2), 1–1.

    Google Scholar 

  59. Kaur J., Gulati M., Kumar Pandey N., Lal Khatik G., Alotaibi F., Kumar D., et al. (2023). Antidiabetic evaluation of vanillic acid-glyburide loaded polymeric micelles in high fat diet and streptozotocin induced diabetic rats. Research Square.

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.S. done all the research work and wrote the manuscript, R.S. and G.P. edited and reviewed the manuscript. H.V. and S.M. contributed in writing manuscript, K.C. helped to get the spectral data for the phytochemical components. N.K. and B.K. are helped for the pharmacological activity testing experiments.

Corresponding authors

Correspondence to Rashmi Saxena Pal or Govindaiah Pilli.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutrapu, S., Pal, R.S., Khurana, N. et al. Diabetes Warriors from Heart Wood: Unveiling Dalbergin and Isoliquiritigenin from Dalbergia latifolia as Potential Antidiabetic Agents in-vitro and in-vivo. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01285-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01285-x

Keywords

Navigation