Skip to main content
Log in

Assessment of the Effect of Surface Modification of Metal Oxides on Silver Nanoparticles: Optical Properties and Potential Toxicity

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) have garnered significant interest due to their distinctive properties and potential applications. Traditional fabrication methods for nanoparticles often involve high-energy physical conditions and the use of toxic solvents. Various green synthesis approaches have been developed to circumvent these issues and produce environmentally benign nanoparticles. Our study focuses on the green synthesis of AgNPs using L-ascorbic acid and explores the modification of their properties to enhance antibacterial and anticancer effects. This is achieved by coating the nanoparticles with Zinc oxide (ZnO) and Silica oxide (SiO2), which alters their optical properties in the visible spectrum. The synthesized formulations—AgNPs, zinc oxide-silver nanoparticles (Ag@ZnO), and silica oxide-silver nanoparticles (Ag@SiO2) core/shell nanoparticles—were characterized using a suite of physicochemical techniques, including Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), Zeta potential measurement, UV–Vis spectroscopy, Refractive Index Measurements, and Optical Anisotropy Assessment. TEM imaging revealed particle sizes of 11 nm for AgNPs, 8 nm for Ag@ZnO, and 400 nm for Ag@SiO2. The Zeta potential values for Ag@ZnO and Ag@SiO2 were measured at −17.0 ± 5 mV and −65.0 ± 8 mV, respectively. UV–Vis absorption spectra were recorded for all formulations in the 320 nm to 600 nm wavelength range. The refractive index of AgNPs at 404.7 nm was 1.34572, with slight shifts observed for Ag@ZnO and Ag@SiO2 to 1.34326 and 1.37378, respectively. The cytotoxicity of the nanocomposites against breast cancer cell lines (MCF-7) was assessed using the MTT assay. The results indicated that AgNPs and Ag@ZnO exhibited potent therapeutic effects, with IC50 values of 494.00 µg/mL and 430.00 µg/mL, respectively, compared to 4247.20 µg/mL for Ag@SiO2. Additionally, the antibacterial efficacy of AgNPs was significantly enhanced under visible light irradiation. Ag@ZnO demonstrated substantial antibacterial activity both with and without light exposure, while the Ag@SiO2 nanocomposites significantly reduced the inherent antibacterial activity of silver. Conversely, the Ag@ZnO nanocomposites displayed pronounced antibacterial and anticancer activities. The findings suggest that silver-based nanocomposites, particularly Ag@ZnO, could be practical tools in water treatment and the pharmaceutical industry due to their enhanced therapeutic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kumar, R., Betageri, C. R., Nagaraju, V. S., Pujar, G., Onkarappa, G. H., & Latha, H. S. (2020). Synthesis of core/shell (ZnO/Ag) nanoparticles using Calotropis gigantea and their applications in photocatalytic and antibacterial studies. Journal of Inorganic and Organometallic Polymers and Materials, 30(9), 3410–3417. https://doi.org/10.1007/s10904-020-01507-8.

    Article  CAS  Google Scholar 

  2. Takeshima, N., Sugawa, K., Tahara, H., Jin, S., Noguchi, M., & Hayakawa, Y., et al. (2020). Combined use of anisotropic silver nanoprisms with different aspect ratios for multi-mode plasmon-exciton coupling. Nanoscale Research Letters [Internet], 15(1), 15 https://doi.org/10.1186/s11671-020-3248-8.

    Article  CAS  PubMed  Google Scholar 

  3. Shameli, K., Ahmad, M. B., Zamanian, A., Sangpour, P., Shabanzadeh, P., & Abdollahi, Y., et al. (2012). Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int J Nanomedicine [Internet], 7, 5603–5610. https://doi.org/10.2147/IJN.S36786.

    Article  CAS  PubMed  Google Scholar 

  4. Smitha, S. L., Nissamudeen, K. M., Philip, D., & Gopchandran, K. G. (2008). Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochim Acta A Molecular and Biomolecular Spectroscopy [Internet]., 71(1), 186–190. https://doi.org/10.1016/j.saa.2007.12.002.

    Article  CAS  Google Scholar 

  5. Nie, P., Zhao, Y., & Xu, H. (2023). Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: A review. Ecotoxicology and Environmental Safety, 253, 114636 https://doi.org/10.1016/j.ecoenv.2023.114636.

    Article  CAS  PubMed  Google Scholar 

  6. Javed, R., Zia, M., Naz, S., Aisida, S. O., Ain, N. U., & Ao, Q. (2020). Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. Journal of Nanobiotechnology, 18, 1–15. https://doi.org/10.1186/s12951-020-00704-4.

    Article  Google Scholar 

  7. Cho, J. L., Allain, L. G., & Yoshida, S. (2024). Study on the influence of uv light on selective antibacterial activity of silver nanoparticle synthesized utilizing protein/polypeptide-rich aqueous extract from The Common Walkingstick, Diapheromera femorata. Materials, 17(3), 713 https://doi.org/10.3390/ma17030713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. da Costa, T. S., da Silva, M. R., Barbosa, J. C. J., Neves, U. D. S. D., de Jesus, M. B., & Tasic, L. (2024). Biogenic silver nanoparticles’ antibacterial activity and cytotoxicity on human hepatocarcinoma cells (Huh-7). RSC Advances, 14(4), 2192–2204. https://doi.org/10.1039/D3RA07733K.

    Article  Google Scholar 

  9. Takáč, P., Michalková, R., Čižmáriková, M., Bedlovičová, Z., Balážová, Ľ., & Takáčová, G. (2023). The role of silver nanoparticles in the diagnosis and treatment of cancer: Are there any perspectives for the future? Life, 13(2), 466 https://doi.org/10.3390/life13020466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Adapa, S. B. (2020). A review on silver nanoparticles—The powerful nanoweapon against oral pathogens. International Journal of Oral Health Sciences, 10(1), 6–12. https://doi.org/10.4103/ijohs.ijohs_38_19.

    Article  Google Scholar 

  11. Yin, I. X., Zhang, J., Zhao, I. S., Mei, M. L., Li, Q., & Chu, C. H. (2020). The antibacterial mechanism of silver nanoparticles and its application in dentistry. International Journal of Nanomedicine, 15, 2555–2562. https://doi.org/10.2147/IJN.S246764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fathima, N., Afreen, S., Muniyan, T., Sundramurthy, V. P., & Daniel, N. (2021). Biosynthesis and characterization of silver nanoparticles using Ziziphus mauritiana leaf extract. Biosciences Biotechnology Research Asia, 17(4), 691–699. https://doi.org/10.13005/bbra/2873.

    Article  Google Scholar 

  13. Mumtaz, S., Ali, S., Kazmi, S. A. R., Mughal, T. A., Mumtaz, S., Tahir, H. M., & Rashid, M. I. (2023). Analysis of the antimicrobial potential of sericin‐coated silver nanoparticles against human pathogens. Microscopy Research and Technique, 86(3), 320–330. https://doi.org/10.1002/jemt.24273.

    Article  CAS  PubMed  Google Scholar 

  14. Travan, A., Pelillo, C., Donati, I., Marsich, E., Benincasa, M., & Scarpa, T., et al. (2009). Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules [Internet], 10(6), 1429–1435. https://doi.org/10.1021/bm900039x.

    Article  CAS  PubMed  Google Scholar 

  15. Levard, C., Hotze, E. M., Colman, B. P., Dale, A. L., Truong, L., & Yang, X. Y., et al. (2013). Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environment Science and Technology [Internet], 47(23), 13440–13448. https://doi.org/10.1021/es403527n.

    Article  CAS  Google Scholar 

  16. Jain, N., Jain, P., Rajput, D., & Patil, U. K. (2021). Green synthesized plant-based silver nanoparticles: Therapeutic prospective for anticancer and antiviral activity. Micro and Nano Systems Letters, 9, 1–24. https://doi.org/10.1186/s40486-021-00131-6.

    Article  Google Scholar 

  17. Shafey, A. M. E. (2020). Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Processing and Synthesis, 9(1), 304–339. https://doi.org/10.1515/gps-2020-0031.

    Article  Google Scholar 

  18. Luo, Z., Zheng, K., & Xie, J. (2014). Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chemical Communication [Internet], 50(40), 5143–5155. https://doi.org/10.1039/C3CC47512C.

    Article  CAS  Google Scholar 

  19. Wang, S., Jia, F., Wang, X., Hu, L., Sun, Y., & Yin, G., et al. (2020). Fabrication of ZnO nanoparticles modified by uniformly dispersed Ag nanoparticles: Enhancement of gas sensing performance. ACS Omega [Internet], 5(10), 5209–5218. https://doi.org/10.1021/acsomega.9b04243.

    Article  CAS  PubMed  Google Scholar 

  20. Fedorenko, V., Viter, R., Mrówczyński, R., Damberga, D., Coy, E., & Iatsunskyi, I. (2020). Synthesis and photoluminescence properties of hybrid 1D core-shell structured nanocomposites based on ZnO/polydopamine. RSC Adv [Internet], 10(50), 29751–29758. https://doi.org/10.1039/D0RA04829A.

    Article  CAS  PubMed  Google Scholar 

  21. Shafeek, A. M., Khedr, M. H., El-Dek, S. I., & Shehata, N. (2020). Influence of ZnO nanoparticle ratio and size on mechanical properties and whiteness of White Portland Cement. Applied Nanoscience [Internet], 10(9), 3603–3615. https://doi.org/10.1007/s13204-020-01444-5.

    Article  CAS  Google Scholar 

  22. Guerrero-Martínez, A., Pérez-Juste, J., & Liz-Marzán, L. M. (2010). Recent progress on silica coating of nanoparticles and related nanomaterials. Advanced Materials [Internet], 22(11), 1182–1195. https://doi.org/10.1002/adma.200901263.

    Article  CAS  PubMed  Google Scholar 

  23. Goossens, H., Ferech, M., Vanderstichele, R., & Elseviers, M. (2005). Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet [Internet], 365(9459), 579–587. https://doi.org/10.1016/S0140-6736(05)17907-0.

    Article  PubMed  Google Scholar 

  24. Corr, S. A. (2012). Metal oxide nanoparticles. Nanoscience, 1, 180–207. https://doi.org/10.1039/9781849734844-00180.

    Article  CAS  Google Scholar 

  25. Wei, L., Chen, X., Gao, X., Guo, R., & Xu, B. (2014). Preparation of Ag/SiO2 powder with light color and antibacterial performance. Powder Technology, 253, 424–428. https://doi.org/10.1016/j.powtec.2013.12.011.

    Article  CAS  Google Scholar 

  26. Rodrigues, M. C., Rolim, W. R., Viana, M. M., Souza, T. R., Gonçalves, F., Tanaka, C. J., & Seabra, A. B. (2020). Biogenic synthesis and antimicrobial activity of silica-coated silver nanoparticles for esthetic dental applications. Journal of Dentistry, 96, 103327 https://doi.org/10.1016/j.jdent.2020.103327.

    Article  CAS  PubMed  Google Scholar 

  27. Devi, P., Patil, S. D., Jeevanandam, P., Navani, N. K., & Singla, M. L. (2014). Synthesis, characterization and bactericidal activity of silica/silver core–shell nanoparticles. Journal of Materials Science: Materials in Medicine, 25, 1267–1273. https://doi.org/10.1007/s10856-014-5165-9.

    Article  CAS  PubMed  Google Scholar 

  28. Farrukh A., Khattak S.H., Kaleem I., Basheer S., Bangash S.A.K., Ali G.M. & Kaplan A. (2023). Evaluation of counteraction potential of ZnO-NPs and/or piperacillin-tazobactam against multi-drug resistant Pseudomornas aeruginosa and MCF-7 and HepG2 cell lines. Polish Journal of Environment, 33, (Stud 1) https://doi.org/10.15244/pjoes/172081.

  29. Marques, G. N., Moreira, A. J., Nóbrega, E. T. D., Braga, S., Argentin, M. N., da Cunha Camargo, I. L., & Mascaro, L. H. (2024). Selective inhibitory activity of multidrug-resistant bacteria by zinc oxide nanoparticles. Journal of Environmental Chemical Engineering, 12(1), 111870 https://doi.org/10.1016/j.jece.2023.111870.

    Article  CAS  Google Scholar 

  30. Guruviah K., Annamalai S.K., Ramaswamy A., Sivasankaran C., Ramasamy S., Barabadi H., & Saravanan M. (2020). Comparative antimicrobial and anticancer activity of biologically and chemically synthesized zinc oxide nanoparticles toward breast cancer cells. Nanomedicine Journal, 7(4) https://doi.org/10.22038/nmj.2020.07.00003.

  31. Shandiz, S. A. S., Sharifian, F., Behboodi, S., Ghodratpour, F., & Baghbani-Arani, F. (2021). Evaluation of metastasis suppressor genes expression and in vitro anti-cancer effects of zinc oxide nanoparticles in human breast cancer cell lines MCF-7 and T47D. Avicenna Journal of Medical Biotechnology, 13(1), 9 doi: 10.18502%2Fajmb.v13i1.4576.

    PubMed  PubMed Central  Google Scholar 

  32. Farasat, M., Niazvand, F., & Khorsandi, L. (2020). Zinc oxide nanoparticles induce necroptosis and inhibit autophagy in MCF-7 human breast cancer cells. Biologia [Internet], 75(1), 161–174. https://doi.org/10.2478/s11756-019-00325-9.

    Article  CAS  Google Scholar 

  33. Kadam, A. N., Bhopate, D. P., Kondalkar, V. V., Majhi, S. M., Bathula, C. D., & Tran, A.-V., et al. (2018). Facile synthesis of Ag-ZnO core–shell nanostructures with enhanced photocatalytic activity. Journal of Industrial and Engineering Chemistry [Internet], 61, 78–86. https://doi.org/10.1023/B:JOFL.0000031815.71450.74.

    Article  CAS  Google Scholar 

  34. Seong, S., Park, I.-S., Jung, Y. C., Lee, T., Kim, S. Y., & Park, J. S., et al. (2019). Synthesis of Ag-ZnO core-shell nanoparticles with enhanced photocatalytic activity through atomic layer deposition. Materials Design [Internet], 177(107831), 107831 https://doi.org/10.1016/j.matdes.2019.107831.

    Article  CAS  Google Scholar 

  35. Siddiqui, M. A., Wahab, R., Ahmad, J., Farshori, N. N., & Al-Khedhairy, A. A. (2020). Single and multi-metal oxide nanoparticles induced cytotoxicity and ROS generation in human breast cancer (MCF-7) cells. Journal of Inorganic and Organometallic Polymers and Materials [Internet], 30(10), 4106–4116. https://doi.org/10.1007/s10904-020-01564-z.

    Article  CAS  Google Scholar 

  36. Ranjan, M., Bhatnagar, M., & Mukherjee, S. (2015). Localized surface plasmon resonance anisotropy in template aligned silver nanoparticles: A case of biaxial metal optics. Journal of Applied Physics [Internet], 117(10), 103106 https://doi.org/10.1063/1.4914408.

    Article  CAS  Google Scholar 

  37. Donati, G., Lingerfelt, D. B., Aikens, C. M., & Li, X. (2018). Anisotropic polarizability-induced plasmon transfer. Journal of Physical Chemistry C Nanomaterials Interfaces [Internet], 122(19), 10621–10626. https://doi.org/10.1021/acs.jpcc.8b02425.

    Article  CAS  Google Scholar 

  38. Calander, N., Gryczynski, I., & Gryczynski, Z. (2007). Interference of surface plasmon resonances causes enhanced depolarized light scattering from metal nanoparticles. Chemical Physics Letters [Internet], 434(4–6), 326–330. https://doi.org/10.1016/j.cplett.2006.12.003.

    Article  CAS  PubMed  Google Scholar 

  39. Rajathi, F. A. A., Parthiban, C., Kumar, V. G., & Anantharaman, P. (2012). Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 99, 166–173. https://doi.org/10.1016/j.saa.2012.08.081.

    Article  CAS  Google Scholar 

  40. Mlalila, N. G., Swai, H. S., Hilonga, A., & Kadam, D. M. (2017). Antimicrobial dependence of silver nanoparticles on surface plasmon resonance bands against Escherichia coli. Nanotechnology Science and Applications [Internet], 10, 1–9. https://doi.org/10.2147/NSA.S123681.

    Article  CAS  PubMed  Google Scholar 

  41. Malassis, L., Dreyfus, R., Murphy, R. J., Hough, L. A., Donnio, B., & Murray, C. B. (2016). One-step green synthesis of gold and silver nanoparticles with ascorbic acid and their versatile surface post-functionalization. RSC Advances [Internet], 6(39), 33092–33100. https://doi.org/10.1039/C6RA00194G.

    Article  CAS  Google Scholar 

  42. Xiong, J., Sun, Q., Chen, J., Li, Z., & Dou, S. (2016). Ambient controlled synthesis of advanced core–shell plasmonic Ag@ ZnO photocatalysts. CrystEngComm, 18(10), 1713–1722.

    Article  CAS  Google Scholar 

  43. Das, S., Ranjana, N., Misra, A. J., Suar, M., Mishra, A., Tamhankar, A. J., Lundborg, C. S., & Tripathy, S. K. (2017). Disinfection of the water-borne pathogens Escherichia coli and Staphylococcus aureus by solar photocatalysis using sonochemically synthesized reusable Ag@ ZnO core-shell nanoparticles. International Journal of Environmental Research and Public Health, 14(7), 747

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lismont, M., Páez, C. A., & Dreesen, L. (2015). A one-step short-time synthesis of Ag@ SiO2 core-shell nanoparticles. Journal of Colloid and Interface Science, 447, 40–49. https://doi.org/10.1016/j.jcis.2015.01.065.

    Article  CAS  PubMed  Google Scholar 

  45. Izak-Nau, E., Huk, A., Reidy, B., Uggerud, H., Vadset, M., Eiden, S., Voetz, M., Himly, M., Duschl, A., Dusinska, M., & Lynch, I. (2015). Impact of storage conditions and storage time on silver nanoparticles’ physicochemical properties and implications for their biological effects. RSC Advances, 5(102), 84172–84185

    Article  CAS  Google Scholar 

  46. Balwe, S. G., Shinde, V. V., Rokade, A. A., Park, S. S., & Jeong, Y. T. (2017). Green synthesis and characterization of silver nanoparticles (Ag NPs) from extract of plant Radix Puerariae: An efficient and recyclable catalyst for the construction of pyrimido [1, 2-b] indazole derivatives under solvent-free conditions. Catalysis Communications, 99, 121–126. https://doi.org/10.1016/j.catcom.2017.06.006.

    Article  CAS  Google Scholar 

  47. Hao, E., Schatz, G. C., & Hupp, J. T. (2004). Synthesis and optical properties of anisotropic metal nanoparticles. Journal of Fluorescence [Internet], 14(4), 331–341. https://doi.org/10.1023/B:JOFL.0000031815.71450.74.

    Article  CAS  PubMed  Google Scholar 

  48. Kwitniewski, M., Juzeniene, A., Ma, L.-W., Glosnicka, R., Graczyk, A., & Moan, J. (2009). Diamino acid derivatives of PpIX as potential photosensitizers for photodynamic therapy of squamous cell carcinoma and prostate cancer: in vitro studies. Journal of Photochemistry and Photobiology B [Internet]., 94(3), 214–222. https://doi.org/10.1016/j.jphotobiol.2008.11.005.

    Article  CAS  Google Scholar 

  49. Bauer, A. W. (1966). Antibiotic susceptibility testing by a standardized single disc method. American Journal of Clinical Pathology, 45, 149–158

    Article  Google Scholar 

  50. Dhanalekshmi, K. I., & Meena, K. S. (2014). Comparison of antibacterial activities of Ag@TiO2 and Ag@SiO2 core–shell nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 128, 887–890. https://doi.org/10.1016/j.saa.2014.02.063.

    Article  CAS  PubMed  Google Scholar 

  51. Sun, D., Kang, S., Liu, C., Lu, Q., Cui, L., & Hu, B. (2016). Effect of zeta potential and particle size on the stability of SiO2 nanospheres as carrier for ultrasound imaging contrast agents. International Journal of Electrochemical Science, 11(10), 8520–8529

    Article  CAS  Google Scholar 

  52. Kaszuba, M., Corbett, J., Watson, F. M., & Jones, A. (2010). High-concentration zeta potential measurements using light-scattering techniques. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1927), 4439–4451

    Article  CAS  Google Scholar 

  53. Aghajani Kalaki, Z., SafaeiJavan, R., & Faraji, H. (2018). Procedure optimization for green synthesis of silver nanoparticles by Taguchi method. Micro & Nano Letters, 13(4), 558–561.

    Article  Google Scholar 

  54. Rahman, A. U., Geng, J., Ziolkowski, R. W., Hang, T., Hayat, Q., Liang, X., & Jin, R. (2019). Photoluminescence revealed higher-order plasmonic resonance modes and their unexpected frequency blue shifts in silver-coated silica nanoparticle antennas. Applied Sciences, 9(15), 3000

    Article  Google Scholar 

  55. Rajendran, R., & Mani, A. (2020). Photocatalytic, antibacterial and anticancer activity of silver-doped zinc oxide nanoparticles. Journal of Saudi Chemical Society, 24(12), 1010–1024.

    Article  CAS  Google Scholar 

  56. Hakraborty A., Pradesh H. (2021). Towards Boltzmann distribution. Statistical Mechanics (3), 4–6

  57. Xu, C., & Pu, K. (2021). Second near-infrared photothermal materials for combinational nanotheranostics. Chemical Society Reviews [Internet], 50(2), 1111–1137. https://doi.org/10.1039/D0CS00664E.

    Article  CAS  PubMed  Google Scholar 

  58. Jang, S. J., Yang, I. J., Tettey, C. O., Kim, K. M., & Shin, H. M. (2016). In-vitro anticancer activity of green synthesized silver nanoparticles on MCF-7 human breast cancer cells. Materials Science and Engineering: C, 68(11), 430–435.

    Article  CAS  PubMed  Google Scholar 

  59. Shubha, P., Ganesh, S., & Shyamsundar, S. (2024). Anti-proliferative activity of biosynthesized zinc oxide nanoparticles against breast cancer MCF-7 cells. Materials Chemistry and Physics, 315, 128900.

    Article  CAS  Google Scholar 

  60. Hamdy, M. S., Elbehairi, S. E. I., Shati, A. A., Abd-Rabboh, H. S., Alfaifi, M. Y., Fawy, K. F., Ibrahium, H. A., Alamri, S., & Awwad, N. S. (2022). Cytotoxic potential of bio-silica conjugate with different sizes of silver nanoparticles for cancer cell death. Materials, 15(12), 4074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xiu, Z. M., Zhang, Q. B., Puppala, H. L., Colvin, V. L., & Alvarez, P. J. (2012). Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Letters, 12(8), 4271–4275.

    Article  CAS  PubMed  Google Scholar 

  62. Tahir, K., Nazir, S., Li, B., Khan, A. U., Khan, Z. U., Ahmad, A., Khan, Q. U., & Zhao, Y. (2015). Enhanced visible light photocatalytic inactivation of Escherichia coli using silver nanoparticles as photocatalyst. Journal of Photochemistry and Photobiology B, 153(12), 261–266

    Article  CAS  Google Scholar 

  63. Kowalska, E., Wei, Z., Karabiyik, B., Herissan, A., Janczarek, M., Endo, M., Markowska-Szczupak, A., Remita, H., & Ohtani, B. (2015). Silver-modified titania with enhanced photocatalytic and antimicrobial properties under UV and visible light irradiation. Catalysis Today, 252(9), 136–142.

    Article  CAS  Google Scholar 

  64. Chen, G. S., Chen, C. N., Tseng, T. T., Wei, M. H., Hsieh, J. H., & Tseng, W. J. (2011). Synthesis, characterization, and antibacterial activity of silver-doped silica nanocomposite particles. Journal of Nanoscience and Nanotechnology, 11(1), 90–97

    Article  PubMed  Google Scholar 

  65. Jatoi, A. W., Jo, Y. K., Lee, H., Oh, S. G., Hwang, D. S., Khatri, Z., Cha, H. J., & Kim, I. S. (2018). Antibacterial efficacy of poly (vinyl alcohol) composite nanofibers embedded with silver‐anchored silica nanoparticles. Journal of Biomedical Materials Research—B Applied Biomaterials, 106(3), 1121–1128.

    Article  CAS  Google Scholar 

  66. Lin, J. J., Lin, W. C., Li, S. D., Lin, C. Y., & Hsu, S. H. (2013). Evaluation of the antibacterial activity and biocompatibility for silver nanoparticles immobilized on nano silicate platelets. ACS Applied Materials Interfaces, 5(2), 433–443.

    Article  CAS  PubMed  Google Scholar 

  67. Roberson, M., Rangari, V., Jeelani, S., Samuel, T., & Yates, C. (2014). Synthesis and characterization silver, zinc oxide and hybrid silver/zinc oxide nanoparticles for antimicrobial applications. Nano Life., 4(1), 1440003.

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge the research grant (Project ID: 34787) from the Science and Technology Development Fund (STDF), Egypt.

Author information

Authors and Affiliations

Authors

Contributions

Ahmed Soltan Monem and Heba Mohamed Fahmy conceived of the presented idea. Mohamed Mahmoud Fathy conceived and planned the experiments. Ayaat Mahmoud Mosleh, Eman Mohamed Salama, and Mostafa Mohamed Ahmed conducted the experiments. Esraa Ahmed Abu El Qassem Mahmoud and Bsma Hassan Nour contributed to sample characterizations. Ahmed Soltan Monem, Heba Mohamed Fahmy, and Mohamed Mahmoud Fathy contributed to the interpretation of the results. All authors contributed to the final version of the manuscript. All authors read and approved the manuscript; all data were generated in-house, and no paper mill was used.

Corresponding author

Correspondence to Heba Mohamed Fahmy.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monem, A.S., Fahmy, H.M., Mosleh, A.M. et al. Assessment of the Effect of Surface Modification of Metal Oxides on Silver Nanoparticles: Optical Properties and Potential Toxicity. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01272-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01272-2

Keywords

Navigation