Skip to main content

Advertisement

Log in

Drp1: Focus on Diseases Triggered by the Mitochondrial Pathway

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Drp1 (Dynamin-Related Protein 1) is a cytoplasmic GTPase protein encoded by the DNM1L gene that influences mitochondrial dynamics by mediating mitochondrial fission processes. Drp1 has been demonstrated to play an important role in a variety of life activities such as cell survival, proliferation, migration, and death. Drp1 has been shown to play different physiological roles under different physiological conditions, such as normal and inflammation. Recently studies have revealed that Drp1 plays a critical role in the occurrence, development, and aggravation of a series of diseases, thereby it serves as a potential therapeutic target for them. In this paper, we review the structure and biological properties of Drp1, summarize the biological processes that occur in the inflammatory response to Drp1, discuss its role in various cancers triggered by the mitochondrial pathway and investigate effective methods for targeting Drp1 in cancer treatment. We also synthesized the phenomena of Drp1 involving in the triggering of other diseases. The results discussed herein contribute to our deeper understanding of mitochondrial kinetic pathway-induced diseases and their therapeutic applications. It is critical for advancing the understanding of the mechanisms of Drp1-induced mitochondrial diseases and preventive therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Drp1:

Dynamin-Related Protein 1

PTM:

Post-translational modifications

Mfn:

Mitofusin

OPA1:

Optic Atrophy 1 protein

Mff:

Mitochondrial fission factor

Fis1:

Fission 1

MiD49:

Mitochondrial dynamics proteins of 49 kDa

MiD51:

Mitochondrial dynamics proteins of 51 kDa

ROS:

reactive oxygen species

NSCLC:

non-small cell lung cancer

HMGB1:

High Mobility Group Protein B1

PRRs:

pattern recognition receptors

NLRP3:

NOD-like receptor thermal protein domain associated protein 3

RIPK3:

Receptor-interacting protein kinase 3

AD:

Alzheimer’s disease

Aβ:

Amyloid β-Protein

Prx5:

Peroxiredoxin 5

ROCK1:

Rho-associated coiled-coil protein kinase 1

PGAM5:

phosphoglycerate mutase family member 5

References

  1. Tilokani, L., et al. (2018). Mitochondrial dynamics: overview of molecular mechanisms. Essays in biochemistry, 62(3), 341–360.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ramachandran, R., & Schmid, S. L. (2018). The dynamin superfamily. Current biology, 28(8), R411–R416.

    Article  CAS  PubMed  Google Scholar 

  3. Ng, M. Y. W., Wai, T., & Simonsen, A. (2021). Quality control of the mitochondrion. Developmental cell, 56(7), 881–905.

    Article  CAS  PubMed  Google Scholar 

  4. Straub Sp Fau - Stiller, S. B., et al. (2016). Dynamic organization of the mitochondrial protein import machinery. Biological chemistry, 397(11), 1097–1114.

    Article  Google Scholar 

  5. Lackner, L. L. (2014). Shaping the dynamic mitochondrial network. BMC biology, 12, 35.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Meyer, J. N., Leuthner, T. C., & Luz, A. L. (2017). Mitochondrial fusion, fission, and mitochondrial toxicity. Toxicology, 391, 42–53.

    Article  CAS  PubMed  Google Scholar 

  7. Lu, B., et al. (2018). Steric interference from intrinsically disordered regions controls dynamin-related protein 1 self-assembly during mitochondrial fission. Scientific reports, 8(1), 10879.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  8. Kasahara, A., & Scorrano, L. (2014). Mitochondria: from cell death executioners to regulators of cell differentiation. Trends in cell biology, 24(12), 761–70.

    Article  CAS  PubMed  Google Scholar 

  9. Osellame, L. D., et al. (2016). Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission. Journal of cell science, 129(11), 2170–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mishra, P., & Chan, D. C. (2016). Metabolic regulation of mitochondrial dynamics. The Journal of cell biology, 212(4), 379–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liesa, M., Palacín, M., & Zorzano, A. (2009). A. Mitochondrial dynamics in mammalian health and disease. Physiological reviews, 89(3), 799–845.

    Article  CAS  PubMed  Google Scholar 

  12. Hu, D., & Qi, X. (2020). Measuring Drp1 Activity in Mitochondrial Fission In Vivo. Methods in molecular biology, 2159, 189–195.

    Article  CAS  PubMed  Google Scholar 

  13. Kraus, F., & Ryan, M. T. (2017). The constriction and scission machineries involved in mitochondrial fission. Journal of cell science, 130(18), 2953–2960.

    CAS  PubMed  Google Scholar 

  14. Yue, W., et al. (2014). A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30. Cell research, 24(4), 482–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmid, S. L., & Frolov, V. A. (2011). Dynamin: functional design of a membrane fission catalyst. Annual review of cell and developmental biology, 27, 79–105.

    Article  CAS  PubMed  Google Scholar 

  16. Elgass, K. D., et al. (2015). Analysis of ER-mitochondria contacts using correlative fluorescence microscopy and soft X-ray tomography of mammalian cells. Journal of cell science, 128(15), 2795–804.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Palmer, C. S., et al. (2011). MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO reports, 12(6), 565–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Adachi, Y., et al. (2016). Coincident Phosphatidic Acid Interaction Restrains Drp1 in Mitochondrial Division. Molecular cell, 63(6), 1034–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Favaro, G., et al. (2019). DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nature communications, 10(1), 2576.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Zheng, X., et al. (2023). Honokiol attenuates mitochondrial fission and cell apoptosis by activating Sirt3 in intracerebral hemorrhage. Chinese medical journal, 136(6), 719–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sulkshane, P., et al. (2021). Ubiquitination and receptor-mediated mitophagy converge to eliminate oxidation-damaged mitochondria during hypoxia. Redox biology, 45, 102047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dowding, J. M., et al. (2014). Cerium oxide nanoparticles protect against Aβ-induced mitochondrial fragmentation and neuronal cell death. Cell death and differentiation, 21(10), 1622–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shen, L. A.-O., et al. (2017). Role of S-Palmitoylation by ZDHHC13 in Mitochondrial function and Metabolism in Liver. Scientific reports, 7(1), 2182.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  24. Cheng, X., & Hart, G. W. (2001). Alternative O-glycosylation/O-phosphorylation of serine-16 in murine estrogen receptor beta: post-translational regulation of turnover and transactivation activity. The Journal of biological chemistry, 276(13), 10570–5.

    Article  CAS  PubMed  Google Scholar 

  25. Guo, C., et al. (2013). SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia. The EMBO journal, 32(11), 1514–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Breitzig, M. T., et al. (2018). A mitochondrial delicacy: dynamin-related protein 1 and mitochondrial dynamics. American journal of physiology, 315(1), C80–C90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deng, Y., et al. (2022). Mitochondrial Dynamin-Related Protein Drp1: a New Player in Cardio-oncology. Current oncology reports, 24(12), 1751–1763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Poole, L. P., & Macleod, K. F. (2021). Mitophagy in tumorigenesis and metastasis. Cellular and molecular life sciences, 78(8), 3817–3851.

    Article  CAS  PubMed  Google Scholar 

  29. Kang, Y. J., et al. (2015). Regulation of NKT cell-mediated immune responses to tumours and liver inflammation by mitochondrial PGAM5-Drp1 signalling. Nature communications, 6, 8371.

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Park, Y. S., Choi, S. E., & Koh, H. C. (2018). PGAM5 regulates PINK1/Parkin-mediated mitophagy via DRP1 in CCCP-induced mitochondrial dysfunction. Toxicology letters, 284, 120–128.

    Article  CAS  PubMed  Google Scholar 

  31. Guo, X., Sesaki, H., & Qi, X. (2014). Drp1 stabilizes p53 on the mitochondria to trigger necrosis under oxidative stress conditions in vitro and in vivo. The Biochemical journal, 461(1), 137–46.

    Article  CAS  PubMed  Google Scholar 

  32. Liu, W. A.-O., et al. (2021). High Mobility Group Box 1 Promotes Lung Cancer Cell Migration and Motility via Regulation of Dynamin-Related Protein 1. International journal of molecular sciences, 22(7), 3628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oo, P. S., et al. (2018). Estrogen Regulates Mitochondrial Morphology through Phosphorylation of Dynamin-related Protein 1 in MCF7 Human Breast Cancer Cells. Acta histochemica et cytochemica, 51(1), 21–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hernández-Alvarez, M. I., et al. (2013). Glucocorticoid modulation of mitochondrial function in hepatoma cells requires the mitochondrial fission protein Drp1. Antioxidants & redox signaling, 19(4), 366–78.

    Article  Google Scholar 

  35. Luo, M., et al. (2022). Overexpression of carnitine palmitoyltransferase 1A promotes mitochondrial fusion and differentiation of glioblastoma stem cells. Laboratory investigation, 102(7), 722–730.

    Article  CAS  PubMed  Google Scholar 

  36. Huang, C. A.-O., et al. (2018). HMGB1 promotes ERK-mediated mitochondrial Drp1 phosphorylation for chemoresistance through RAGE in colorectal cancer. Cell death & disease, 9(10), 1004.

    Article  Google Scholar 

  37. Nagdas, S., et al. (2019). Drp1 Promotes KRas-Driven Metabolic Changes to Drive Pancreatic Tumor Growth. Cell reports, 28(7), 1845–1859.e5.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, J., et al. (2019). Deubiquitinase USP9X regulates the invasion of prostate cancer cells by regulating the ERK pathway and mitochondrial dynamics. Oncology reports, 41(6), 3292–3304.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ramachandran, R. (2018). Mitochondrial dynamics: The dynamin superfamily and execution by collusion. Seminars in cell & developmental biology, 76, 201–212.

    Article  CAS  Google Scholar 

  40. Friedman, J. R., et al. (2011). ER tubules mark sites of mitochondrial division. Science, 334(6054), 358–62.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao, J., et al. (2011). Human MIEF1 recruits Drp1 to mitochondrial outer membranes and promotes mitochondrial fusion rather than fission. The EMBO journal, 30(14), 2762–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koirala, S., et al. (2013). Interchangeable adaptors regulate mitochondrial dynamin assembly for membrane scission. Proceedings of the National Academy of Sciences of the United States of America, 110(15), E1342–51.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, R., & Chan, D. C. (2015). The mitochondrial fission receptor Mff selectively recruits oligomerized Drp1. Molecular biology of the cell, 26(24), 4466–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Smirnova, E., et al. (2001). Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Molecular biology of the cell, 12(8), 2245–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ugarte-Uribe, B., et al. (2018). Drp1 polymerization stabilizes curved tubular membranes similar to those of constricted mitochondria. Journal of cell science, 132(4), jcs208603.

    PubMed  Google Scholar 

  46. Fröhlich, C., et al. (2013). Structural insights into oligomerization and mitochondrial remodelling of dynamin 1-like protein. The EMBO journal, 32(9), 1280–92.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kalia, R., et al. (2018). Structural basis of mitochondrial receptor binding and constriction by DRP1. Nature, 558(7710), 401–405.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dar, S., & Pucadyil, T. J. (2017). The pleckstrin-homology domain of dynamin is dispensable for membrane constriction and fission. Molecular biology of the cell, 28(1), 152–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bui, H. T., & Shaw, J. M. (2013). Dynamin assembly strategies and adaptor proteins in mitochondrial fission. Current biology, 23(19), R891–9.

    Article  CAS  PubMed  Google Scholar 

  50. Labbé, K., Murley, J., & Nunnari, J. (2014). Determinants and functions of mitochondrial behavior. Annual review of cell and developmental biology, 30, 357–91.

    Article  PubMed  Google Scholar 

  51. Richter, V., et al. (2015). Splitting up the powerhouse: structural insights into the mechanism of mitochondrial fission. Cellular and molecular life sciences, 72(19), 3695–707.

    Article  CAS  PubMed  Google Scholar 

  52. Francy, C. A., et al. (2015). The mechanoenzymatic core of dynamin-related protein 1 comprises the minimal machinery required for membrane constriction. The Journal of biological chemistry, 290(18), 11692–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mears, J. A., et al. (2011). Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nature structural & molecular biology, 18(1), 20–6.

    Article  CAS  Google Scholar 

  54. Qi, X., et al. (2013). A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. Journal of cell science, 126(Pt 3), 789–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Antonny, B., et al. (2016). Membrane fission by dynamin: what we know and what we need to know. The EMBO journal, 35(21), 2270–2284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Montessuit, S., et al. (2010). Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell, 142(6), 889–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bustillo-Zabalbeitia, I., et al. (2014). Specific interaction with cardiolipin triggers functional activation of Dynamin-Related Protein 1. PloS one, 9(7), e102738.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  58. Macdonald, P. J., et al. (2016). Distinct Splice Variants of Dynamin-related Protein 1 Differentially Utilize Mitochondrial Fission Factor as an Effector of Cooperative GTPase Activity. The Journal of biological chemistry, 291(1), 493–507.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  59. Ugarte-Uribe, B., et al. (2014). Dynamin-related protein 1 (Drp1) promotes structural intermediates of membrane division. The Journal of biological chemistry, 289(44), 30645–30656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Adachi, Y., Iijima, M., & Sesaki, H. (2018). An unstructured loop that is critical for interactions of the stalk domain of Drp1 with saturated phosphatidic acid. Small GTPases, 9(6), 472–479.

    Article  CAS  PubMed  Google Scholar 

  61. Montecinos-Franjola, F., & Ramachandran, R. (2020). Imaging Dynamin-Related Protein 1 (Drp1)-Mediated Mitochondrial Fission in Living Cells. Methods in molecular biology, 2159, 205–217.

    Article  CAS  PubMed  Google Scholar 

  62. Wai, T., & Langer, T. (2016). Mitochondrial Dynamics and Metabolic Regulation. Trends in endocrinology and metabolism. Trends in endocrinology and metabolism, 27(2), 105–117.

    Article  CAS  PubMed  Google Scholar 

  63. Pernas, L., & Scorrano, L. (2016). Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. Annual review of physiology, 78, 505–31.

    Article  CAS  PubMed  Google Scholar 

  64. Garcia, I., et al. (2018). Oxidative insults disrupt OPA1-mediated mitochondrial dynamics in cultured mammalian cells. Redox report, 23(1), 160–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shen, Q., et al. (2014). Mutations in Fis1 disrupt orderly disposal of defective mitochondria. Molecular biology of the cell, 25(1), 145–59.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  66. Cho, B., et al. (2017). Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division. Nature communications, 8, 15754.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  67. Ramonett, A., et al. (2022). Regulation of mitochondrial fission by GIPC-mediated Drp1 retrograde transport. Molecular biology of the cell, 33(1), ar4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kamerkar, S. C., et al. (2018). Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nature communications, 9(1), 5239.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Francy, C. A., et al. (2017). Cryo-EM Studies of Drp1 Reveal Cardiolipin Interactions that Activate the Helical Oligomer. Scientific reports, 7(1), 10744.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  70. Nagashima, S. A.-O., et al. (2020). Golgi-derived PI(4)P-containing vesicles drive late steps of mitochondrial division. Science, 367(6484), 1366–1371.

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Saez-Atienzar, S., et al. (2014). The LRRK2 inhibitor GSK2578215A induces protective autophagy in SH-SY5Y cells: involvement of Drp-1-mediated mitochondrial fission and mitochondrial-derived ROS signaling. Cell death & disease, 5(8), e1368.

    Article  CAS  Google Scholar 

  72. Losón, O. C., et al. (2014). The mitochondrial fission receptor MiD51 requires ADP as a cofactor. Structure, 22(3), 367–77.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Clinton, R. W., et al. (2016). Dynamin-related Protein 1 Oligomerization in Solution Impairs Functional Interactions with Membrane-anchored Mitochondrial Fission Factor. The Journal of biological chemistry, 291(1), 478–92.

    Article  CAS  PubMed  Google Scholar 

  74. Ma, J., et al. (2019). New interfaces on MiD51 for Drp1 recruitment and regulation. PloS one, 14(1), e0211459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kornfeld, O. S., et al. (2018). Interaction of mitochondrial fission factor with dynamin related protein 1 governs physiological mitochondrial function in vivo. Scientific reports, 8(1), 14034.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  76. Palmer, C. S., et al. (2013). Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. The Journal of biological chemistry, 288(38), 27584–27593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Losón, O. C., et al. (2013). Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Molecular biology of the cell, 24(5), 659–67.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhou, C. A.-O., et al. (2022). CENP-F-dependent DRP1 function regulates APC/C activity during oocyte meiosis I. Nature communications, 13(1), 7732.

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gomes, L. C., Benedetto, G. D., & Scorrano, L. (2011). During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nature cell biology, 13(5), 589–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gawlowski, T., et al. (2012). Modulation of dynamin-related protein 1 (DRP1) function by increased O-linked-β-N-acetylglucosamine modification (O-GlcNAc) in cardiac myocytes. The Journal of biological chemistry, 287(35), 30024–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, H., et al. (2011). Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. The Journal of biological chemistry, 286(13), 11649–58.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Otera, H., Ishihara, N., & Mihara, K. (2013). New insights into the function and regulation of mitochondrial fission. Biochimica et biophysica acta, 1833(5), 1256–68.

    Article  CAS  PubMed  Google Scholar 

  83. Xiao, L., et al. (2015). Death-associated Protein 3 Regulates Mitochondrial-encoded Protein Synthesis and Mitochondrial Dynamics. The Journal of biological chemistry, 290(41), 24961–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Korobova, F., Ramabhadran, V., & Higgs, H. N. (2013). An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science, 339(6118), 464–7.

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Bo, T., et al. (2018). Calmodulin-dependent protein kinase II (CaMKII) mediates radiation-induced mitochondrial fission by regulating the phosphorylation of dynamin-related protein 1 (Drp1) at serine 616. Biochemical and biophysical research communications, 495(2), 1601–1607.

    Article  CAS  PubMed  Google Scholar 

  86. Wang, Z., et al. (2012). The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell, 148(1-2), 228–43.

    Article  CAS  PubMed  Google Scholar 

  87. Cho, D. H., et al. (2009). S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science, 324(5923), 102–5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Napoli, E., et al. (2017). Zdhhc13-dependent Drp1 S-palmitoylation impacts brain bioenergetics, anxiety, coordination and motor skills. Scientific reports, 7(1), 12796.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  89. Sabouny, R., et al. (2017). The Keap1-Nrf2 Stress Response Pathway Promotes Mitochondrial Hyperfusion Through Degradation of the Mitochondrial Fission Protein Drp1. Antioxidants & redox signaling, 27(18), 1447–1459.

    Article  CAS  Google Scholar 

  90. Huan, Y., et al. (2023). The role of dynamin-related protein 1 in cerebral ischemia/hypoxia injury. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 165, 115247.

    Article  CAS  Google Scholar 

  91. Gu, L., et al. (2018). Amplification of Glyceronephosphate O-Acyltransferase and Recruitment of USP30 Stabilize DRP1 to Promote Hepatocarcinogenesis. Cancer research, 78(20), 5808–5819.

    Article  CAS  PubMed  Google Scholar 

  92. Huang, J., et al. (2021). Inhibition of Drp1 SUMOylation by ALR protects the liver from ischemia-reperfusion injury. Cell death and differentiation, 28(4), 1174–1192.

    Article  CAS  PubMed  Google Scholar 

  93. Ren, K. D., et al. (2019). Mitochondrial E3 ubiquitin ligase 1 promotes brain injury by disturbing mitochondrial dynamics in a rat model of ischemic stroke. European journal of pharmacology, 861, 172617.

    Article  CAS  PubMed  Google Scholar 

  94. Adaniya, S. M., et al. (2019). Posttranslational modifications of mitochondrial fission and fusion proteins in cardiac physiology and pathophysiology. American journal of physiology. Cell physiology, 316(5), C583–C604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dadson, K., Liu, Y., & Sweeney, G. (2011). Adiponectin action: a combination of endocrine and autocrine/paracrine effects. Frontiers in endocrinology, 2, 62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Singh, N., et al. (2019). Inflammation and cancer. Annals of African medicine, 18(3), 121–126.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  97. Tansey, M. A.-O., et al. (2022). Inflammation and immune dysfunction in Parkinson disease. Nature reviews. Immunology, 22(11), 657–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stark, K. A.-O., & Massberg, S. A.-O. (2021). Interplay between inflammation and thrombosis in cardiovascular pathology. Nature reviews. Cardiology, 18(9), 666–682.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Basso, P. A.-O., Andrade-Oliveira, V., & Câmara, N. A.-O. (2021). Targeting immune cell metabolism in kidney diseases. Nature reviews. Nephrology, 17(7), 465–480.

    Article  CAS  PubMed  Google Scholar 

  100. Kroemer, G. A.-O., et al. (2022). Immunogenic cell stress and death. Nature immunology, 23(4), 487–500.

    Article  CAS  PubMed  Google Scholar 

  101. Vanpouille-Box, C. A.-O., Hoffmann, J. A., & Galluzzi, L. A.-O. (2019). Pharmacological modulation of nucleic acid sensors - therapeutic potential and persisting obstacles. Nature reviews. Drug discovery, 18(11), 845–867.

    Article  CAS  PubMed  Google Scholar 

  102. Ng Kee Kwong, F., et al. (2017). Is mitochondrial dysfunction a driving mechanism linking COPD to nonsmall cell lung carcinoma? European respiratory review, 26(146), 170040.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Galluzzi, L., Yamazaki, T., & Kroemer, G. (2018). Linking cellular stress responses to systemic homeostasis. Nature reviews. Molecular cell biology, 19(11), 731–745.

    Article  CAS  PubMed  Google Scholar 

  104. Sun, J., et al. (2021). Adiponectin receptor agonist AdipoRon blocks skin inflamm-ageing by regulating mitochondrial dynamics. Cell proliferation, 54(12), e13155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Astorga, J., et al. (2022). The role of cholesterol and mitochondrial bioenergetics in activation of the inflammasome in IBD. Frontiers in immunology, 13, 1028953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu, R. A.-O., et al. (2020). An Inhibitor of DRP1 (Mdivi-1) Alleviates LPS-Induced Septic AKI by Inhibiting NLRP3 Inflammasome Activation. BioMed research international, 2020, 2398420.

    PubMed  PubMed Central  Google Scholar 

  107. Qin, Y., et al. (2021). Atractylenolide I Inhibits NLRP3 Inflammasome Activation in Colitis-Associated Colorectal Cancer via Suppressing Drp1-Mediated Mitochondrial Fission. Frontiers in pharmacology, 12, 674340.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, L., et al. (2019). Lipopolysaccharide-induced proliferation and glycolysis in airway smooth muscle cells via activation of Drp1. Journal of cellular physiology, 234(6), 9255–9263.

    Article  CAS  PubMed  Google Scholar 

  109. Chan, Y. A.-O., et al. (2019). Pulmonary inflammation induced by low-dose particulate matter exposure in mice. American journal of physiology. Lung cellular and molecular physiology, 317(3), L424–L430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Delmotte, P., Marin Mathieu, N. A.-O., & Sieck, G. C. (2021). TNFα induces mitochondrial fragmentation and biogenesis in human airway smooth muscle. American journal of physiology. Lung cellular and molecular physiology, 320(1), L137–L151.

    Article  PubMed  Google Scholar 

  111. Zhao, C. C., et al. (2020). Apolipoprotein E negatively regulates murine allergic airway inflammation via suppressing the activation of NLRP3 inflammasome and oxidative stress. International immunopharmacology, 81, 106301.

    Article  CAS  PubMed  Google Scholar 

  112. Bruno, S. A.-O., et al. (2021). DRP1-Mediated Mitochondrial Fission Regulates Lung Epithelial Response to Allergen. International journal of molecular sciences, 22(20), 11125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Forrester, S. J., et al. (2020). Mitochondrial Fission Mediates Endothelial Inflammation. Hypertension, 76(1), 267–276.

    Article  CAS  PubMed  Google Scholar 

  114. Chen, Y. C., et al. (2022). Vitamin D(3) decreases TNF-α-induced inflammation in lung epithelial cells through a reduction in mitochondrial fission and mitophagy. Cell biology and toxicology, 38(3), 427–450.

    Article  PubMed  Google Scholar 

  115. Zhang, J., et al. (2023). Mutual promotion of mitochondrial fission and oxidative stress contributes to mitochondrial-DNA-mediated inflammation and epithelial-mesenchymal transition in paraquat-induced pulmonary fibrosis. World journal of emergency medicine, 14(3), 209–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ma, X., et al. (2023). Loss of hepatic DRP1 exacerbates alcoholic hepatitis by inducing megamitochondria and mitochondrial maladaptation. Hepatology, 77(1), 159–175.

    Article  PubMed  Google Scholar 

  117. Nevers, T., Kalkunte, S., & Sharma, S. (2011). Uterine Regulatory T cells, IL-10 and hypertension. American journal of reproductive immunology, 66, 88–92.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Liu, X., et al. (2018). Correlation between the expression of Drp1 in vascular endothelial cells and inflammatory factors in hypertension rats. 1792-0981. Experimental and therapeutic medicine, 15(4), 3892–3898.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ferrari, L. F., et al. (2011). Role of Drp1, a key mitochondrial fission protein, in neuropathic pain. 1529-2401. The Journal of neuroscience, 31(31), 11404–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zezina, E., et al. (2018). Mitochondrial fragmentation in human macrophages attenuates palmitate-induced inflammatory responses. Biochimica et biophysica acta. Molecular and cell biology of lipids, 1863(4), 433–446.

    Article  CAS  PubMed  Google Scholar 

  121. Liu, X., et al. (2022). Mdivi-1 Modulates Macrophage/Microglial Polarization in Mice with EAE via the Inhibition of the TLR2/4-GSK3β-NF-κB Inflammatory Signaling Axis. Molecular neurobiology, 59(1), 1–16.

    Article  CAS  PubMed  Google Scholar 

  122. Park, S., et al. (2015). Defective mitochondrial fission augments NLRP3 inflammasome activation. Scientific reports, 5, 15489.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pu, S., et al. (2018). Role of receptor-interacting protein 1/receptor-interacting protein 3 in inflammation and necrosis following chronic constriction injury of the sciatic nerve. Neuroreport, 29(16), 1373–1378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, Q., & Qiu, H. (2023). Deubiquitinase USP16 induces gouty arthritis via Drp1-dependent mitochondrial fission and NLRP3 inflammasome activation. Arthritis research & therapy, 25(1), 126.

    Article  CAS  Google Scholar 

  125. Jiang, H., et al. (2022). Dynamin-Related Protein 1 Is Involved in Mitochondrial Damage, Defective Mitophagy, and NLRP3 Inflammasome Activation Induced by MSU Crystals. Oxidative medicine and cellular longevity, 2022, 5064494.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Yu, W., et al. (2020). Stat2-Drp1 mediated mitochondrial mass increase is necessary for pro-inflammatory differentiation of macrophages. Redox biology, 37, 101761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Shen, Y. L., et al. (2018). TNF-α induces Drp1-mediated mitochondrial fragmentation during inflammatory cardiomyocyte injury. International journal of molecular medicine, 41(4), 2317–2327.

    CAS  PubMed  Google Scholar 

  128. Khan, S., et al. (2023). CLUH functions as a negative regulator of inflammation in human macrophages and determines ulcerative colitis pathogenesis. JCI Insight, 8(11), e161096.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hong, S. G., et al. (2022). Flow pattern-dependent mitochondrial dynamics regulates the metabolic profile and inflammatory state of endothelial cells. JCI insight, 7(18), e159286.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Tao, Z., et al. (2022). Regulating mitochondrial homeostasis and inhibiting inflammatory responses through Celastrol. Annals of translational medicine, 10(7), 400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Li, Y., et al. (2016). Inhibition of Mitochondrial Fission and NOX2 Expression Prevent NLRP3 Inflammasome Activation in the Endothelium: The Role of Corosolic Acid Action in the Amelioration of Endothelial Dysfunction. Antioxidants & redox signaling, 24(16), 893–908.

    Article  CAS  Google Scholar 

  132. Zhang, B., et al. (2018). D-chiro-inositol enriched Fagopyrum tataricum (L.) Gaench extract alleviates mitochondrial malfunction and inhibits ER stress/JNK associated inflammation in the endothelium. Journal of ethnopharmacology, 214, 83–89.

    Article  CAS  PubMed  Google Scholar 

  133. Mancini, N. L., et al. (2020). Perturbed Mitochondrial Dynamics Is a Novel Feature of Colitis That Can Be Targeted to Lessen Disease. Cellular and molecular gastroenterology and hepatology, 10(2), 287–307.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Davda, D., et al. (2013). Profiling targets of the irreversible palmitoylation inhibitor 2-bromopalmitate. ACS chemical biology, 8(9), 1912–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Xie, M., et al. (2021). 2-Bromopalmitate attenuates inflammatory pain by maintaining mitochondrial fission/fusion balance and function. Acta biochimica et biophysica Sinica(Shanghai), 53(1), 72–84.

    CAS  Google Scholar 

  136. Xie, Q., et al. (2015). Mitochondrial control by DRP1 in brain tumor initiating cells. Nature neuroscience, 18(4), 501–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fan, Z., et al. (2015). ABT737 enhances cholangiocarcinoma sensitivity to cisplatin through regulation of mitochondrial dynamics. Experimental cell research, 335(1), 68–81.

    Article  CAS  PubMed  Google Scholar 

  138. Farrand, L., et al. (2013). Piceatannol enhances cisplatin sensitivity in ovarian cancer via modulation of p53, X-linked inhibitor of apoptosis protein (XIAP), and mitochondrial fission. The Journal of biological chemistry, 288(33), 23740–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. DeBerardinis, R. J., & Chandel, N. S. (2016). Fundamentals of cancer metabolism. Science advances, 2(5), e1600200.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  140. Senft, D., & Ronai, Z. E. (2016). Adaptive Stress Responses During Tumor Metastasis and Dormancy. Trends in cancer, 2(8), 429–442.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Li, H., & Fau-He, F., et al. (2017). YAP Inhibits the Apoptosis and Migration of Human Rectal Cancer Cells via Suppression of JNK-Drp1-Mitochondrial Fission-HtrA2/Omi Pathways. Cellular physiology and biochemistry, 44(5), 2073–2089.

    Article  CAS  PubMed  Google Scholar 

  142. Kim, D. Y., et al. (2018). Hypoxia-dependent mitochondrial fission regulates endothelial progenitor cell migration, invasion, and tube formation. The Korean journal of physiology & pharmacology, 22(2), 203–213.

    Article  ADS  CAS  Google Scholar 

  143. Lee, Y. G., et al. (2020). Androgen-induced expression of DRP1 regulates mitochondrial metabolic reprogramming in prostate cancer. Cancer letters, 471, 72–87.

    Article  ADS  CAS  PubMed  Google Scholar 

  144. Guo, L. A.-O., et al. (2020). PINCH-1 regulates mitochondrial dynamics to promote proline synthesis and tumor growth. Nature communications, 11(1), 4913.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yanagi, T., et al. (2020). Loss of dynamin-related protein 1 (Drp1) does not affect epidermal development or UVBinduced apoptosis but does accelerate UVB-induced carcinogenesis. Journal of dermatological science, 99(2), 109–118.

    Article  CAS  PubMed  Google Scholar 

  146. Xie, L., et al. (2020). Drp1-dependent remodeling of mitochondrial morphology triggered by EBV-LMP1 increases cisplatin resistance. Signal transduction and targeted therapy, 5(1), 56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Shi, L. A.-O., et al. (2020). Deubiquitinase OTUD6A promotes proliferation of cancer cells via regulating Drp1 stability and mitochondrial fission. Molecular oncology, 14(12), 3169–3183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yu, Y., et al. (2021). Fis1 phosphorylation by Met promotes mitochondrial fission and hepatocellular carcinoma metastasis. Signal transduction and targeted therapy, 6(1), 401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lima, A. A.-O., et al. (2021). S616-p-DRP1 associates with locally invasive behavior of follicular cell-derived thyroid carcinoma. Endocrine., 73(1), 85–97.

    Article  CAS  PubMed  Google Scholar 

  150. Mao, X., et al. (2021). Phosphorylation of Dynamin-Related Protein 1 (DRP1) Regulates Mitochondrial Dynamics and Skeletal Muscle Wasting in Cancer Cachexia. Frontiers in cell and developmental biology, 9, 673618.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Xiong, X., et al. (2022). Activation of Drp1 promotes fatty acids-induced metabolic reprograming to potentiate Wnt signaling in colon cancer. Cell death and differentiation, 29(10), 1913–1927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Li, Y., et al. (2022). Increased Drp1 promotes autophagy and ESCC progression by mtDNA stress mediated cGASSTING pathway. Journal of experimental & clinical cancer research, 41(1), 76.

    Article  CAS  Google Scholar 

  153. Chang, Y. A.-O., et al. (2023). Spatial and temporal dynamics of ATP synthase from mitochondria toward the cell surface. Communications biology, 6(1), 427.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wei, M., et al. (2023). YY2-DRP1 Axis Regulates Mitochondrial Fission and Determines Cancer Stem Cell Asymmetric Division. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 10(23), e2207349.

    PubMed  Google Scholar 

  155. Richter, V. et al. (2014). Structural and functional analysis of MiD51, a dynamin receptor required for mitochondrial fission. The Journal of cell biology, 204(4), 477–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bray, F., et al. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 68(6), 394–424.

    PubMed  Google Scholar 

  157. Li, Q., & Fau-Yuan, D., et al. (2016). A new hope: the immunotherapy in small cell lung cancer. Neoplasma, 63(3), 342–50.

    Article  CAS  PubMed  Google Scholar 

  158. Travis, W. D., et al. (2015). The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. Journal of thoracic oncology, 10(9), 1243–1260.

    Article  PubMed  Google Scholar 

  159. Wu, J., & Lin, Z. A.-O. (2022). Non-Small Cell Lung Cancer Targeted Therapy: Drugs and Mechanisms of Drug Resistance. International journal of molecular sciences, 23(23), 15056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Li, J. W., et al. (2023). PROTAC therapy as a new targeted therapy for lung cancer. Molecular therapy, 31(3), 647–656.

    Article  CAS  PubMed  Google Scholar 

  161. Herrera-Juárez, M. A.-O., et al. (2023). Targeted therapy for lung cancer: Beyond EGFR and ALK. Cancer, 129(12), 1803–1820.

    Article  PubMed  Google Scholar 

  162. Rehman, J., et al. (2012). Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB journal, 26(5), 2175–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Liang, W., et al. (2020). Dynamin-related protein-1 promotes lung cancer A549 cells apoptosis through the F-actin/bax signaling pathway. Journal of receptor and signal transduction research, 40(5), 419–425.

    Article  CAS  PubMed  Google Scholar 

  164. Ma, J. T., et al. (2019). Effects of Dynamin-related Protein 1 Regulated Mitochondrial Dynamic Changes on Invasion and Metastasis of Lung Cancer Cells. Journal of Cancer, 10(17), 4045–4053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Dasgupta, A., et al. (2020). An epigenetic increase in mitochondrial fission by MiD49 and MiD51 regulates the cell cycle in cancer: Diagnostic and therapeutic implications. FASEB journal, 34(4), 5106–5127.

    Article  CAS  PubMed  Google Scholar 

  166. Nolan, E., Lindeman, G. J., & Visvader, J. E. (2023). Deciphering breast cancer: from biology to the clinic. Cell., 186(8), 1708–1728.

    Article  CAS  PubMed  Google Scholar 

  167. Sørlie, T., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10869–74.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  168. Perou, C. M., et al. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747–52.

    Article  ADS  CAS  PubMed  Google Scholar 

  169. Swain, S. A.-O., Shastry, M. A.-O., & Hamilton, E. A.-O. (2023). Targeting HER2-positive breast cancer: advances and future directions. Nature reviews. Drug discovery, 22(2), 101–126.

    Article  CAS  PubMed  Google Scholar 

  170. Liu, B., et al. Identification of DRP1 as a prognostic factor correlated with immune infiltration in breast cancer. 2020;89(Pt B):107078.

  171. Zhao, J., et al. (2013). Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene, 32(40), 4814–24.

    Article  CAS  PubMed  Google Scholar 

  172. Zhang, W., et al. (2017). Illuminating Superoxide Anion and pH Enhancements in Apoptosis of Breast Cancer Cells Induced by Mitochondrial Hyperfusion Using a New Two-Photon Fluorescence Probe. Analytical chemistry, 89(12), 6840–6845.

    Article  CAS  PubMed  Google Scholar 

  173. Zou, P., et al. (2016). Coordinated Upregulation of Mitochondrial Biogenesis and Autophagy in Breast Cancer Cells: The Role of Dynamin Related Protein-1 and Implication for Breast Cancer Treatment. Oxidative medicine and cellular longevity, 2016, 4085727.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Wang, Q., et al. (2017). Mitochondrial dysfunction is responsible for fatty acid synthase inhibition-induced apoptosis in breast cancer cells by PdpaMn. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 96, 396–403.

    Article  CAS  Google Scholar 

  175. Yamaguchi, H., & Condeelis, J. (2007). Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochimica et biophysica acta., 1773(5), 642–52.

    Article  CAS  PubMed  Google Scholar 

  176. Zhang, J., et al. (2017). Guanylate-binding protein 2 regulates Drp1-mediated mitochondrial fission to suppress breast cancer cell invasion. Cell death & disease, 8(10), e3151.

    Article  CAS  Google Scholar 

  177. Zhen, Y., et al. (2022). Flubendazole induces mitochondrial dysfunction and DRP1-mediated mitophagy by targeting EVA1A in breast cancer. Cell death & disease, 13(4), 375.

    Article  CAS  Google Scholar 

  178. Tang, Q., et al. (2018). Dynamin-related protein 1-mediated mitochondrial fission contributes to IR-783-induced apoptosis in human breast cancer cells. Journal of cellular and molecular medicine, 22(9), 4474–4485.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sehrawat, A., et al. (2019). Withaferin A-mediated apoptosis in breast cancer cells is associated with alterations in mitochondrial dynamics. Mitochondrion, 47, 282–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Li, G., et al. (2015). Mitochondrial translocation and interaction of cofilin and Drp1 are required for erucin-induced mitochondrial fission and apoptosis. Oncotarget, 6(3), 1834–49.

    Article  PubMed  Google Scholar 

  181. Si, L., et al. (2020). Silibinin inhibits migration and invasion of breast cancer MDA-MB-231 cells through induction of mitochondrial fusion. Molecular and cellular biochemistry, 463(1-2), 189–201.

    Article  CAS  PubMed  Google Scholar 

  182. Jia, Y., et al. (2015). Dynamin-related protein 1 is involved in micheliolide-induced breast cancer cell death. 1178-6930. OncoTargets and therapy, 8, 3371–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Yahoo, N., et al. (2023). Role of immune responses in the development of NAFLD-associated liver cancer and prospects for therapeutic modulation. Journal of hepatology, 79(2), 538–551.

    Article  CAS  PubMed  Google Scholar 

  184. Donne, R. A.-O., & Lujambio, A. A.-O. (2023). The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology, 77(5), 1773–1796.

    Article  PubMed  Google Scholar 

  185. Bao, D., et al. (2019). Mitochondrial fission-induced mtDNA stress promotes tumor-associated macrophage infiltration and HCC progression. Oncogene, 38(25), 5007–5020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Huang, Y., et al. (2023). Ferroptosis and its interaction with tumor immune microenvironment in liver cancer. Biochimica et biophysica acta. Reviews on cancer, 1878(1), 188848.

    CAS  PubMed  Google Scholar 

  187. Lin, X. H., et al. (2020). Suppressing DRP1-mediated mitochondrial fission and mitophagy increases mitochondrial apoptosis of hepatocellular carcinoma cells in the setting of hypoxia. Oncogenesis, 9(7), 67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ma, M., et al. (2020). Suppression of DRP1‑mediated mitophagy increases the apoptosis of hepatocellular carcinoma cells in the setting of chemotherapy. Oncology reports, 43(3), 1010–1018.

    CAS  PubMed  Google Scholar 

  189. Zhan, L., et al. (2016). Drp1-mediated mitochondrial fission promotes cell proliferation through crosstalk of p53 and NF-κB pathways in hepatocellular carcinoma. Oncotarget, 7(40), 65001–65011.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Cunningham, C. N., et al. (2015). USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nature cell biology, 17(2), 160–9.

    Article  CAS  PubMed  Google Scholar 

  191. Che, L., et al. (2022). Targeting Mitochondrial COX-2 Enhances Chemosensitivity via Drp1-Dependent Remodeling of Mitochondrial Dynamics in Hepatocellular Carcinoma. Cancers (Basel), 14(3), 821.

    Article  CAS  PubMed  Google Scholar 

  192. Li, T., et al. (2022). Glioma diagnosis and therapy: Current challenges and nanomaterial-based solutions. Journal of controlled release, 352, 338–370.

    Article  CAS  PubMed  Google Scholar 

  193. Eugenio-Pérez, D., et al. (2019). Divide et Impera: Drp1-mediated Mitochondrial Fission in Glioma Malignancy. The. Yale journal of biology and medicine, 92(3), 423–433.

    PubMed  PubMed Central  Google Scholar 

  194. Zhang, L., et al. (2021). Effect of the interference with DRP1 expression on the biological characteristics of glioma stem cells. Experimental and therapeutic medicine, 22(1), 696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Yin, M., et al. (2016). Silencing Drp1 inhibits glioma cells proliferation and invasion by RHOA/ ROCK1 pathway. Biochemical and biophysical research communications, 478(2), 663–8.

    Article  CAS  PubMed  Google Scholar 

  196. Yi, F., et al. (2017). Tbx2 confers poor prognosis in glioblastoma and promotes temozolomide resistance with change of mitochondrial dynamics. OncoTargets and therapy, 10, 1059–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Son, B., et al. (2020). Decreased FBP1 expression rewires metabolic processes affecting aggressiveness of glioblastoma. Oncogene, 39(1), 36–49.

    Article  CAS  PubMed  Google Scholar 

  198. Cheng, W. Y., et al. (2020). Higher Levels of Dynamin-related Protein 1 are Associated with Reduced Radiation Sensitivity of Glioblastoma Cells. Current neurovascular research, 17(4), 446–463.

    Article  CAS  PubMed  Google Scholar 

  199. Kim, K., et al. (2021). Dual Specificity Kinase DYRK3 Promotes Aggressiveness of Glioblastoma by Altering Mitochondrial Morphology and Function. International journal of molecular sciences, 22(6), 2982.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  200. Wan, Y. Y., et al. (2014). Involvement of Drp1 in hypoxia-induced migration of human glioblastoma U251 cells. Oncology reports, 32(2), 619–26.

    Article  PubMed  Google Scholar 

  201. Park, S. J., et al. (2015). Heterogeneous nuclear ribonucleoprotein A1 post-transcriptionally regulates Drp1 expression in neuroblastoma cells. Biochimica et biophysica acta, 1849(12), 1423–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Islam, M. R., et al. (2022). Colon cancer and colorectal cancer: Prevention and treatment by potential natural products. Chemico-biological interactions, 368, 110170.

    Article  CAS  PubMed  Google Scholar 

  203. Kim, Y. Y., Yun, S. H., & Yun, J. (2018). Downregulation of Drp1, a fission regulator, is associated with human lung and colon cancers. Acta biochimica et biophysica Sinica(Shanghai), 50(2), 209–215.

    CAS  Google Scholar 

  204. Prasad, P., Ghosh, S., & Roy, S. A.-O. (2021). Glutamine deficiency promotes stemness and chemoresistance in tumor cells through DRP1-induced mitochondrial fragmentation. Cellular and molecular life sciences, 78(10), 4821–4845.

    Article  CAS  PubMed  Google Scholar 

  205. Yin, X. A.-O., et al. (2022). Lipid metabolism in pancreatic cancer: emerging roles and potential targets. Cancer communications (Lond), 42(12), 1234–1256.

    Article  Google Scholar 

  206. Kashatus, J. A., et al. (2015). Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Molecular cell, 57(3), 537–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Yu, M., et al. (2019). Mitochondrial fusion exploits a therapeutic vulnerability of pancreatic cancer. JCI Insight, 5(16), e126915.

    Article  PubMed  Google Scholar 

  208. Koundinya, M., et al. (2018). Dependence on the Pyrimidine Biosynthetic Enzyme DHODH Is a Synthetic Lethal Vulnerability in Mutant KRAS-Driven Cancers. Cell chemical biology, 25(6), 705–717.e11.

    Article  CAS  PubMed  Google Scholar 

  209. Serasinghe, M. N., et al. (2015). Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors. Molecular cell, 57(3), 521–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Liu, J., et al. (2022). Prostate cancer treatment – China’s perspective. Cancer letters, 550, 215927.

    Article  CAS  PubMed  Google Scholar 

  211. Wasim, S. A.-O., Lee, S. A.-O., & Kim, J. A.-O. (2022). Complexities of Prostate Cancer. International journal of molecular sciences, 23(22), 14257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Audet-Walsh, É., et al. (2017). Nuclear mTOR acts as a transcriptional integrator of the androgen signaling pathway in prostate cancer. Genes & development, 31(12), 1228–1242.

    Article  CAS  Google Scholar 

  213. Audet-Walsh, É., et al. (2017). Androgen-Dependent Repression of ERRγ Reprograms Metabolism in Prostate Cancer. Cancer research, 77(2), 378–389.

    Article  CAS  PubMed  Google Scholar 

  214. Wang, J., et al. (2018). Inhibiting crosstalk between MET signaling and mitochondrial dynamics and morphology: a novel therapeutic approach for lung cancer and mesothelioma. Cancer biology & therapy, 19(11), 1023–1032.

    Article  CAS  Google Scholar 

  215. Ke, S., et al. (2017). Gold nanoparticles enhance TRAIL sensitivity through Drp1-mediated apoptotic and autophagic mitochondrial fission in NSCLC cells. International journal of nanomedicine, 12, 2531–2551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Zhao, T., et al. (2021). Aerobic exercise suppresses hepatocellular carcinoma by downregulating dynamin-related protein 1 through PI3K/AKT pathway. Journal of integrative medicine, 19(5), 418–427.

    Article  PubMed  Google Scholar 

  217. Kuo, M. T., et al. (2021). Targeting the Copper Transport System to Improve Treatment Efficacies of Platinum-Containing Drugs in Cancer Chemotherapy. Pharmaceuticals (Basel), 14(6), 549.

    Article  CAS  PubMed  Google Scholar 

  218. Tailor, D., et al. (2014). Sodium butyrate induces DRP1-mediated mitochondrial fusion and apoptosis in human colorectal cancer cells. Mitochondrion, 16, 55–64.

    Article  CAS  PubMed  Google Scholar 

  219. Chen, M., et al. (2019). Paris Saponin II inhibits colorectal carcinogenesis by regulating mitochondrial fission and NF-κB pathway. Pharmacological research, 139, 273–285.

    Article  CAS  PubMed  Google Scholar 

  220. Zamorano-León, J. J., et al. (2019). Effect of Pectin on the Expression of Proteins Associated with Mitochondrial Biogenesis and Cell Senescence in HT29-Human Colorectal Adenocarcinoma Cells. Preventive nutrition and food science, 24(2), 187–196.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Miret-Casals, L., et al. (2018). Identification of New Activators of Mitochondrial Fusion Reveals a Link between Mitochondrial Morphology and Pyrimidine Metabolism. Cell chemical biology, 25(3), 268–278.e4.

    Article  CAS  PubMed  Google Scholar 

  222. Nguyen, N. A.-O., et al. (2021). Comparative Untargeted Metabolomic Profiling of Induced Mitochondrial Fusion in Pancreatic Cancer. Metabolites, 11(9), 627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Vaz, M., & Silvestre, S. (2020). Alzheimer’s disease: Recent treatment strategies. European journal of pharmacology, 887, 173554.

    Article  CAS  PubMed  Google Scholar 

  224. Haun, F., et al. (2013). S-nitrosylation of dynamin-related protein 1 mediates mutant huntingtin-induced mitochondrial fragmentation and neuronal injury in Huntington’s disease. Antioxidants & redox signaling, 19(11), 1173–84.

    Article  CAS  Google Scholar 

  225. Huang, S., et al. (2015). Drp1-mediated mitochondrial abnormalities link to synaptic injury in diabetes model. Diabetes, 64(5), 1728–42.

    Article  CAS  PubMed  Google Scholar 

  226. Baek, S. A.-O., et al. (2017). Inhibition of Drp1 Ameliorates Synaptic Depression, Aβ Deposition, and Cognitive Impairment in an Alzheimer’s Disease Model. Model. The Journal of neuroscience, 37(20), 5099–5110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Medala, V. K., et al. (2021). Mitochondrial dysfunction, mitophagy, and role of dynamin-related protein 1 in Alzheimer’s disease. Journal of neuroscience research, 99(4), 1120–1135.

    Article  CAS  PubMed  Google Scholar 

  228. Neddens, J., et al. (2018). Phosphorylation of different tau sites during progression of Alzheimer’s disease. Acta neuropathologica communications, 6(1), 52.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Wesseling, H., et al. (2020). Tau PTM Profiles Identify Patient Heterogeneity and Stages of Alzheimer’s Disease. Cell, 183(6), 1699–1713.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. A partial reduction of Drp1 improves cognitive behavior and enhances mitophagy, autophagy and dendritic spines in a transgenic Tau mouse model of Alzheimer disease. Human molecular genetics. 2022;31(11):1788–1805.

  231. Manczak, M., et al. (2016). Protective effects of reduced dynamin-related protein 1 against amyloid beta-induced mitochondrial dysfunction and synaptic damage in Alzheimer’s disease. Human molecular genetics, 25(23), 5148–5166.

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Park, J., et al. (2015). Loss of mitofusin 2 links beta-amyloid-mediated mitochondrial fragmentation and Cdk5-induced oxidative stress in neuron cells. Journal of neurochemistry, 132(6), 687–702.

    Article  CAS  PubMed  Google Scholar 

  233. Kim, B., et al. (2016). Peroxiredoxin 5 prevents amyloid-beta oligomer-induced neuronal cell death by inhibiting ERKDrp1- mediated mitochondrial fragmentation. Free radical biology & medicine, 90, 184–94.

    Article  CAS  Google Scholar 

  234. Barage, S. H., & Sonawane, K. D. (2015). Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides, 52, 1–18.

    Article  CAS  PubMed  Google Scholar 

  235. Guo, M. Y., et al. (2018). The role of Cdk5-mediated Drp1 phosphorylation in Aβ(1-42) induced mitochondrial fission and neuronal apoptosis. Journal of cellular biochemistry, 119(6), 4815–4825.

    Article  ADS  CAS  PubMed  Google Scholar 

  236. Xu, D., et al. (2021). Blockage of Drp1 phosphorylation at Ser579 protects neurons against Aβ(1‑42)‑induced degeneration. Molecular medicine reports, 24(3), 657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Guha, S. A.-O. X., et al. (2022). Selective disruption of Drp1-independent mitophagy and mitolysosome trafficking by an Alzheimer’s disease relevant tau modification in a novel Caenorhabditis elegans model. Genetics, 222(1), iyac104.

    Article  PubMed  PubMed Central  Google Scholar 

  238. Li, X. C., et al. (2016). Human wild-type full-length tau accumulation disrupts mitochondrial dynamics and the functions via increasing mitofusins. Scientific reports, 6, 24756.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  239. Pérez, M. J., Jara, C., & Quintanilla, R. A. (2018). Contribution of Tau Pathology to Mitochondrial Impairment in Neurodegeneration. Frontiers in neuroscience, 12, 441.

    Article  PubMed  PubMed Central  Google Scholar 

  240. Manczak, M., & Reddy, P. H. (2012). Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer’s disease neurons: implications for mitochondrial dysfunction and neuronal damage. Human molecular genetics, 21(11), 2538–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Bera, A., et al. (2022). Mechanistic and therapeutic role of Drp1 in the pathogenesis of Alzheimer’s disease. The European journal of neuroscience, 56(9), 5516–5531.

    Article  CAS  PubMed  Google Scholar 

  242. Park, K. A., et al. (2020). Long-Lasting Exendin-4 Fusion Protein Improves Memory Deficits in High-Fat Diet/Streptozotocin-Induced Diabetic Mice. Pharmaceutics, 12(2), 159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Djordjevic, J. A.-O., et al. (2020). Early Onset of Sex-Dependent Mitochondrial Deficits in the Cortex of 3xTg Alzheimer’s Mice. Cells, 9(6), 1541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Berthet, A., et al. (2014). Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons. The Journal of neuroscience, 34(43), 14304–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Shields, L. Y., et al. (2015). Dynamin-related protein 1 is required for normal mitochondrial bioenergetic and synaptic function in CA1 hippocampal neurons. Cell death & disease, 6(4), e1725.

    Article  CAS  Google Scholar 

  246. Park, G., et al. (2021). Ablation of dynamin-related protein 1 promotes diabetes-induced synaptic injury in the hippocampus. Cell death & disease, 12(6), 565.

    Article  Google Scholar 

  247. Bell, S. M., et al. (2018). Ursodeoxycholic Acid Improves Mitochondrial Function and Redistributes Drp1 in Fibroblasts from Patients with Either Sporadic or Familial Alzheimer’s Disease. Journal of molecular biology, 430(21), 3942–3953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Wood, H. (2015). Parkinson disease: Blocking mitochondrial fission–a new treatment approach for Parkinson disease? Nature reviews. Neurology, 11(1), 2.

    Article  PubMed  Google Scholar 

  249. Wu, Q., Luo, C. L., & Tao, L. Y. (2017). Dynamin-related protein 1 (Drp1) mediating mitophagy contributes to the pathophysiology of nervous system diseases and brain injury. Histology and histopathology, 32(6), 551–559.

    CAS  PubMed  Google Scholar 

  250. Rappold, P. M., et al. (2014). Drp1 inhibition attenuates neurotoxicity and dopamine release deficits in vivo. Nature communications, 5, 5244.

    Article  ADS  CAS  PubMed  Google Scholar 

  251. Martinez, J. H., et al. (2018). Drp-1 dependent mitochondrial fragmentation and protective autophagy in Dopaminergic SH-SY5Y cells overexpressing alpha-synuclein. Molecular and cellular neurosciences, 88, 107–117.

    Article  CAS  PubMed  Google Scholar 

  252. Grassi, D., et al. (2018). Identification of a highly neurotoxic α-synuclein species inducing mitochondrial damage and mitophagy in Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 115(11), E2634–E2643.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  253. Wang, W., et al. (2016). Parkinson’s disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes. Nature medicine, 22(1), 54–63.

    Article  CAS  PubMed  Google Scholar 

  254. Burté, F., et al. (2015). Disturbed mitochondrial dynamics and neurodegenerative disorders. Nature reviews. Neurology, 11(1), 11–24.

    Article  PubMed  Google Scholar 

  255. Zhang, Q., et al. (2019). ROCK1 induces dopaminergic nerve cell apoptosis via the activation of Drp1-mediated aberrant mitochondrial fission in Parkinson’s disease. Experimental & molecular medicine, 51(10), 1–13.

    Article  ADS  Google Scholar 

  256. Geng, J., et al. (2019). Andrographolide alleviates Parkinsonism in MPTP-PD mice via targeting mitochondrial fission mediated by dynamin-related protein 1. British journal of pharmacology, 176(23), 4574–4591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Bido, S., et al. (2017). Mitochondrial division inhibitor-1 is neuroprotective in the A53T-α-synuclein rat model of Parkinson’s disease. Scientific reports, 7(1), 7495.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  258. Fan, R. Z., et al. (2019). Exosome release and neuropathology induced by α-synuclein: new insights into protective mechanisms of Drp1 inhibition. Acta neuropathologica communications, 7(1), 184.

    Article  PubMed  PubMed Central  Google Scholar 

  259. Park, J., et al. (2019). Abnormal Mitochondria in a Non-human Primate Model of MPTP-induced Parkinson’s Disease: Drp1 and CDK5/p25 Signaling. Experimental neurobiology, 28(3), 414–424.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Chen, C., et al. (2021). CDK5 inhibition protects against OGDR induced mitochondrial fragmentation and apoptosis through regulation of Drp1S616 phosphorylation. Life sciences, 269, 119062.

    Article  CAS  PubMed  Google Scholar 

  261. Zhou, Y., et al. (2018). Recurrent nonsevere hypoglycemia exacerbates imbalance of mitochondrial homeostasis leading to synapse injury and cognitive deficit in diabetes. American journal of physiology. Endocrinology and metabolism, 315(5), E973–E986.

    Article  CAS  PubMed  Google Scholar 

  262. Shi, Y., et al. (2018). FOXO1 inhibition potentiates endothelial angiogenic functions in diabetes via suppression of ROCK1/Drp1-mediated mitochondrial fission. Biochimica et biophysica acta. Molecular basis of disease, 1864(7), 2481–2494.

    Article  CAS  PubMed  Google Scholar 

  263. Wang, S., et al. (2023). New therapeutic directions in type II diabetes and its complications: mitochondrial dynamics. Frontiers in endocrinology, 14, 1230168.

    Article  PubMed  PubMed Central  Google Scholar 

  264. Liu, X., et al. (2020). Empagliflozin improves diabetic renal tubular injury by alleviating mitochondrial fission via AMPK/SP1/PGAM5 pathway. Metabolism, 111, 154334.

    Article  CAS  PubMed  Google Scholar 

  265. Ni, Z. A.-O., et al. (2017). Polydatin impairs mitochondria fitness and ameliorates podocyte injury by suppressing Drp1 expression. Journal of cellular physiology, 232(10), 2776–2787.

    Article  PubMed  PubMed Central  Google Scholar 

  266. Zhang, E., et al. (2014). Mechanistic study of IR-780 dye as a potential tumor targeting and drug delivery agent. Biomaterials, 35(2), 771–8.

    Article  CAS  PubMed  Google Scholar 

  267. Elbehairi, S. E. I., et al. (2020). Role of Pd(II)-chitooligosaccharides-Gboxin analog in oxidative phosphorylation inhibition and energy depletion: Targeting mitochondrial dynamics. Chemical biology & drug design, 96(4), 1148–1161.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (No.81803895), Shandong Province Natural Science Foundation (ZR2021YQ57) and China Postdoctoral Science Foundation (No.2020M682131, No.2021T140357).

Author information

Authors and Affiliations

Authors

Contributions

L.Y. conceives the concept and designs the outline. F.S. and M.F. drafted manuscript. H.Z. and Q.S. revised and edited the manuscript, S.L., Y.L. and J.S. contributed to picture design. All authors read and approve the final manuscript.

Corresponding author

Correspondence to Lina Yang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, F., Fang, M., Zhang, H. et al. Drp1: Focus on Diseases Triggered by the Mitochondrial Pathway. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01245-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01245-5

Keywords

Navigation