Skip to main content

Advertisement

Log in

Dynamin-related protein-1 as potential therapeutic target in various diseases

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Mitochondria can interchange morphology due to their dynamic nature. It can exist in either fragmented disconnected arrangement or elongated interconnected mitochondrial networks due to fission and fusion, respectively. The recent studies have revealed the remarkable and unexpected insights into the physiological impact and molecular regulation of mitochondrial morphology. The balance between fission and fusion governs the faith of the cell. The active targeting of DRP 1 to the outer mitochondrial membrane (OMM) is done by non-GTPase receptor proteins such as mitochondrial fission factor, mitochondrial fission protein 1 and mitochondrial elongation factor 1. The active targeting of DRP 1 to OMM leads to the fission of mitochondria. However, the imbalance of DRP 1-dependent mitochondrial fission and modulation of equilibrium of fission and fusion has been documented to be involved in several cardiovascular and neurodegenerative disorders. In this review, we are focusing on the active participation of DRP 1 in various diseases and also the factors responsible for the activation of DRP 1 for its action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

DRP 1:

Dynamin-related protein 1

ROS:

Reactive oxygen species

MFF:

Mitochondrial fission factor

FIS1:

Fission protein 1

PINK1:

PTEN-induced putative kinase 1

References

  • Archer SL (2013) Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. N Engl J Med 369:2236–2251

    Article  CAS  PubMed  Google Scholar 

  • Archer SL, Weir EK, Wilkins MR (2010) Basic science of pulmonary arterial hypertension for clinicians. Circulation 121:2045–2066

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thébaud B, Bonnet S, Haromy A, Harry G, Moudgil R, McMurtry MS (2006) An abnormal mitochondrial-hypoxia inducible factor-1α–Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats. Circulation 113:2630–2641

    Article  CAS  PubMed  Google Scholar 

  • Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S (2007) A mitochondria-K + channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51

    Article  CAS  PubMed  Google Scholar 

  • Braschi E, Zunino R, McBride HM (2009) MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission. EMBO Rep 10:748–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks C, Wei Q, Cho S-G, Dong Z (2009) Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J Clin Investig 119:1275–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalmers S, Saunter C, Wilson C, Coats P, Girkin JM, McCarron JG (2012) Mitochondrial motility and vascular smooth muscle proliferation. Arterioscler Thromb Vasc Biol 32:3000–3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CR, Blackstone C (2010) Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann NY Acad Sci 1201:34–39

    Article  CAS  PubMed  Google Scholar 

  • Chang Y-W, Chang Y-T, Wang Q, Lin JJ-C, Chen Y-J, Chen C-C (2013) Quantitative phosphoproteomic study of pressure-overloaded mouse heart reveals dynamin-related protein 1 as a modulator of cardiac hypertrophy. Mol Cell Proteom 12:3094–3107

    Article  CAS  Google Scholar 

  • Cherra SJ III, Dagda RK, Tandon A, Chu C (2009) Mitochondrial autophagy as a compensatory response to PINK1 deficiency. Autophagy 5:1213–1214

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho B, Choi SY, Cho HM, Kim HJ, Sun W (2013) Physiological and pathological significance of dynamin-related protein 1 (Drp1)-dependent mitochondrial fission in the nervous system. Exp Neurobiol 22:149–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Chou C-H, Lin C-C, Yang M-C, Wei C-C, Liao H-D, Lin R-C, Tu W-Y, Kao T-C, Hsu C-M, Cheng J-T (2012) GSK3beta-mediated Drp1 phosphorylation induced elongated mitochondrial morphology against oxidative stress. PLoS One 7:e49112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cribbs JT, Strack S (2007) Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8:939–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui M, Tang X, Christian WV, Yoon Y, Tieu K (2010) Perturbations in mitochondrial dynamics induced by human mutant PINK1 can be rescued by the mitochondrial division inhibitor mdivi-1. J Biol Chem 285:11740–11752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dagda RK, Cherra SJ, Kulich SM, Tandon A, Park D, Chu CT (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284:13843–13855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Grey AD (2002) The reductive hotspot hypothesis of mammalian aging. FEBS J 269:2003–2009

    Article  Google Scholar 

  • Deng H, Dodson MW, Huang H, Guo M (2008) The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in drosophila. Proc Natl Acad Sci 105:14503–14508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • di Bacco A, Gill G (2006) SUMO-specific proteases and the cell cycle. Cell Cycle 5:2310–2313

    Article  PubMed  Google Scholar 

  • Diaz F, Moraes CT (2008) Mitochondrial biogenesis and turnover. Cell Calcium 44:24–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Din S, Mason M, Völkers M, Johnson B, Cottage CT, Wang Z, Joyo AY, Quijada P, Erhardt P, Magnuson NS (2013) Pim-1 preserves mitochondrial morphology by inhibiting dynamin-related protein 1 translocation. Proc Natl Acad Sci 110:5969–5974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348

    Article  CAS  PubMed  Google Scholar 

  • Exner N, Treske B, Paquet D, Holmström K, Schiesling C, Gispert S, Carballo-Carbajal I, Berg D, Hoepken H-H, Gasser T (2007) Loss-of-function of human PINK1 14 results in mitochondrial pathology and can be rescued by parkin. J Neurosci 27:12413–12418

    Article  CAS  PubMed  Google Scholar 

  • Figueroa-Romero C, Iñiguez-Lluhí JA, Stadler J, Chang C-R, Arnoult D, Keller PJ, Hong Y, Blackstone C, Feldman EL (2009) SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. FASEB J 23:3917–3927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey N, Katus HA, Olson EN, Hill JA (2004) Hypertrophy of the Heart. Circulation 109:1580–1589

    Article  PubMed  Google Scholar 

  • Fu J, Yu H-MI, Chiu S-Y, Mirando AJ, Maruyama EO, Cheng J-G, Hsu W (2014) Disruption of SUMO-specific protease 2 induces mitochondria mediated neurodegeneration. PLoS Genet 10:e1004579

    Article  PubMed  PubMed Central  Google Scholar 

  • Garrido C, Galluzzi L, Brunet M, Puig P, Didelot C, Kroemer G (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13:1423–1433

    Article  CAS  PubMed  Google Scholar 

  • Gharanei M, Hussain A, Janneh O, Maddock H (2014) 15 mitochondrial division inhibitor-1 protects against doxorubicin-induced cardiotoxicity. Heart 100:A6–A6

    Article  Google Scholar 

  • Givvimani S, Munjal C, Tyagi N, Sen U, Metreveli N, Tyagi SC (2012) Mitochondrial division/mitophagy inhibitor (Mdivi) ameliorates pressure overload induced heart failure. PLoS One 7:e32388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grünewald A, Gegg ME, Taanman J-W, King RH, Kock N, Klein C, Schapira A (2009) Differential effects of PINK1 nonsense and missense mutations on mitochondrial function and morphology. Exp Neurol 219:266–273

    Article  PubMed  Google Scholar 

  • Han X-J, Lu Y-F, Li S-A, Kaitsuka T, Sato Y, Tomizawa K, Nairn AC, Takei K, Matsui H, Matsushita M (2008) CaM kinase Iα–induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol 182:573–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harder Z, Zunino R, McBride H (2004) Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr Biol 14:340–345

    Article  CAS  PubMed  Google Scholar 

  • Hong Z, Kutty S, Toth PT, Marsboom G, Hammel JM, Chamberlain C, Ryan JJ, Zhang HJ, Sharp WW, Morrow E (2013) Role of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission in oxygen sensing and constriction of the ductus arteriosusnovelty and significance. Circ Res 112:802–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoppins S, Lackner L, Nunnari J (2007) The machines that divide and fuse mitochondria. Annu Rev Biochem 76:751–780

    Article  CAS  PubMed  Google Scholar 

  • Iglewski M, Hill JA, Lavandero S, Rothermel BA (2010) Mitochondrial fission and autophagy in the normal and diseased heart. Curr Hypertens Rep 12:418–425

    Article  PubMed  PubMed Central  Google Scholar 

  • Imoto M, Tachibana I, Urrutia R (1998) Identification and functional characterization of a novel human protein highly related to the yeast dynamin-like GTPase Vps1p. J Cell Sci 111:1341–1349

    CAS  PubMed  Google Scholar 

  • Ishihara N, Otera H, Oka T, Mihara K (2013) Regulation and physiologic functions of GTPases in mitochondrial fusion and fission in mammals. Antioxid Redox Signal 19:389–399

    Article  CAS  PubMed  Google Scholar 

  • Javadov S, Rajapurohitam V, Kilić A, Hunter JC, Zeidan A, Faruq NS, Escobales N, Karmazyn M (2011) Expression of mitochondrial fusion–fission proteins during post-infarction remodeling: the effect of NHE-1 inhibition. Basic Res Cardiol 106:99–109

    Article  CAS  PubMed  Google Scholar 

  • Kageyama Y, Zhang Z, Sesaki H (2011) Mitochondrial division: molecular machinery and physiological functions. Curr Opin Cell Biol 23:427–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandimalla R, Reddy PH (2016) Multiple faces of dynamin-related protein 1 and its role in Alzheimer’s disease pathogenesis. Biochim Biophys Acta (BBA) Mol Basis Dis 1862:814–828

    Article  CAS  Google Scholar 

  • Kashatus DF, Lim K-H, Brady DC, Pershing NL, Cox AD, Counter CM (2011) RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat Cell Biol 13:1108–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Park J, Kim S, Song S, Kwon S-K, Lee S-H, Kitada T, Kim J-M, Chung J (2008) PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun 377:975–980

    Article  CAS  PubMed  Google Scholar 

  • Lackner LL (2013) Determining the shape and cellular distribution of mitochondria: the integration of multiple activities. Curr Opin Cell Biol 25:471–476

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Jeong S-Y, Lim W-C, Kim S, Park Y-Y, Sun X, Youle RJ, Cho H (2007) Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J Biol Chem 282:22977–22983

    Article  CAS  PubMed  Google Scholar 

  • Legros F, Lombès A, Frachon P, Rojo M (2002) Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell 13:4343–4354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim SY, Davidson SM, Hausenloy DJ, Yellon DM (2007) Preconditioning and postconditioning: the essential role of the mitochondrial permeability transition pore. Cardiovasc Res 75:530–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim S, Lee SY, Seo HH, Ham O, Lee C, Park JH, Lee J, Seung M, Yun I, Han SM (2015) Regulation of mitochondrial morphology by positive feedback interaction between PKCδ and DRP1 in vascular smooth muscle cell. J Cell Biochem 116:648–660

    Article  CAS  PubMed  Google Scholar 

  • Lutz AK, Exner N, Fett ME, Schlehe JS, Kloos K, Lämmermann K, Brunner B, Kurz-Drexler A, Vogel F, Reichert AS (2009) Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J Biol Chem 284:22938–22951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manczak M, Reddy PH (2012) Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer’s disease neurons: implications for mitochondrial dysfunction and neuronal damage. Hum Mol Genet 21:2538–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsboom G, Toth PT, Ryan JJ, Hong Z, Wu X, Fang Y-H, Thenappan T, Piao L, Zhang HJ, Pogoriler J (2012) Dynamin-related protein 1–mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertensionnovelty and significance. Circ Res 110:1484–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelakis E, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E, Maguire C, Gammer T-L, Mackey J, Fulton D (2010) Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2:31ra34

    Article  CAS  PubMed  Google Scholar 

  • Mitra K, Wunder C, Roysam B, Lin G, Lippincott-Schwartz J (2009) A hyperfused mitochondrial state achieved at G1–S regulates cyclin E buildup and entry into S phase. Proc Natl Acad Sci 106:11960–11965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mozdy A, McCaffery J, Shaw JM (2000) Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component fis1p. J Cell Biol 151:367–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto K, Shaw JM (2005) Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet 39:503–536

    Article  CAS  PubMed  Google Scholar 

  • Ong S-B, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ (2010) Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121:2012–2022

    Article  CAS  PubMed  Google Scholar 

  • Ong S-B, Kalkhoran SB, Cabrera-Fuentes HA, Hausenloy DJ (2015) Mitochondrial fusion and fission proteins as novel therapeutic targets for treating cardiovascular disease. Eur J Pharmacol 763:104–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer CS, Elgass KD, Parton RG, Osellame LD, Stojanovski D, Ryan MT (2013) Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. J Biol Chem 288:27584–27593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park Y-Y, Lee S, Karbowski M, Neutzner A, Youle RJ, Cho H (2010) Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J Cell Sci 123:619–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Praefcke GJ, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5:133–147

    Article  CAS  PubMed  Google Scholar 

  • Reddy PH, Reddy TP, Manczak M, Calkins MJ, Shirendeb U, Mao P (2011) Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain Res Rev 67:103–118

    Article  CAS  PubMed  Google Scholar 

  • Rehman J, Zhang HJ, Toth PT, Zhang Y, Marsboom G, Hong Z, Salgia R, Husain AN, Wietholt C, Archer SL (2012) Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J 26:2175–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan JJ, Marsboom G, Fang Y-H, Toth PT, Morrow E, Luo N, Piao L, Hong Z, Ericson K, Zhang HJ (2013) PGC1α-mediated mitofusin-2 deficiency in female rats and humans with pulmonary arterial hypertension. Am J Respir Crit Care Med 187:865–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santel A, Frank S (2008) Shaping mitochondria: the complex posttranslational regulation of the mitochondrial fission protein DRP1. IUBMB Life 60:448–455

    Article  CAS  PubMed  Google Scholar 

  • Sharp WW (2015) Dynamin-related protein 1 as a therapeutic target in cardiac arrest. J Mol Med 93:243–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp WW, Fang YH, Han M, Zhang HJ, Hong Z, Banathy A, Morrow E, Ryan JJ, Archer SL (2014) Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury: therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. FASEB J 28:316–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw JM, Nunnari J (2002) Mitochondrial dynamics and division in budding yeast. Trends Cell Biol 12:178–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnova E, Shurland D-L, Ryazantsev SN, van der Bliek AM (1998) A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol 143:351–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnova E, Griparic L, Shurland D-L, van der Bliek AM (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song W, Chen J, Petrilli A, Liot G, Klinglmayr E, Zhou Y, Poquiz P, Tjong J, Pouladi MA, Hayden MR (2011) Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat Med 17:377–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song W, Song Y, Kincaid B, Bossy B, Bossy-Wetzel E (2013) Mutant SOD1 G93A triggers mitochondrial fragmentation in spinal cord motor neurons: neuroprotection by SIRT3 and PGC-1α. Neurobiol Dis 51:72–81

    Article  CAS  PubMed  Google Scholar 

  • Sugiura A, Nagashima S, Tokuyama T, Amo T, Matsuki Y, Ishido S, Kudo Y, McBride HM, Fukuda T, Matsushita N (2013) MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2. Mol Cell 51:20–34

    Article  CAS  PubMed  Google Scholar 

  • Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, Rizzuto R (2004) Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca 2+ waves and protects against Ca 2+ -mediated apoptosis. Mol Cell 16:59–68

    Article  CAS  PubMed  Google Scholar 

  • Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K (2007) Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 282:11521–11529

    Article  CAS  PubMed  Google Scholar 

  • Terman A, Dalen H, Eaton JW, Neuzil J, Brunk UT (2003) Mitochondrial recycling and aging of cardiac myocytes: the role of autophagocytosis. Exp Gerontol 38:863–876

    Article  CAS  PubMed  Google Scholar 

  • Uo T, Dworzak J, Kinoshita C, Inman DM, Kinoshita Y, Horner PJ, Morrison RS (2009) Drp1 levels constitutively regulate mitochondrial dynamics and cell survival in cortical neurons. Exp Neurol 218:274–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakabayashi J, Zhang Z, Wakabayashi N, Tamura Y, Fukaya M, Kensler TW, Iijima M, Sesaki H (2009) The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J Cell Biol 186:805–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Lim PJ, Karbowski M, Monteiro MJ (2009) Effects of overexpression of huntingtin proteins on mitochondrial integrity. Hum Mol Genet 18:737–752

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Song P, Du L, Tian W, Yue W, Liu M, Li D, Wang B, Zhu Y, Cao C (2011) Parkin ubiquitinates Drp1 for proteasome-dependent degradation implication of dysregulated mitochondrial dynamics in parkinson disease. J Biol Chem 286:11649–11658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Wang Y, Long J, Wang J, Haudek SB, Overbeek P, Chang BH, Schumacker PT, Danesh FR (2012) Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab 15:186–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasiak S, Zunino R, McBride HM (2007) Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 177:439–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weir E, Lopez-Barneo J, Buckler K, Archer S, Angiotensin I-Converting, M.D.I (2006) Acute oxygen-sensing mechanisms. N Engl J Med 2006:975–977

    Google Scholar 

  • Yoon Y, Pitts KR, Dahan S, Mcniven MA (1998) A novel dynamin-like protein associates with cytoplasmic vesicles and tubules of the endoplasmic reticulum in mammalian cells. J Cell Biol 140:779–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon Y, Krueger EW, Oswald BJ, Mcniven MA (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23:5409–5420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youle RJ, Van Der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu T, Jhun BS, Yoon Y (2011) High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission. Antioxid Redox Signal 14:425–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zunino R, Schauss A, Rippstein P, Andrade-Navarro M, Mcbride HM (2007) The SUMO protease SENP5 is required to maintain mitochondrial morphology and function. J Cell Sci 120:1178–1188

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Sharma, S. Dynamin-related protein-1 as potential therapeutic target in various diseases. Inflammopharmacol 25, 383–392 (2017). https://doi.org/10.1007/s10787-017-0347-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-017-0347-y

Keywords

Navigation