Skip to main content

Advertisement

Log in

Role of toll-like receptor in the pathogenesis of oral cancer

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Toll-like receptors are important molecules of innate immunity. They are known as pattern recognition receptors. They recognise certain molecules known as pathogen-associated molecular pattern on a pathogen and release chemicals that causes inflammation. Toll-like receptors (TLR) help in the removal of the infected cell and thus stop the spread of infection and are being studied for their association with cancer. Oral carcinoma has emerged as a major problem of our country today; it is found ranks first in men and third in women. Toll-like receptors have been implicated in the development of cancer. Certain polymorphisms in toll-like receptor can make a cell more susceptible to develop oral cancer. The identification of toll-like receptors and the different genotypes that are involved in the development of cancer can be utilised for using them as biomarkers of the disease. The study revealed that toll-like receptors like TLR7 and TLR5 are found to have a role in suppression of oral cancer while toll-like receptors like TLR4 and TLR2 are found to be associated with the progression of oral cancer. Toll-like receptors can turn out as important target molecules in the future in designing therapeutic strategies for oral cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anantharaman, D., Samant, T. A., Sen, S., & Mahimkar, M. B. (2011). Polymorphisms in tobacco metabolism and DNA repair genes modulate oral precancer and cancer risk. Oral Oncology, 47(9), 866–872. https://doi.org/10.1016/j.oraloncology.2011.06.015.

    Article  CAS  PubMed  Google Scholar 

  2. Kademani, D. (2007). Oral cancer. Mayo Clinic Proceedings, 82(7), 878–887. https://doi.org/10.4065/82.7.878. Erratum in: Mayo Clin Proc. 2007;82(8):1017.

  3. Anwar, N., Pervez, S., Chundriger, Q., Awan, S., Moatter, T., & Ali, T. S. (2020). Oral cancer: Clinicopathological features and associated risk factors in a high risk population presenting to a major tertiary care center in Pakistan. PLOS One, 15(8), e0236359. https://doi.org/10.1371/journal.pone.0236359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Savar, N. S., & Bouzari, S. (2014). In silico study of ligand binding site of toll-like receptor 5. Advanced Biomedical Research, 3(Jan), 41. https://doi.org/10.4103/2277-9175.125730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nissar, S., Sameer, A. S., Rasool, R., Qadri, Q., Chowdri, N. A., & Rashid, F. (2017). Role of TLR4 gene polymorphisms in the colorectal cancer risk modulation in ethnic Kashmiri population—A case–control study. Egyptian Journal of Medical Human Genetics, 18(1), 53–59. https://doi.org/10.1016/j.ejmhg.2016.04.004.

    Article  Google Scholar 

  6. Sharma, Y., & Bala, K. (2020). Role of Toll-like receptor in progression and suppression of oral squamous cell carcinoma. Oncology Reviews, 14(1), 456. https://doi.org/10.4081/oncol.2020.456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Amarante-Mendes, G. P., Adjemian, S., Branco, L. M., Zanetti, L. C., Weinlich, R., Bortoluci K. R. (2018). Pattern recognition receptors and the host cell death molecular machinery. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.02379.

  8. Chervonsky, A. (2009). Innate receptors and microbes in induction of autoimmunity. Current Opinion in Immunology, 21(6), 641–647. https://doi.org/10.1016/j.coi.2009.08.003.

    Article  CAS  PubMed  Google Scholar 

  9. Rivera C. (2015) Essentials of oral cancer. International Journal of Clinical and Experimental Pathology, 8(9):11884–11894.

  10. Pradere, J. P., Dapito, D. H., & Schwabe, R. F. (2014). The Yin and Yang of Toll-like receptors in cancer. Oncogene., 33(27), 3485–3495. https://doi.org/10.1038/onc.2013.302.

    Article  CAS  PubMed  Google Scholar 

  11. Bell, J. K., Mullen, G. E., Leifer, C. A., Mazzoni, A., Davies, D. R., & Segal, D. M. (2003). Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends in Immunology, 24(10), 528–533. https://doi.org/10.1016/s1471-4906(03)00242-4.

    Article  CAS  PubMed  Google Scholar 

  12. Tang, H., Huang, C., Hu, C., Li, H., Shao, T., Ji, J., Bai, J., Fan, D., Lin, A., Xiang, L., & Shao, J. (2021). Inhibitory role of an aeromonas hydrophila tir domain effector in antibacterial immunity by targeting TLR signaling complexes in zebrafish. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.694081.

  13. Fekonja, O., Avbelj, M., & Jerala, R. (2012). Suppression of TLR signaling by targeting TIR domain-containing proteins. Current Protein & Peptide Science, 13(8), 776–788. https://doi.org/10.2174/138920312804871148.

    Article  CAS  Google Scholar 

  14. Shcheblyakov, D. V., Logunov, D. Y., Tukhvatulin, A. I., Shmarov, M. M., Naroditsky, B. S., & Gintsburg, A. L. (2010). Toll-like receptors (TLRs): The role in tumor progression. Acta Naturae, 2(3), 21–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, Z. & & Schluesener, H. J. (2006). Mammalian toll-like receptors: from endogenous ligands to tissue regeneration. Cellular and Molecular Life Sciences, 63(24), 2901–2907. https://doi.org/10.1007/s00018-006-6189-1.

    Article  CAS  PubMed  Google Scholar 

  16. O’Neill, L. A. (2008). When signaling pathways collide: positive and negative regulation of toll-like receptor signal transduction. Immunity, 29, 12–20. https://doi.org/10.1016/j.immuni.2008.06.004.

    Article  CAS  PubMed  Google Scholar 

  17. Basith, S., Manavalan, B., Govindaraj, R. G., & Choi, S. (2011). In silico approach to inhibition of signaling pathways of toll-like receptors 2 and 4 by ST2L. PLOS One, 6(8), e23989. https://doi.org/10.1371/journal.pone.0023989.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Ju, M., Liu, B., He, H., Gu, Z., Liu, Y., Su, Y., Zhu, D., Cang, J., & Luo, Z. (2018). MicroRNA-27a alleviates LPS-induced acute lung injury in mice via inhibiting inflammation and apoptosis through modulating TLR4/MyD88/NF-κB pathway. Cell Cycle, 17(16), 2001–2018. https://doi.org/10.1080/15384101.2018.1509635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kawasaki, T., & Kawai, T. (2014). Toll-like receptor signaling pathways. Frontiers in Immunology, 5, 461. https://doi.org/10.3389/fimmu.2014.00461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ullah, M. O., Sweet, M. J., Mansell, A., Kellie, S., & Kobe, B. (2016). TRIF-dependent TLR signaling, its functions in host defense and inflammation, and its potential as a therapeutic target. Journal of Leukocytes Biology, 100, 27–45.

    Article  CAS  Google Scholar 

  21. Sun, Z., Luo, Q., & Ye, D., et al. (2012). Role of toll-like receptor 4 on the immune escape of human oral squamous cell carcinoma and resistance of cisplatin-induced apoptosis. Molecular Cancer, 11, 33. https://doi.org/10.1186/1476-4598-11-33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kawai, T., & Akira, S. (2007). Signaling to NF-kappaB by Toll-like receptors. Trends in Molecular Medicine, 13, 460–469. https://doi.org/10.1016/j.molmed.2007.09.002.

    Article  CAS  PubMed  Google Scholar 

  23. Androulidaki, A., Wachsmuth, L., Polykratis, A., & Pasparakis, M. (2018). Differential role of MyD88 and TRIF signaling in myeloid cells in the pathogenesis of autoimmune diabetes. PLoS One, 13(3), e0194048. https://doi.org/10.1371/journal.pone.0194048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Deguine, J., & Barton, G. M. (2014). MyD88: a central player in innate immune signaling. F1000Prime Reports, 6, 97. https://doi.org/10.12703/P6-97.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li, L., Zhou, Z., Mai, K., Li, P., Wang, Z., Wang, Y., Cao, Y., Ma, X., Zhang, T., & Wang, D. (2021). Protein overexpression of toll-like receptor 4 and myeloid differentiation factor 88 in oral squamous cell carcinoma and clinical significance. Oncol Lett., 22(5), 786. https://doi.org/10.3892/ol.2021.13047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu, H. T., Bian, C., Yuan, J. C., Chu, W. H., Xiang, X., Chen, F., Wang, C. S., Feng, H., & Lin, J. K. (2014). Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury. Journal of Neuroinflammation, 11, 59. https://doi.org/10.1186/1742-2094-11-59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ruckdeschel, K., Pfaffinger, G., Haase, R., Sing, A., Weighardt, H., Häcker, G., Holzmann, B., & Heesemann, J. (2004). Signaling of apoptosis through TLRs critically involves toll/IL-1 receptor domain-containing adapter inducing IFN-beta, but not MyD88, in bacteria-infected murine macrophages. Journal of Immunology, 173(5), 3320–3328. https://doi.org/10.4049/jimmunol.173.5.3320.

    Article  CAS  Google Scholar 

  28. Coussens, L. M. & & Werb, Z. (2002). Inflammation and cancer.Nature, 420(6917), 860–867. https://doi.org/10.1038/nature01322.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Akram, S., Mirza, T., Aamir Mirza, M., & Qureshi, M. (2013). Emerging patterns in clinico-pathological spectrum of oral cancers. Pakistan Journal of Medical Sciences, 29(3), 783–787.

    PubMed  PubMed Central  Google Scholar 

  30. Schmausser, B., Andrulis, M., Endrich, S., Müller-Hermelink, H. K., & Eck, M. (2005). Toll-like receptors TLR4, TLR5 and TLR9 on gastric carcinoma cells: an implication for interaction with Helicobacter pylori. International Journal of Medical Microbiology, 295(3), 179–185. https://doi.org/10.1016/j.ijmm.2005.02.009.

    Article  CAS  PubMed  Google Scholar 

  31. Javaid, N., & Choi, S. (2020). Toll-like receptors from the perspective of cancer treatment. Cancers, 12(2), 297. https://doi.org/10.3390/cancers12020297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luo, J. L., Maeda, S., Hsu, L. C., Yagita, H., & Karin, M. (2004). Inhibition of NF-kappaB in cancer cells converts inflammation- induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell, 6(3), 297–305. https://doi.org/10.1016/j.ccr.2004.08.012.

    Article  CAS  PubMed  Google Scholar 

  33. Hsu, H. J., Yang, Y. H., Shieh, T. Y., Chen, C. H., Kao, Y. H., Yang, C. F., & Ko, E. C. (2014). Role of cytokine gene (interferon-γ, transforming growth factor-β1, tumor necrosis factor-α, interleukin-6, and interleukin-10) polymorphisms in the risk of oral precancerous lesions in Taiwanese. Kaohsiung Journal of Medical Sciences, 30(11), 551–558. https://doi.org/10.1016/j.kjms.2014.09.003.

    Article  PubMed  Google Scholar 

  34. Chiu, C. J., Chiang, C. P., Chang, M. L., Chen, H. M., Hahn, L. J., Hsieh, L. L., Kuo, Y. S., & Chen, C. J. (2001). Association between genetic polymorphism of tumor necrosis factor-alpha and risk of oral submucous fibrosis, a pre-cancerous condition of oral cancer. Journal of Dental Research, 80(12), 2055–2059. https://doi.org/10.1177/00220345010800120601.

    Article  CAS  PubMed  Google Scholar 

  35. Rich, A. M., Hussaini, H. M., Parachuru, V. P., & Seymour, G. J. (2014). Toll-like receptors and cancer, particularly oral squamous cell carcinoma. Frontiers in Immunology, 5. https://doi.org/10.3389/fimmu.2014.00464.

  36. Gabrilovich, D., Ishida, T., Oyama, T., Ran, S., Kravtsov, V., Nadaf, S., & Carbone, D. P. (1998). Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood, 92, 4150–4166.

    Article  CAS  PubMed  Google Scholar 

  37. Sutmuller, R., Garritsen, A., & Adema, G. J. (2007). Regulatory T cells and toll-like receptors: regulating the regulators. Annuals of the Rheumatic Diseases, 66(Suppl 3), iii91–iii95. https://doi.org/10.1136/ard.2007.078535.

    Article  CAS  Google Scholar 

  38. Park, H. J., Park, O. J., & Shin, J. (2005). Receptor activator of NF-kappaB ligand enhances the activity of macrophages as antigen presenting cells. Experimental & Molecular Medicine, 37(6), 524–532. https://doi.org/10.1038/emm.2005.65.

    Article  CAS  Google Scholar 

  39. Martinez, F. O., Sica, A., Mantovani, A., & Locati, M. (2008). Macrophage activation and polarization. Frontiers in Biosciences, 13, 453–461. https://doi.org/10.2741/2692.

    Article  CAS  Google Scholar 

  40. He, Z., Huang, X., Ni, Y., Shi, P., Wang, Z., Han, W., & Hu, Q. (2014). Functional toll-like receptor 3 expressed by oral squamous cell carcinoma induced cell apoptosis and decreased migration. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 118(1), 92–100. https://doi.org/10.1016/j.oooo.2014.03.012.

    Article  PubMed  Google Scholar 

  41. Chen R. & Alvero A. & Silasi D-A & Mor G. (2007). Chen R., Alvero A. B., Silasi D. A., Mor G. Inflammation, cancer and chemoresistance: taking advantage of the toll-like receptor signaling pathway. American Journal of Reproductive Immunology, 57: 93–107. https://doi.org/10.1111/j.1600-0897.2006.00441.x.

  42. Iwasaki, A., & Medzhitov, R. (2004). Toll-like receptor control of the adaptive immune responses. Nature Immunology, 5(10), 987–995. https://doi.org/10.1038/ni1112.

    Article  CAS  PubMed  Google Scholar 

  43. Han, S., Chen, X., & Li, Z. (2023). Innate immune program in formation of tumor-initiating cells from cells-of-origin of breast, prostate, and ovarian. Cancers, 15(3), 757. https://doi.org/10.3390/cancers15030757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ridnour, L. A., Cheng, R. Y., Switzer, C. H., Heinecke, J. L., Ambs, S., Glynn, S., Young, H. A., Trinchieri, G., & Wink, D. A. (2013). Molecular pathways: toll-like receptors in the tumor microenvironment-poor prognosis or new therapeutic opportunity. Clin Cancer Res., 19(6), 1340–1346. https://doi.org/10.1158/1078-0432.CCR-12-0408.

    Article  CAS  PubMed  Google Scholar 

  45. Mäkinen, L. K., Atula, T., Häyry, V., Jouhi, L., Datta, N., Lehtonen, S., Ahmed, A., Mäkitie, A. A., Haglund, C., & Hagström, J. (2015). Predictive role of Toll-like receptors 2, 4, and 9 in oral tongue squamous cell carcinoma. Oral Oncology, 51(1), 96–102. https://doi.org/10.1016/j.oraloncology.2014.08.017.

    Article  CAS  PubMed  Google Scholar 

  46. Diakowska, D., Nienartowicz, M., Grabowski, K., Rosińczuk, J., & Krzystek-Korpacka, M. (2019). Toll-like receptors TLR-2, TLR-4, TLR-7, and TLR-9 in tumor tissue and serum of the patients with esophageal squamous cell carcinoma and gastro-esophageal junction cancer. Advances in Clinical and Experimental Medicine, 28(4), 515–522. https://doi.org/10.17219/acem/87012.

    Article  PubMed  Google Scholar 

  47. Grimmig, T., Matthes, N., Hoeland, K., Tripathi, S., Chandraker, A., Grimm, M., Moench, R., Moll, E. M., Friess, H., Tsaur, I., Blaheta, R. A., Germer, C. T., Waaga-Gasser, A. M., & Gasser, M. (2015). TLR7 and TLR8 expression increases tumor cell proliferation and promotes chemoresistance in human pancreatic cancer. International Journal of Oncology, 47(3), 857–866. https://doi.org/10.3892/ijo.2015.3069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G., Wagner, H. & & Bauer, S. (2004). Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8.Science, 303(5663), 1526–1529. https://doi.org/10.1126/science.1093620.

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Babu Prasad S., Kumar R. (2021). Role of toll-like receptor (TLR)-signaling in cancer progression and treatment. Cell interaction—molecular and immunological basis for disease management [Internet]. https://doi.org/10.5772/intechopen.94423.

  50. Mokhtari, Y., Pourbagheri-Sigaroodi, A., Zafari, P., Bagheri, N., Ghaffari, S. H., & Bashash, D. (2021). Toll-like receptors (TLRs): an old family of immune receptors with a new face in cancer pathogenesis. Journal of Cellular and Molecular Medicine, 25, 639–651.

    Article  CAS  PubMed  Google Scholar 

  51. Yesudhas, D., Gosu, V., Anwar, M. A., & Choi, S. (2014). Multiple roles of toll-like receptor 4 in colorectal cancer. Frontiers in Immunology, 5, 334. https://doi.org/10.3389/fimmu.2014.00334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Park, B. S., Song, D. H., Kim, H. M., Choi, B. S., Lee, H. & & Lee, J. O. (2009). The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex.Nature, 458(7242), 1191–1195. https://doi.org/10.1038/nature07830.

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Kohailan, M., Alanazi, M., Rouabhia, M., Alamri, A., Parine, N. R., Alhadheq, A., Basavarajappa, S., Abdullah Al-Kheraif, A. A., & Semlali, A. (2016). Effect of smoking on the genetic makeup of toll-like receptors 2 and 6. OncoTargets and Therapy, 9(Nov), 7187–7198. https://doi.org/10.2147/OTT.S109650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Khan, M. M., Oyler, B. L., Fåhraeus, R., Hupp, T. R., & Goodlett, D. R. (2019). The role of TLRs in anti-cancer immunity and tumor rejection. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.02388.

  55. Jouhi, L., Koljonen, V., Böhling, T., Haglund, C., & Hagström, J. (2015). The expression of Toll-like receptors 2, 4, 5, 7 and 9 in Merkel cell carcinoma. Anticancer Research, 35(4), 1843–1849.

    CAS  PubMed  Google Scholar 

  56. McInturff, J. E., Modlin, R. L., & Kim, J. (2005). The role of toll-like receptors in the pathogenesis and treatment of dermatological disease. Journal of Investigative Dermatology, 125(1), 1–8. https://doi.org/10.1111/j.0022-202X.2004.23459.x.

    Article  CAS  PubMed  Google Scholar 

  57. Pisani, L. P., Estadella, D., & Ribeiro, D. A. (2017). The role of toll like receptors (TLRs) in oral carcinogenesis. Anticancer Res, 37(10), 5389–5394. https://doi.org/10.21873/anticanres.11965.

    Article  CAS  PubMed  Google Scholar 

  58. Yates, C. M., & Sternberg, M. J. (2013). The effects of non-synonymous single nucleotide polymorphisms (nsSNPs) on protein-protein interactions. Journal of Molecular Biology, 425(21), 3949–3963. https://doi.org/10.1016/j.jmb.2013.07.012.

    Article  CAS  PubMed  Google Scholar 

  59. Vallejos-Vidal, E., Reyes-Cerpa, S., Rivas-Pardo, J. A., Maisey, K., Yáñez, J. M., Valenzuela, H., Cea, P. A., Castro-Fernandez, V., Tort, L., Sandino, A. M., Imarai, M., & Reyes-López, F. E. (2020). Single-nucleotide polymorphisms (SNP) mining and their effect on the tridimensional protein structure prediction in a set of immunity-related expressed sequence tags (EST) in Atlantic Salmon (Salmo salar). Frontiers in Genetics, 10, 1406. https://doi.org/10.3389/fgene.2019.01406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Deng, N., Zhou, H., Fan, H., & Yuan, Y. (2017). Single nucleotide polymorphisms and cancer susceptibility. Oncotarget., 8(66), 110635–110649. https://doi.org/10.18632/oncotarget.22372.

    Article  PubMed  PubMed Central  Google Scholar 

  61. He, H., Li, W., Liyanarachchi, S., Srinivas, M., Wang, Y., Akagi, K., Wang, Y., Wu, D., Wang, Q., Jin, V., Symer, D. E., Shen, R., Phay, J., & Nagy, R. (2015). Multiple functional variants in long-range enhancer elements contribute to the risk of SNP rs965513 in thyroid cancer. Proceedings of the National Academy of Sciences of the United States of America, 112(19), 6128–6133. https://doi.org/10.1073/pnas.1506255112.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  62. Trejo-De La, O. A., Hernández-Sancén, P., & Maldonado-Bernal, C. (2014). Relevance of single-nucleotide polymorphisms in human TLR genes to infectious and inflammatory diseases and cancer. Genes & Immunity, 15(4), 199–209. https://doi.org/10.1038/gene.2014.10.

    Article  CAS  Google Scholar 

  63. Semlali A., Alnemari R., Almalki E., Alrashed R., Alanazi M. Toll-like receptors gene polymorphism and susceptibility to cancer development. genetic diversity and disease susceptibility [Internet]. 2018; Available from: https://doi.org/10.5772/intechopen.78029.

  64. Xabregas, L. A., Hanna, F. S. A., Magalhães-Gama, F., Souza, G. L., Pereira, D. S., de Lima, A. B., Toro, D. M., Santiago, M. R. R., da Motta Passos, L. N., Tarragô, A. M., Malheiro, A., & Costa, A. G. (2022). Association of Toll-like receptors polymorphisms with the risk of acute lymphoblastic leukemia in the Brazilian Amazon. Science Reports, 12(1), 15159. https://doi.org/10.1038/s41598-022-19130-7.

    Article  CAS  ADS  Google Scholar 

  65. Shridhar, K., Aggarwal, A., Walia, G. K., Gulati, S., Geetha, A. V., Prabhakaran, D., Dhillon, P. K., & Rajaraman, P. (2016). Single nucleotide polymorphisms as markers of genetic susceptibility for oral potentially malignant disorders risk: Review of evidence to date. Oral Oncology, 61(Oct), 146–151. https://doi.org/10.1016/j.oraloncology.2016.08.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schröder, N. W., & Schumann, R. R. (2005). Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. The Lancet Infectious Diseases, 5(3), 156–164. https://doi.org/10.1016/S1473-3099(05)01308-3.

    Article  PubMed  Google Scholar 

  67. Kevaki, C., Pararas, M., Kostelidou, K., Tsakris, A., & Routsias, J. G. (2015). Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious diseases. Clinical and Experimental Immunology, 180(2), 165–177. https://doi.org/10.1111/cei.12578.

    Article  CAS  Google Scholar 

  68. Resler, A. J., Malone, K. E., Johnson, L. G., Malkki, M., Petersdorf, E. W., & McKnight, B., et al. (2013). Genetic variation in TLR or NFkappaB pathways and the risk of breast cancer: A case-control study. BMC Cancer, 13, 219. https://doi.org/10.1186/1471-2407-13-219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bartens, M. C., Gibson, A. J., Etherington, G. J., Di Palma, F., Holder, A., Werling, D., & Willcocks, S. (2021). Single nucleotide polymorphisms in the bovine tlr2 extracellular domain contribute to breed and species-specific innate immune functionality. Frontiers in Immunology, 12, 764390. https://doi.org/10.3389/fimmu.2021.764390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zeljic, K., Supic, G., & Jovic, N., et al. (2014). Association of TLR2, TLR3, TLR4 and CD14 genes polymorphisms with oral cancer risk and survival. Oral Diseases, 20(4), 416–424.

    Article  CAS  PubMed  Google Scholar 

  71. Castro, F. A., Försti, A., Buch, S., Kalthoff, H., Krauss, C., Bauer, M., Egberts, J., Schniewind, B., Broering, D. C., Schreiber, S., Schmitt, M., Hampe, J., Hemminki, K. & & Schafmayer, C. (2011). TLR-3 polymorphism is an independent prognostic marker for stage II colorectal cancer.European Journal of Cancer, 4(8), 1203–1210. https://doi.org/10.1016/j.ejca.2010.12.011.

    Article  CAS  Google Scholar 

  72. Kania, K. D., Haręża, D., Wilczyński, J. R., Wilczyński, M., Jarych, D., Malinowski, A., & Paradowska, E. (2022). The toll-like receptor 4 polymorphism Asp299Gly is associated with an increased risk of ovarian. Cancer Cells, 11(19), 3137. https://doi.org/10.3390/cells11193137.

    Article  CAS  Google Scholar 

  73. Jing, J. J., Li, M., & Yuan, Y. (2012). Toll-like receptor 4 Asp299Gly and Thr399Ile polymorphisms in cancer: a meta-analysis. Gene, 499(2), 237–242. https://doi.org/10.1016/j.gene.2012.03.045.

    Article  CAS  PubMed  Google Scholar 

  74. Omrane, I., Baroudi, O., Kourda, N., Bignon, Y. J., Uhrhammer, N., Desrichard, A., Medimegh, I., Ayari, H., Stambouli, N., Mezlini, A., Bouzayenne, H., Marrakchi, R., Benammar-Elgaaid, A., & Bougatef, K. (2014). Positive link between variant Toll-like receptor 4 (Asp299Gly and Thr399Ile) and colorectal cancer patients with advanced stage and lymph node metastasis. Tumour Biology, 35(1), 545–551. https://doi.org/10.1007/s13277-013-1075-6.

    Article  CAS  PubMed  Google Scholar 

  75. Pandey, N. O., Chauhan, A. V., & Raithatha, N. S., et al. (2019). Association of TLR4 and TLR9 polymorphisms and haplotypes with cervical cancer susceptibility. Scientific Reports, 9, 9729. https://doi.org/10.1038/s41598-019-46077-z.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  76. Androutsakos, T., Bakasis, A. D., Pouliakis, A., Gazouli, M., Vallilas, C., & Hatzis, G. (2022). Single nucleotide polymorphisms of toll-like receptor 4 in hepatocellular carcinoma-a single-center study. International Journal of Molecular Sciences, 23(16), 9430. https://doi.org/10.3390/ijms23169430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee, P. L., West, C., Crain, K., & Wang, L. (2006). Genetic polymorphisms and susceptibility to lung disease. Journal of Negative Results in Biomedicine, 5, 5. https://doi.org/10.1186/1477-5751-5-5.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Anwar, M., & Choi, S. (2017). Structure-activity relationship in TLR4 mutations: atomistic molecular dynamics simulations and residue interaction network analysis. Scientific Reports, 7, 43807 https://doi.org/10.1038/srep43807.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  79. Sabarinathan, R., Wenzel, A., Novotny, P., Tang, X., Kalari, K. R., & Gorodkin, J. (2014). Transcriptome-wide analysis of UTRs in non-small cell lung cancer reveals cancer-related genes with SNV-induced changes on RNA secondary structure and miRNA target sites. PLoS One, 9(1). https://doi.org/10.1371/journal.pone.0082699.

  80. Marino, M. (2014). Xenoestrogens challenge 17beta-estradiol protective effects in colon cancer. World Journal of Gastrointestinal Oncology, 6(3), 67–73. https://doi.org/10.4251/wjgo.v6.i3.67.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  81. Kim, W. Y., Lee, J. W., Choi, J. J., Choi, C. H., Kim, T. J., Kim, B. G., Song, S. Y., & Bae, D. S. (2008). Increased expression of Toll-like receptor 5 during progression of cervical neoplasia. International Journal of Gynecological Cancer, 18(2), 300–305. https://doi.org/10.1111/j.1525-1438.2007.01008.x.

    Article  CAS  PubMed  Google Scholar 

  82. Shuang, C., Weiguang, Y., Zhenkun, F., Yike, H., Jiankun, Y., & Jing, X., et al. (2017). Toll-like receptor 5 gene polymorphism is associated with breast cancer susceptibility. Oncotarget, 8(51), 88622–88629. https://doi.org/10.18632/oncotarget.20242.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Klimosch, S. N., Försti, A., Eckert, J., Knežević, J., Bevier, M., & von Schönfels, W., et al. (2013). Functional TLR5 genetic variants affect human colorectal cancer survival. Cancer Research, 73(24), 7232–7242. https://doi.org/10.1158/0008-5472.can-13-1746.

    Article  CAS  PubMed  Google Scholar 

  84. Jha, A., Nath, N., Kumari, A., Kumari, N., Panda, A. K., & Mishra, R. (2023). Polymorphisms and haplotypes of TLR-4/9 associated with bacterial infection, gingival inflammation/recession and oral cancer. Pathology - Research and Practice, 241, 154284. https://doi.org/10.1016/j.prp.2022.154284.

    Article  CAS  PubMed  Google Scholar 

  85. Roszak, A., Lianeri, M., Sowinska, A., & Jagodzinski, P. P. (2012). Involvement of toll-like receptor 9 polymorphism in cervical cancer development. Molecular Biology Reports, 39(8), 8425–8430. https://doi.org/10.1007/s11033-012-1695-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mu, X., Zhao, J., Yuan, X., Zhao, X., Yao, K., & Liu, Y., et al. (2015). Gene polymorphisms of toll-like receptor 9 j1486T/C and 2848G/a in cervical cancer risk. International Journal of Gynecological Cancer, 27(7), 1173–1178.

    Article  Google Scholar 

  87. Semlali, A., Parine, N. R., Al-Numair, N., Almutairi, M., Hawsawi, Y., & Al Amri, A., et al. (2018). Potential role of Toll-like receptor 2 expression and polymorphisms in colon cancer susceptibility in the Saudi Arabian population. OncoTargets and Therapy [Internet], 11, 8127–8141. https://doi.org/10.2147/ott.s168478.

    Article  CAS  PubMed  Google Scholar 

  88. Chandler, M. R., Keene, K. S., Tuomela, J. M., Forero-Torres, A., Desmond, R., & Vuopala, K. S., et al. (2017). Lower frequency of TLR9 variant associated with protection from breast cancer among African Americans. PLoS One, 12(9), e0183832. https://doi.org/10.1371/journal.pone.0183832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sandholm, J., & Selander, K. S. (2014). Toll-like receptor 9 in breast cancer. Frontiers in Immunology, 5, 330. https://doi.org/10.3389/fimmu.2014.00330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hendrickse, C. W., Jones, C. E., Donovan, I. A., Neoptolemos, J. P., & Baker, P. R. (1993). Oestrogen and progesterone receptors in colorectal cancer and human colonic cancer cell lines. The British Journal of Surgery, 80(5), 636–640.

    Article  CAS  PubMed  Google Scholar 

  91. Li, Y., Beckman, K. B., Caberto, C., Kazma, R., Lum-Jones, A., Haiman, C. A., Le Marchand, L., Stram, D. O., Saxena, R., & Cheng, I. (2015). Association of genes, pathways, and haplogroups of the mitochondrial genome with the risk of colorectal cancer: the multiethnic cohort. PLoS One, 10(9), e0136796. https://doi.org/10.1371/journal.pone.0136796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Okazaki, S., Stintzing, S., Sunakawa, Y., Cao, S., Zhang, W., & Yang, D., et al. (2016). Polymorphisms in toll-like receptor (TLR) genes in the prediction of outcome for cetuximab-based treatment in patients with metastatic colorectal cancer (mCRC). Journal of Clinical Oncology, 34, 3588. https://doi.org/10.1200/JCO.2016.34.15_suppl.3588.

    Article  Google Scholar 

  93. Liu, C., Wang, M., & Zhang, H., et al. (2022). Tumor microenvironment and immunotherapy of oral cancer. European Journal of Medical Research, 27, 198. https://doi.org/10.1186/s40001-022-00835-4.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ng, L. K., Rich, A. M., Hussaini, H. M., Thomson, W. M., Fisher, A. L., Horne, L. S., & Seymour, G. J. (2011). Toll-like receptor 2 is present in the microenvironment of oral squamous cell carcinoma. British Journal of Cancer, 104(3), 460–463. https://doi.org/10.1038/sj.bjc.6606057.

    Article  CAS  PubMed  Google Scholar 

  95. Kauppila, J., Mattila, A., & Karttunen, T., et al. (2013). Toll-like receptor 5 (TLR5) expression is a novel predictive marker for recurrence and survival in squamous cell carcinoma of the tongue. British Journal of Cancer, 108, 638–643. https://doi.org/10.1038/bjc.2012.589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mahmoud Hashemi, A., Mahmoud Hashemi, H., Solahaye Kahnamouii, S., Mahmoud Hashemi, T., Agajani, H., Frozannia, K., Pournasrollah, A., Sadeg, R., Estakhri, R., Razmpa, E., & Bahrami, N. (2018). Activation toll-like receptor7 (TLR7) responsiveness associated with mitogen- activated protein kinase (MAPK) activation in HIOEC cell line of oral squamous cell carcinoma. Journal of Dentistry, 19(3), 217–224.

    PubMed  PubMed Central  Google Scholar 

  97. Ruan, M., Zhang, Z., Li, S., Yan, M., Liu, S., Yang, S., Wang, L., Zhang, C. 2014. https://doi.org/10.1371/journal.pone.0092748.

  98. Paulos, C. M., Kaiser, A., Wrzesinski, C., Hinrichs, C. S., Cassard, L., Boni, A., Muranski, P., Sanchez-Perez, L., Palmer, D. C., & Yu, Z. (2007). Toll-like receptors in tumor immunotherapy. Clinical Cancer Research, 13, 5280–5289. https://doi.org/10.1158/1078-0432.CCR-07-1378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yu, L. & & Chen, S. (2008). Toll-like receptors expressed in tumor cells: targets for therapy.Cancer Immunology, Immunotherapy, 57(9), 1271–1278. https://doi.org/10.1007/s00262-008-0459-8.

    Article  CAS  PubMed  Google Scholar 

  100. Dudek, A. Z., Yunis, C., Harrison, L. I., Kumar, S., Hawkinson, R., Cooley, S., Vasilakos, J. P., Gorski, K. S., & Miller, J. S. (2007). First in human phase I trial of 852A, a novel systemic toll-like receptor 7 agonist, to activate innate immune responses in patients with advanced cancer. Clinical Cancer Research, 13(23), 7119–7125. https://doi.org/10.1158/1078-0432.CCR-07-1443.

    Article  CAS  PubMed  Google Scholar 

  101. Awasthi, S. (2014). Toll-like receptor-4 modulation for cancer immunotherapy. Frontiers in Immunology, 5, 328. https://doi.org/10.3389/fimmu.2014.00328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mayo Clinic (2018). “Periodontitis - Diagnosis and Treatment - Mayo Clinic.” Mayoclinic.org, www.mayoclinic.org/diseases conditions/periodontitis/diagnosis-treatment/drc-20354479.

  103. Surlari, Z., Virvescu, D. I., Baciu, E.-R., Vasluianu, R.-I., & Budală, D. G. (2021). The link between periodontal disease and oral cancer—a certainty or a never-ending dilemma? Applied Sciences, 11(24), 12100. https://doi.org/10.3390/app112412100.

    Article  CAS  Google Scholar 

  104. Binder Gallimidi, A., Fischman, S., Revach, B., Bulvik, R., Maliutina, A., Rubinstein, A. M., Nussbaum, G., & Elkin, M. (2015). Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget., 6(26), 22613–22623. https://doi.org/10.18632/oncotarget.4209.

    Article  PubMed  Google Scholar 

  105. Kumar, Sunny, et al. (2017). Pathogen-mimicking vaccine delivery system designed with a bioactive polymer (inulin acetate) for robust humoral and cellular immune responses. Journal of Controlled Release, 261, 263–274, https://doi.org/10.1016/j.jconrel.2017.06.026. Accessed 30 Sept. 2023.

  106. Bianchi, F., Milione, M., Casalini, P., Centonze, G., Le Noci, V. M., Storti, C., Alexiadis, S., Truini, M., Sozzi, G., Pastorino, U., Balsari, A., Tagliabue, E., & Sfondrini, L. (2019). Toll-like receptor 3 as a new marker to detect high risk early stage non-small-cell lung cancer patients. Sci Rep., 9(1), 14288. https://doi.org/10.1038/s41598-019-50756-2.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  107. Mikulandra, M., Pavelic, J., & Glavan, T. M. (2017). Recent findings on the application of toll-like receptors agonists in cancer therapy. Current Medicinal Chemistry, 24(19), 2011–2032. https://doi.org/10.2174/0929867324666170320114359.

    Article  CAS  PubMed  Google Scholar 

  108. Rajaraman, P., Anderson, B. O., Basu, P., Belinson, J. L., Cruz, A. D., Dhillon, P. K., Gupta, P., Jawahar, T. S., Joshi, N., Kailash, U., Kapambwe, S., Katoch, V. M., Krishnan, S., Panda, D., Sankaranarayanan, R., Selvam, J. M., Shah, K. V., Shastri, S., Shridhar, K., Siddiqi, M., Sivaram, S., Seth, T., Srivastava, A., Trimble, E., & Mehrotra, R. (2015). Recommendations for screening and early detection of common cancers in India. Lancet Oncology, 16(7), e352–e361. https://doi.org/10.1016/S1470-2045(15)00078-9.

    Article  PubMed  Google Scholar 

  109. Naran, K., Nundalall, T., Chetty, S., & Barth, S. (2018). Principles of immunotherapy: implications for treatment strategies in cancer and infectious diseases. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.03158.

  110. Pahlavanneshan, S., Sayadmanesh, A., Ebrahimiyan, H., & Basiri, M. (2021). Toll-like receptor-based strategies for cancer immunotherapy. Journal of Immunology Research, 2021, 9912188. https://doi.org/10.1155/2021/9912188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Smith, D. M., Simon, J. K., & Baker, Jr, J. R. (2013). Applications of nanotechnology for immunology. Nature Reviews Immunology, 13(8), 592–605. https://doi.org/10.1038/nri3488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vasilichin, V. A., Tsymbal, S. A., Fakhardo, A. F., Anastasova, E. I., Marchenko, A. S., Shtil, A. A., Vinogradov, V. V., & Koshel, E. I. (2020). Effects of metal oxide nanoparticles on toll-like receptor mRNAs in human monocytes. Nanomaterials, 10(1). https://doi.org/10.3390/nano10010127.

Download references

Acknowledgements

The authors gratefully acknowledge the support received from Amity University Uttar Pradesh Lucknow Campus carrying out this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation: SM and AB; Methodology: SM and AB; Formal analysis and investigation: SM and AB; Writing—original draft preparation: SM, AB and DP; Writing—review and editing: SM, AB and DP; Funding acquisition: Not applicable; Resources: Not applicable; Supervision: SM.

Corresponding author

Correspondence to Sayali Mukherjee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, A., Prasad, D. & Mukherjee, S. Role of toll-like receptor in the pathogenesis of oral cancer. Cell Biochem Biophys 82, 91–105 (2024). https://doi.org/10.1007/s12013-023-01191-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-023-01191-8

Keywords

Navigation