Skip to main content
Log in

Characterization of the Multiple Domains of Pex30 Involved in Subcellular Localization of the Protein and Regulation of Peroxisome Number

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Pex30 is a peroxisomal protein whose role in peroxisome biogenesis via the endoplasmic reticulum has been established. It is a 58 KDa multi-domain protein that facilitates contact site formation between various organelles. The present study aimed to investigate the role of various domains of the protein in its sub-cellular localization and regulation of peroxisome number. For this, we created six truncations of the protein (1-87, 1-250, 1-352, 88-523, 251-523 and 353-523) and tagged GFP at the C-terminus. Biochemical methods and fluorescence microscopy were used to characterize the effect of truncation on expression and localization of the protein. Quantitative analysis was performed to determine the effect of truncation on peroxisome number in these cells. Expression of the truncated variants in cells lacking PEX30 did not cause any effect on cell growth. Interestingly, variable expression and localization of the truncated variants in both peroxisome-inducing and non-inducing medium was observed. Truncated variants depicted different distribution patterns such as punctate, reticulate and cytosolic fluorescence. Interestingly, lack of the complete dysferlin domain or C-Dysf resulted in increased peroxisome number similar to as reported for cells lacking Pex30. No contribution of this domain in the reticulate distribution of the proteins was also observed. Our results show an interesting role for the various domains of Pex30 in localization and regulation of peroxisome number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Deb, R., & Nagotu, S. (2017). Versatility of peroxisomes: An evolving concept. Tissue Cell, 49, 209–226. https://doi.org/10.1016/j.tice.2017.03.002

    Article  CAS  PubMed  Google Scholar 

  2. Pan, R., Liu, J., Wang, S., & Hu, J. (2020). Peroxisomes: Versatile organelles with diverse roles in plants. New Phytologist, 225(4), 1410–1427. https://doi.org/10.1111/nph.16134

    Article  PubMed  Google Scholar 

  3. Deori, N. M., Kale, A., Maurya, P. K., & Nagotu, S. (2018). Peroxisomes: role in cellular ageing and age-related disorders. Biogerontology, 19(5), 303–324. https://doi.org/10.1007/s10522-018-9761-9

    Article  CAS  PubMed  Google Scholar 

  4. Poirier, Y., Antonenkov, V. D., Glumoff, T., & Hiltunen, J. K. (2006). Peroxisomal β-oxidation—A metabolic pathway with multiple functions. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1763(12), 1413–1426. https://doi.org/10.1016/j.bbamcr.2006.08.034

    Article  CAS  PubMed  Google Scholar 

  5. Ferdinandusse, S., & Houten, S. M. (2006). Peroxisomes and bile acid biosynthesis. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1763(12), 1427–1440. https://doi.org/10.1016/j.bbamcr.2006.09.001

    Article  CAS  PubMed  Google Scholar 

  6. Lodhi, I. J., & Semenkovich, C. F. (2014). Peroxisomes: A nexus for lipid metabolism and cellular signaling. Cell Metabolism, 19(3), 380–392. https://doi.org/10.1016/j.cmet.2014.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hayashi, S., Fujiwara, S., & Noguchi, T. (2000). Evolution of urate-degrading enzymes in animal peroxisomes. Cell Biochemistry and Biophysics, 32(1), 123–129. https://doi.org/10.1385/CBB:32:1-3:123

    Article  CAS  PubMed  Google Scholar 

  8. Farré, J.-C., Mahalingam, S. S., Proietto, M., & Subramani, S. (2019). Peroxisome biogenesis, membrane contact sites, and quality control. EMBO Reports 20(1), e46864. https://doi.org/10.15252/embr.201846864

  9. Islinger, M., Voelkl, A., Fahimi, H. D., & Schrader, M. (2018). The peroxisome: An update on mysteries 2.0. Histochemistry and Cell Biology, 150(5), 443–471. https://doi.org/10.1007/s00418-018-1722-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fujiki, Y., Abe, Y., Imoto, Y., Tanaka, A. J., Okumoto, K., Honsho, M.,…& Kuroiwa, T. (2020). Recent insights into peroxisome biogenesis and associated diseases. Journal of Cell Science, 133(9). https://doi.org/10.1242/jcs.236943

  11. Braverman, N. E., D’Agostino, M. D., & MacLean, G. E. (2013). Peroxisome biogenesis disorders: Biological, clinical and pathophysiological perspectives. Developmental Disabilities Research Reviews, 17(3), 187–196. https://doi.org/10.1002/ddrr.1113

    Article  PubMed  Google Scholar 

  12. Walter, T., & Erdmann, R. (2019). Current advances in protein import into peroxisomes. The Protein Journal, 38(3), 351–362. https://doi.org/10.1007/s10930-019-09835-6

    Article  CAS  PubMed  Google Scholar 

  13. Mayerhofer, P. U. (2016). Targeting and insertion of peroxisomal membrane proteins: ER trafficking versus direct delivery to peroxisomes. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1863(5), 870–880. https://doi.org/10.1016/j.bbamcr.2015.09.021

    Article  CAS  PubMed  Google Scholar 

  14. Vizeacoumar, F. J., Torres-Guzman, J. C., Bouard, D., Aitchison, J. D., & Rachubinski, R. A. (2004). Pex30p, Pex31p, and Pex32p form a family of peroxisomal integral membrane proteins regulating peroxisome size and number in Saccharomyces cerevisiae. Molecular Biology of the Cell, 15, 665–677. https://doi.org/10.1091/mbc.e03-09-0681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Joshi, A. S., Nebenfuehr, B., Choudhary, V., Satpute-Krishnan, P., Levine, T. P., Golden, A., & Prinz, W. A. (2018). Lipid droplet and peroxisome biogenesis occur at the same ER subdomains. Nature Communications, 9(1), 2940. https://doi.org/10.1038/s41467-018-05277-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mast, F. D., Jamakhandi, A., Saleem, R. A., Dilworth, D. J., Rogers, R. S., Rachubinski, R. A., & Aitchison, J. D. (2016). Peroxins Pex30 and Pex29 dynamically associate with reticulons to regulate peroxisome biogenesis from the endoplasmic reticulum. Journal of Biological Chemistry, 291(30), 15408–15427. https://doi.org/10.1074/jbc.M116.728154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Knoblach, B., Sun, X., Coquelle, N., Fagarasanu, A., Poirier, R. L., & Rachubinski, R. A. (2013). An ER-peroxisome tether exerts peroxisome population control in yeast. The EMBO Journal, 32(18), 2439–2453. https://doi.org/10.1038/emboj.2013.170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. David, C., Koch, J., Oeljeklaus, S., Laernsack, A., Melchior, S., Wiese, S., & Brocard, C. (2013). A combined approach of quantitative interaction proteomics and live-cell imaging reveals a regulatory role for endoplasmic reticulum (ER) reticulon homology proteins in peroxisome biogenesis. Molecular & Cellular Proteomics, 12(9), 2408–2425. https://doi.org/10.1074/mcp.M112.017830

    Article  CAS  Google Scholar 

  19. Joshi, A. S., Huang, X., Choudhary, V., Levine, T. P., Hu, J., & Prinz, W. A. (2016). A family of membrane-shaping proteins at ER subdomains regulates pre-peroxisomal vesicle biogenesis. Journal of Cell Biology, 215(4), 515–529. https://doi.org/10.1083/jcb.201602064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, S., Idrissi, F.-Z., Hermansson, M., Grippa, A., Ejsing, C. S., & Carvalho, P. (2018). Seipin and the membrane-shaping protein Pex30 cooperate in organelle budding from the endoplasmic reticulum. Nature Communications, 9(1), 2939. https://doi.org/10.1038/s41467-018-05278-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aziz, M. F., & Caetano-Anollés, G. (2021). Evolution of networks of protein domain organization. Scientific Reports, 11(1), 12075. https://doi.org/10.1038/s41598-021-90498-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Basu, M. K., Poliakov, E., & Rogozin, I. B. (2009). Domain mobility in proteins: Functional and evolutionary implications. Briefings in Bioinformatics, 10(3), 205–216. https://doi.org/10.1093/bib/bbn057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Forslund, S. K., Kaduk, M., & Sonnhammer, E. L. L. (2019). Evolution of protein domain architectures. In: M. Anisimova (Ed), Evolutionary genomics. Methods in molecular biology (pp. 469-504). Springer New York. https://doi.org/10.1007/978-1-4939-9074-0_15

  24. Ferreira, J. V., & Carvalho, P. (2021). Pex30-like proteins function as adaptors at distinct ER membrane contact sites. Journal of Cell Biology, 220(10), e202103176. https://doi.org/10.1083/jcb.202103176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, Y. S., & Strittmatter, S. M. (2007). The reticulons: A family of proteins with diverse functions. Genome Biology, 8(12), 234–234. https://doi.org/10.1186/gb-2007-8-12-234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lek, A., Lek, M., North, K. N., & Cooper, S. T. (2010). Phylogenetic analysis of ferlin genes reveals ancient eukaryotic origins. BMC Evolutionary Biology, 10(1), 231. https://doi.org/10.1186/1471-2148-10-231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. D’Eletto, M., Oliverio, S., & Di Sano, F. (2020). Reticulon homology domain-containing proteins and ER-Phagy. Frontiers in Cell and Developmental Biology 8. https://doi.org/10.3389/fcell.2020.00090

  28. Okumura, Y., Nakamura, T. S., Tanaka, T., Inoue, I., Suda, Y., Takahashi, T.,… & Mitchell, A. P. (2016). The Dysferlin domain-only protein, Spo73, is required for prospore membrane extension in Saccharomyces cerevisiae. mSphere 1(1), e00038-00015. https://doi.org/10.1128/mSphere.00038-15

  29. Liu, J., Aoki, M., Illa, I., Wu, C., Fardeau, M., Angelini, C., & Brown, R. H. (1998). Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nature Genetics, 20(1), 31–36. https://doi.org/10.1038/1682

    Article  CAS  PubMed  Google Scholar 

  30. Vizeacoumar, F. J., Vreden, W. N., Aitchison, J. D., & Rachubinski, R. A. (2006). Pex19p binds Pex30p and Pex32p at regions required for their peroxisomal localization but separate from their peroxisomal targeting signals. Journal of Biological Chemistry, 281(21), 14805–14812. https://doi.org/10.1074/jbc.M601808200

    Article  CAS  PubMed  Google Scholar 

  31. Deori, N. M., Infant, T., Sundaravadivelu, P. K., Thummer, R. P., & Nagotu, S. (2022). Pex30 undergoes phosphorylation and regulates peroxisome number in Saccharomyces cerevisiae. Molecular Genetics and Genomics, 297, 573–590. https://doi.org/10.1007/s00438-022-01872-8

    Article  CAS  PubMed  Google Scholar 

  32. Gietz, R. D., & Sugino, A. (1988). New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene, 74(2), 527–534. https://doi.org/10.1016/0378-1119(88)90185-0

    Article  CAS  PubMed  Google Scholar 

  33. Metzger, M. B., Maurer, M. J., Dancy, B. M., & Michaelis, S. (2008). Degradation of a cytosolic protein requires endoplasmic reticulum-associated degradation machinery. Journal of Biological Chemistry, 283(47), 32302–32316. https://doi.org/10.1074/jbc.M806424200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuravi, K., Nagotu, S., Krikken, A. M., Sjollema, K., Deckers, M., Erdmann, R., & van der Klei, I. J. (2006). Dynamin-related proteins Vps1p and Dnm1p control peroxisome abundance in Saccharomyces cerevisiae. Journal of Cell Science, 119, 3994–4001. https://doi.org/10.1242/jcs.03166

    Article  CAS  PubMed  Google Scholar 

  35. Baerends, R. J., Faber, K. N., Kram, A. M., Kiel, J. A., van der Klei, I. J., & Veenhuis, M. (2000). A stretch of positively charged amino acids at the N terminus of Hansenula polymorpha Pex3p is involved in incorporation of the protein into the peroxisomal membrane. Journal of Biological Chemistry, 275(14), 9986–9995. https://doi.org/10.1074/jbc.275.14.9986

    Article  CAS  PubMed  Google Scholar 

  36. Lowry, O., Rosebrough, N., Farr, A. L., & Randall, R. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  37. Kobayashi, K., Izawa, T., Kuwamura, M., & Yamate, J. (2012). Dysferlin and animal models for dysferlinopathy. Journal of Toxicologic Pathology, 25(2), 135–147. https://doi.org/10.1293/tox.25.135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Department of Biotechnology (DBT), Government of India [BT/PR25097/NER/95/1013/2017] and Top-up of Start-Up grant from IIT Guwahati.

Author information

Authors and Affiliations

Authors

Contributions

N.M.D. and T.I. performed the experiments. N.M.D. wrote the first draft of the manuscript and prepared the figures. R.P.T. analyzed the data and edited the manuscript. S.N. conceived the idea, analyzed the data, edited the manuscript and procured funding. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shirisha Nagotu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deori, N.M., Infant, T., Thummer, R.P. et al. Characterization of the Multiple Domains of Pex30 Involved in Subcellular Localization of the Protein and Regulation of Peroxisome Number. Cell Biochem Biophys 81, 39–47 (2023). https://doi.org/10.1007/s12013-022-01122-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-022-01122-z

Keywords

Navigation