Skip to main content
Log in

Current Advances in Protein Import into Peroxisomes

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Blobel and coworkers discovered in 1978 that peroxisomal proteins are synthesized on free ribosomes in the cytosol and thus provided the grounds for the conception of peroxisomes as self-containing organelles. Peroxisomes are highly adaptive and versatile organelles carrying out a wide variety of metabolic functions. A striking feature of the peroxisomal import machinery is that proteins can traverse the peroxisomal membrane in a folded and even oligomeric state via cycling receptors. We outline essential steps of peroxisomal matrix protein import, from targeting of the proteins to the peroxisomal membrane, their translocation via transient pores and export of the corresponding cycling import receptors with emphasis on the situation in yeast. Peroxisomes can contribute to the adaptation of cells to different environmental conditions. This is realized by changes in metabolic functions and thus the enzyme composition of the organelles is adopted according to the cellular needs. In recent years, it turned out that this organellar diversity is based on an elaborate regulation of gene expression and peroxisomal protein import. The latter is in the focus of this review that summarizes our knowledge on the composition and function of the peroxisomal protein import machinery with emphasis on novel alternative protein import pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Goldman BM, Blobel G (1978) Biogenesis of peroxisomes: intracellular site of synthesis of catalase and uricase. Proc Natl Acad Sci USA 75:5066–5070

    Article  CAS  PubMed  Google Scholar 

  2. Islinger M, Cardoso MJ, Schrader M (2010) Be different—the diversity of peroxisomes in the animal kingdom. Biochem Biophys Acta 1803:881–897

    Article  CAS  PubMed  Google Scholar 

  3. Baker A, Sparkes IA (2005) Peroxisome protein import: some answers, more questions. Curr Opin Plant Biol 8:640–647

    Article  CAS  PubMed  Google Scholar 

  4. Van Den Bosch H, Schutgens RB, Wanders RJ, Tager JM (1992) Biochemistry of peroxisomes. Annu Rev Biochem 61:157–197

    Article  PubMed  Google Scholar 

  5. Van Der Klei IJ, Harder W, Veenhuis M (1991) Biosynthesis and assembly of alcohol oxidase, a peroxisomal matrix protein in methylotrophic yeasts: a review. Yeast 7:195–209

    Article  PubMed  Google Scholar 

  6. Volkl A, Baumgart E, Fahimi HD (1988) Localization of urate oxidase in the crystalline cores of rat liver peroxisomes by immunocytochemistry and immunoblotting. J Histochem Cytochem 36:329–336

    Article  CAS  PubMed  Google Scholar 

  7. Wanders RJ, Waterham HR (2006) Peroxisomal disorders: the single peroxisomal enzyme deficiencies. Biochem Biophys Acta 1763:1707–1720

    Article  CAS  PubMed  Google Scholar 

  8. Deduve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357

    Article  CAS  Google Scholar 

  9. Kunau WH, Buhne S, De La Garza M, Kionka C, Mateblowski M, Schultz-Borchard U, Thieringer R (1988) Comparative enzymology of beta-oxidation. Biochem Soc Trans 16:418–420

    Article  CAS  PubMed  Google Scholar 

  10. Biardi L, Krisans SK (1996) Compartmentalization of cholesterol biosynthesis. Conversion of mevalonate to farnesyl diphosphate occurs in the peroxisomes. J Biol Chem 271:1784–1788

    Article  CAS  PubMed  Google Scholar 

  11. Hajra AK, Bishop JE (1982) Glycerolipid biosynthesis in peroxisomes via the acyl dihydroxyacetone phosphate-pathway. Ann NY Acad Sci 386:170–182

    Article  CAS  PubMed  Google Scholar 

  12. Krisans SK (1992) The role of peroxisomes in cholesterol metabolism. Am J Respir Cell Mol Biol 7:358–364

    Article  CAS  PubMed  Google Scholar 

  13. Muller WH, Van Der Krift TP, Krouwer AJ, Wosten HA, Van Der Voort LH, Smaal EB, Verkleij AJ (1991) Localization of the pathway of the penicillin biosynthesis in Penicillium chrysogenum. EMBO J 10:489–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Heupel R, Heldt HW (1994) Protein organization in the matrix of leaf peroxisomes. A multi-enzyme complex involved in photorespiratory metabolism. Eur J Biochem 220:165–172

    Article  CAS  PubMed  Google Scholar 

  15. Islinger M, Voelkl A, Fahimi HD, Schrader M (2018) The peroxisome: an update on mysteries 2.0. Histochem Cell Biol 150:443–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berger J, Gartner J (2006) X-linked adrenoleukodystrophy: clinical, biochemical and pathogenetic aspects. Biochem Biophys Acta 1763:1721–1732

    Article  CAS  PubMed  Google Scholar 

  17. Bowen P, Lee CS, Zellweger H, Lindenberg R (1964) A familial syndrome of multiple congenital defects. Bull Johns Hopkins Hosp 114:402–414

    CAS  PubMed  Google Scholar 

  18. Goldfischer S, Moore CL, Johnson AB, Spiro AJ, Valsamis MP, Wisniewski HK, Ritch RH, Norton WT, Rapin I, Gartner LM (1973) Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science 182:62–64

    Article  CAS  PubMed  Google Scholar 

  19. Purdue PE, Zhang JW, Skoneczny M, Lazarow PB (1997) Rhizomelic chondrodysplasia punctata is caused by deficiency of human PEX7, a homologue of the yeast PTS2 receptor. Nat Genet 15:381–384

    Article  CAS  PubMed  Google Scholar 

  20. Kelley RI, Datta NS, Dobyns WB, Hajra AK, Moser AB, Noetzel MJ, Zackai EH, Moser HW (1986) Neonatal adrenoleukodystrophy: new cases, biochemical studies, and differentiation from Zellweger and related peroxisomal polydystrophy syndromes. Am J Med Genet 23:869–901

    Article  CAS  PubMed  Google Scholar 

  21. Scotto JM, Hadchouel M, Odievre M, Laudat MH, Saudubray JM, Dulac O, Beucler I, Beaune P (1982) Infantile phytanic acid storage disease, a possible variant of Refsum’s disease: three cases, including ultrastructural studies of the liver. J Inherit Metab Disord 5:83–90

    Article  CAS  Google Scholar 

  22. Lazarow PB, Fujiki Y (1985) Biogenesis of peroxisomes. Annu Rev Cell Biol 1:489–530

    Article  CAS  PubMed  Google Scholar 

  23. Mcnew JA, Goodman JM (1994) An oligomeric protein is imported into peroxisomes in vivo. J Cell Biol 127:1245–1257

    Article  CAS  PubMed  Google Scholar 

  24. Glover JR, Andrews DW, Rachubinski RA (1994) Saccharomyces cerevisiae peroxisomal thiolase is imported as a dimer. Proc Natl Acad Sci USA 91:10541–10545

    Article  CAS  PubMed  Google Scholar 

  25. Walton PA, Hill PE, Subramani S (1995) Import of stably folded proteins into peroxisomes. Mol Biol Cell 6:675–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Freitas MO, Francisco T, Rodrigues TA, Lismont C, Domingues P, Pinto MP, Grou CP, Fransen M, Azevedo JE (2015) The peroxisomal protein import machinery displays a preference for monomeric substrates. Open Biol 5:140236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang J, Pieuchot L, Jedd G (2018) Artificial import substrates reveal an omnivorous peroxisomal importomer. Traffic 19:786–797

    Article  CAS  PubMed  Google Scholar 

  28. Santos MJ, Imanaka T, Shio H, Small GM, Lazarow PB (1988) Peroxisomal membrane ghosts in Zellweger syndrome—aberrant organelle assembly. Science 239:1536–1538

    Article  CAS  PubMed  Google Scholar 

  29. Erdmann R, Blobel G (1996) Identification of Pex13p a peroxisomal membrane receptor for the PTS1 recognition factor. J Cell Biol 135:111–121

    Article  CAS  PubMed  Google Scholar 

  30. Jan CH, Williams CC, Weissman JS (2014) Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. Science 346:1257521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reid DW, Nicchitta CV (2012) Primary role for endoplasmic reticulum-bound ribosomes in cellular translation identified by ribosome profiling. J Biol Chem 287:5518–5527

    Article  CAS  PubMed  Google Scholar 

  32. Haimovich G, Cohen-Zontag O, Gerst JE (2016) A role for mRNA trafficking and localized translation in peroxisome biogenesis and function? Biochem Biophys Acta 1863:911–921

    Article  CAS  PubMed  Google Scholar 

  33. Zipor G, Haim-Vilmovsky L, Gelin-Licht R, Gadir N, Brocard C, Gerst JE (2009) Localization of mRNAs coding for peroxisomal proteins in the yeast, Saccharomyces cerevisiae. Proc Natl Acad Sci USA 106:19848–19853

    Article  PubMed  Google Scholar 

  34. Gould SG, Keller GA, Subramani S (1987) Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J Cell Biol 105:2923–2931

    Article  CAS  PubMed  Google Scholar 

  35. Gould SJ, Keller GA, Hosken N, Wilkinson J, Subramani S (1989) A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol 108:1657–1664

    Article  CAS  PubMed  Google Scholar 

  36. Brocard C, Hartig A (2006) Peroxisome targeting signal 1: is it really a simple tripeptide? Biochem Biophys Acta 1763:1565–1573

    Article  CAS  PubMed  Google Scholar 

  37. Neuberger G, Maurer-Stroh S, Eisenhaber B, Hartig A, Eisenhaber F (2003) Motif refinement of the peroxisomal targeting signal 1 and evaluation of taxon-specific differences. J Mol Biol 328:567–579

    Article  CAS  PubMed  Google Scholar 

  38. Mccollum D, Monosov E, Subramani S (1993) The pas8 mutant of Pichia pastoris exhibits the peroxisomal protein import deficiencies of Zellweger syndrome cells—the PAS8 protein binds to the COOH-terminal tripeptide peroxisomal targeting signal, and is a member of the TPR protein family. J Cell Biol 121:761–774

    Article  CAS  PubMed  Google Scholar 

  39. Van Der Leij I, Franse MM, Elgersma Y, Distel B, Tabak HF (1993) PAS10 is a tetratricopeptide-repeat protein that is essential for the import of most matrix proteins into peroxisomes of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 90:11782–11786

    Article  PubMed  Google Scholar 

  40. Gatto GJ Jr, Geisbrecht BV, Gould SJ, Berg JM (2000) Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nat Struct Biol 7:1091–1095

    Article  CAS  PubMed  Google Scholar 

  41. Stanley WA, Filipp FV, Kursula P, Schuller N, Erdmann R, Schliebs W, Sattler M, Wilmanns M (2006) Recognition of a functional peroxisome type 1 target by the dynamic import receptor pex5p. Mol Cell 24:653–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fodor K, Wolf J, Erdmann R, Schliebs W, Wilmanns M (2012) Molecular requirements for peroxisomal targeting of alanine-glyoxylate aminotransferase as an essential determinant in primary hyperoxaluria type 1. PLoS Biol 10:e1001309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fodor K, Wolf J, Reglinski K, Passon DM, Lou Y, Schliebs W, Erdmann R, Wilmanns M (2015) Ligand-induced compaction of the PEX5 receptor-binding cavity impacts protein import efficiency into peroxisomes. Traffic 16:85–98

    Article  CAS  PubMed  Google Scholar 

  44. Hagen S, Drepper F, Fischer S, Fodor K, Passon D, Platta HW, Zenn M, Schliebs W, Girzalsky W, Wilmanns M, Warscheid B, Erdmann R (2015) Structural insights into cargo recognition by the yeast PTS1 receptor. J Biol Chem 290:26610–26626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kerssen D, Hambruch E, Klaas W, Platta HW, De Kruijff B, Erdmann R, Kunau WH, Schliebs W (2006) Membrane association of the cycling peroxisome import receptor Pex5p. J Biol Chem 281:27003–27015

    Article  CAS  PubMed  Google Scholar 

  46. Yifrach E, Chuartzman SG, Dahan N, Maskit S, Zada L, Weill U, Yofe I, Olender T, Schuldiner M, Zalckvar E (2016) Characterization of proteome dynamics during growth in oleate reveals a new peroxisome-targeting receptor. J Cell Sci 129:4067–4075

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Effelsberg D, Cruz-Zaragoza LD, Schliebs W, Erdmann R (2016) Pex9p is a new yeast peroxisomal import receptor for PTS1-containing proteins. J Cell Sci 129:4057–4066

    CAS  PubMed  Google Scholar 

  48. Petriv OI, Tang L, Titorenko VI, Rachubinski RA (2004) A new definition for the consensus sequence of the peroxisome targeting signal type 2. J Mol Biol 341:119–134

    Article  CAS  PubMed  Google Scholar 

  49. Swinkels BW, Gould SJ, Bodnar AG, Rachubinski RA, Subramani S (1991) A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J 10:3255–3262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jung S, Marelli M, Rachubinski RA, Goodlett DR, Aitchison JD (2010) Dynamic changes in the subcellular distribution of Gpd1p in response to cell stress. J Biol Chem 285:6739–6749

    Article  CAS  PubMed  Google Scholar 

  51. Effelsberg D, Cruz-Zaragoza LD, Tonillo J, Schliebs W, Erdmann R (2015) Role of Pex21p for Piggyback import of Gpd1p and Pnc1p into peroxisomes of Saccharomyces cerevisiae. J Biol Chem 290:25333–25342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marzioch M, Erdmann R, Veenhuis M, Kunau WH (1994) PAS7 encodes a novel yeast member of the WD-40 protein family essential for import of 3-oxoacyl-CoA thiolase, a PTS2-containing protein, into peroxisomes. EMBO J 13:4908–4918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang JW, Lazarow PB (1995) PEB1 (PAS7) in Saccharomyces cerevisiae encodes a hydrophilic, intra-peroxisomal protein that is a member of the WD repeat family and is essential for the import of thiolase into peroxisomes. J Cell Biol 129:65–80

    Article  CAS  PubMed  Google Scholar 

  54. Purdue PE, Yang X, Lazarow PB (1998) Pex18p and Pex21p, a novel pair of related peroxins essential for peroxisomal targeting by the PTS2 pathway. J Cell Biol 143:1859–1869

    Article  CAS  PubMed  Google Scholar 

  55. Grunau S, Schliebs W, Linnepe R, Neufeld C, Cizmowski C, Reinartz B, Meyer HE, Warscheid B, Girzalsky W, Erdmann R (2009) Peroxisomal targeting of PTS2 pre-import complexes in the yeast Saccharomyces cerevisiae. Traffic 10:451–460

    Article  CAS  PubMed  Google Scholar 

  56. Pan D, Nakatsu T, Kato H (2013) Crystal structure of peroxisomal targeting signal-2 bound to its receptor complex Pex7p–Pex21p. Nat Struct Mol Biol 20:987–993

    Article  CAS  PubMed  Google Scholar 

  57. Titorenko VI, Smith JJ, Szilard RK, Rachubinski RA (1998) Pex20p of the yeast Yarrowia lipolytica is required for the oligomerization of thiolase in the cytosol and for its targeting to the peroxisome. J Cell Biol 142:403–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Braverman N, Dodt G, Gould SJ, Valle D (1998) An isoform of pex5p, the human PTS1 receptor, is required for the import of PTS2 proteins into peroxisomes. Hum Mol Genet 7:1195–1205

    Article  CAS  PubMed  Google Scholar 

  59. Otera H, Okumoto K, Tateishi K, Ikoma Y, Matsuda E, Nishimura M, Tsukamoto T, Osumi T, Ohashi K, Higuchi O, Fujiki Y (1998) Peroxisome targeting signal type 1 (PTS1) receptor is involved in import of both PTS1 and PTS2: studies with PEX5-defective CHO cell mutants. Mol Cell Biol 18:388–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Woodward AW, Bartel B (2005) The Arabidopsis peroxisomal targeting signal type 2 receptor PEX7 is necessary for peroxisome function and dependent on PEX5. Mol Biol Cell 16:573–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Matsumura T, Otera H, Fujiki Y (2000) Disruption of the interaction of the longer isoform of Pex5p, Pex5pL, with Pex7p abolishes peroxisome targeting signal type 2 protein import in mammals. Study with a novel Pex5-impaired Chinese hamster ovary cell mutant. J Biol Chem 275:21715–21721

    Article  CAS  PubMed  Google Scholar 

  62. Dodt G, Warren D, Becker E, Rehling P, Gould SJ (2001) Domain mapping of human PEX5 reveals functional and structural similarities to Saccharomyces cerevisiae Pex18p and Pex21p. J Biol Chem 276:41769–41781

    Article  CAS  PubMed  Google Scholar 

  63. Galland N, Demeure F, Hannaert V, Verplaetse E, Vertommen D, Van Der Smissen P, Courtoy PJ, Michels PA (2007) Characterization of the role of the receptors PEX5 and PEX7 in the import of proteins into glycosomes of Trypanosoma brucei. Biochem Biophys Acta 1773:521–535

    Article  CAS  PubMed  Google Scholar 

  64. Klein AT, Van Den Berg M, Bottger G, Tabak HF, Distel B (2002) Saccharomyces cerevisiae acyl-CoA oxidase follows a novel, non-PTS1, import pathway into peroxisomes that is dependent on Pex5p. J Biol Chem 277:25011–25019

    Article  CAS  PubMed  Google Scholar 

  65. Rymer L, Kempinski B, Chelstowska A, Skoneczny M (2018) The budding yeast Pex5p receptor directs Fox2p and Cta1p into peroxisomes via its N-terminal region near the FxxxW domain. J Cell Sci 131:jcs216986

    Article  CAS  PubMed  Google Scholar 

  66. Thomas AS, Krikken AM, De Boer R, Williams C (2018) Hansenula polymorpha Aat2p is targeted to peroxisomes via a novel Pex20p-dependent pathway. FEBS Lett 592:2466–2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brown LA, Baker A (2008) Shuttles and cycles: transport of proteins into the peroxisome matrix (review). Mol Membr Biol 25:363–375

    Article  CAS  PubMed  Google Scholar 

  68. Huhse B, Rehling P, Albertini M, Blank L, Meller K, Kunau WH (1998) Pex17p of Saccharomyces cerevisiae is a novel peroxin and component of the peroxisomal protein translocation machinery. J Cell Biol 140:49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Waterham HR, Titorenko VI, Haima P, Cregg JM, Harder W, Veenhuis M (1994) The Hansenula polymorpha PER1 gene is essential for peroxisome biogenesis and encodes a peroxisomal matrix protein with both carboxy- and amino-terminal targeting signals. J Cell Biol 127:737–749

    Article  CAS  PubMed  Google Scholar 

  70. Agne B, Meindl NM, Niederhoff K, Einwachter H, Rehling P, Sickmann A, Meyer HE, Girzalsky W, Kunau WH (2003) Pex8p: an intraperoxisomal organizer of the peroxisomal import machinery. Mol Cell 11:635–646

    Article  CAS  PubMed  Google Scholar 

  71. Rayapuram N, Subramani S (2006) The importomer—a peroxisomal membrane complex involved in protein translocation into the peroxisome matrix. Biochem Biophys Acta 1763:1613–1619

    Article  CAS  PubMed  Google Scholar 

  72. Stein K, Schell-Steven A, Erdmann R, Rottensteiner H (2002) Interactions of Pex7p and Pex18p/Pex21p with the peroxisomal docking machinery: implications for the first steps in PTS2 protein import. Mol Cell Biol 22:6056–6069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Elgersma Y, Kwast L, Klein A, Voorn-Brouwer T, Van Den Berg M, Metzig B, America T, Tabak HF, Distel B (1996) The SH3 domain of the Saccharomyces cerevisiae peroxisomal membrane protein Pex13p functions as a docking site for Pex5p, a mobile receptor for the import PTS1-containing proteins. J Cell Biol 135:97–109

    Article  CAS  PubMed  Google Scholar 

  74. Gould SJ, Kalish JE, Morrell JC, Bjorkman J, Urquhart AJ, Crane DI (1996) Pex13p is an SH3 protein of the peroxisome membrane and a docking factor for the predominantly cytoplasmic PTs1 receptor. J Cell Biol 135:85–95

    Article  CAS  PubMed  Google Scholar 

  75. Douangamath A, Filipp FV, Klein AT, Barnett P, Zou P, Voorn-Brouwer T, Vega MC, Mayans OM, Sattler M, Distel B, Wilmanns M (2002) Topography for independent binding of alpha-helical and PPII-helical ligands to a peroxisomal SH3 domain. Mol Cell 10:1007–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pires JR, Hong X, Brockmann C, Volkmer-Engert R, Schneider-Mergener J, Oschkinat H, Erdmann R (2003) The ScPex13p SH3 domain exposes two distinct binding sites for Pex5p and Pex14p. J Mol Biol 326:1427–1435

    Article  CAS  PubMed  Google Scholar 

  77. Bottger G, Barnett P, Klein AT, Kragt A, Tabak HF, Distel B (2000) Saccharomyces cerevisiae PTS1 receptor Pex5p interacts with the SH3 domain of the peroxisomal membrane protein Pex13p in an unconventional, non-PXXP-related manner. Mol Biol Cell 11:3963–3976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Niederhoff K, Meindl-Beinker NM, Kerssen D, Perband U, Schafer A, Schliebs W, Kunau WH (2005) Yeast Pex14p possesses two functionally distinct Pex5p and one Pex7p binding sites. J Biol Chem 280:35571–35578

    Article  CAS  PubMed  Google Scholar 

  79. Neufeld C, Filipp FV, Simon B, Neuhaus A, Schuller N, David C, Kooshapur H, Madl T, Erdmann R, Schliebs W, Wilmanns M, Sattler M (2009) Structural basis for competitive interactions of Pex14 with the import receptors Pex5 and Pex19. EMBO J 28:745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Barros-Barbosa A, Ferreira MJ, Rodrigues TA, Pedrosa AG, Grou CP, Pinto MP, Fransen M, Francisco T, Azevedo JE (2019) Membrane topologies of PEX13 and PEX14 provide new insights on the mechanism of protein import into peroxisomes. FEBS J 286:205–222

    Article  CAS  PubMed  Google Scholar 

  81. Urquhart AJ, Kennedy D, Gould SJ, Crane DI (2000) Interaction of Pex5p, the type 1 peroxisome targeting signal receptor, with the peroxisomal membrane proteins Pex14p and Pex13p. J Biol Chem 275:4127–4136

    Article  CAS  PubMed  Google Scholar 

  82. Otera H, Setoguchi K, Hamasaki M, Kumashiro T, Shimizu N, Fujiki Y (2002) Peroxisomal targeting signal receptor Pex5p interacts with cargoes and import machinery components in a spatiotemporally differentiated manner: conserved Pex5p WXXXF/Y motifs are critical for matrix protein import. Mol Cell Biol 22:1639–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Girzalsky W, Hoffmann LS, Schemenewitz A, Nolte A, Kunau WH, Erdmann R (2006) Pex19p-dependent targeting of Pex17p, a peripheral component of the peroxisomal protein import machinery. J Biol Chem 281:19417–19425

    Article  CAS  PubMed  Google Scholar 

  84. Chan A, Schummer A, Fischer S, Schroter T, Cruz-Zaragoza LD, Bender J, Drepper F, Oeljeklaus S, Kunau WH, Girzalsky W, Warscheid B, Erdmann R (2016) Pex17p-dependent assembly of Pex14p/Dyn2p-subcomplexes of the peroxisomal protein import machinery. Eur J Cell Biol 95:585–597

    Article  CAS  PubMed  Google Scholar 

  85. Oeljeklaus S, Reinartz BS, Wolf J, Wiese S, Tonillo J, Podwojski K, Kuhlmann K, Stephan C, Meyer HE, Schliebs W, Brocard C, Erdmann R, Warscheid B (2012) Identification of core components and transient interactors of the peroxisomal importomer by dual-track stable isotope labeling with amino acids in cell culture analysis. J Proteome Res 11:2567–2580

    Article  CAS  PubMed  Google Scholar 

  86. Chang J, Tower RJ, Lancaster DL, Rachubinski RA (2013) Dynein light chain interaction with the peroxisomal import docking complex modulates peroxisome biogenesis in yeast. J Cell Sci 126:4698–4706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ma C, Schumann U, Rayapuram N, Subramani S (2009) The peroxisomal matrix import of Pex8p requires only PTS receptors and Pex14p. Mol Biol Cell 20:3680–3689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Meinecke M, Cizmowski C, Schliebs W, Kruger V, Beck S, Wagner R, Erdmann R (2010) The peroxisomal importomer constitutes a large and highly dynamic pore. Nat Cell Biol 12:273–277

    Article  CAS  PubMed  Google Scholar 

  89. Montilla-Martinez M, Beck S, Klumper J, Meinecke M, Schliebs W, Wagner R, Erdmann R (2015) Distinct pores for peroxisomal import of PTS1 and PTS2 proteins. Cell reports 13:2126–2134

    Article  CAS  PubMed  Google Scholar 

  90. Salomons FA, Kiel JA, Faber KN, Veenhuis M, Van Der Klei IJ (2000) Overproduction of Pex5p stimulates import of alcohol oxidase and dihydroxyacetone synthase in a Hansenula polymorpha Pex14 null mutant. J Biol Chem 275:12603–12611

    Article  CAS  PubMed  Google Scholar 

  91. Erdmann R, Schliebs W (2005) Peroxisomal matrix protein import: the transient pore model. Nat Rev Mol Cell Biol 6:738–742

    Article  CAS  PubMed  Google Scholar 

  92. Dias AF, Rodrigues TA, Pedrosa AG, Barros-Barbosa A, Francisco T, Azevedo JE (2017) The peroxisomal matrix protein translocon is a large cavity-forming protein assembly into which PEX5 protein enters to release its cargo. J Biol Chem 292:15287–15300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schafer A, Kerssen D, Veenhuis M, Kunau WH, Schliebs W (2004) Functional similarity between the peroxisomal PTS2 receptor binding protein Pex18p and the N-terminal half of the PTS1 receptor Pex5p. Mol Cell Biol 24:8895–8906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang D, Visser NV, Veenhuis M, Van Der Klei IJ (2003) Physical interactions of the peroxisomal targeting signal 1 receptor pex5p, studied by fluorescence correlation spectroscopy. J Biol Chem 278:43340–43345

    Article  CAS  PubMed  Google Scholar 

  95. Ma C, Hagstrom D, Polley SG, Subramani S (2013) Redox-regulated cargo binding and release by the peroxisomal targeting signal receptor, Pex5. J Biol Chem 288:27220–27231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Freitas MO, Francisco T, Rodrigues TA, Alencastre IS, Pinto MP, Grou CP, Carvalho AF, Fransen M, Sa-Miranda C, Azevedo JE (2011) PEX5 protein binds monomeric catalase blocking its tetramerization and releases it upon binding the N-terminal domain of PEX14. J Biol Chem 286:40509–40519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Platta HW, Hagen S, Erdmann R (2013) The exportomer: the peroxisomal receptor export machinery. Cell Mol Life Sci CMLS 70:1393–1411

    Article  CAS  PubMed  Google Scholar 

  98. Platta HW, Girzalsky W, Erdmann R (2004) Ubiquitination of the peroxisomal import receptor Pex5p. Biochem J 384:37–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kiel JA, Emmrich K, Meyer HE, Kunau WH (2005) Ubiquitination of the peroxisomal targeting signal type 1 receptor, Pex5p, suggests the presence of a quality control mechanism during peroxisomal matrix protein import. J Biol Chem 280:1921–1930

    Article  CAS  PubMed  Google Scholar 

  100. Kragt A, Voorn-Brouwer T, Van Den Berg M, Distel B (2005) The Saccharomyces cerevisiae peroxisomal import receptor Pex5p is monoubiquitinated in wild type cells. J Biol Chem 280:7867–7874

    Article  CAS  PubMed  Google Scholar 

  101. Carvalho AF, Pinto MP, Grou CP, Alencastre IS, Fransen M, Sa-Miranda C, Azevedo JE (2007) Ubiquitination of mammalian Pex5p, the peroxisomal import receptor. J Biol Chem 282:31267–31272

    Article  CAS  PubMed  Google Scholar 

  102. Platta HW, El Magraoui F, Schlee D, Grunau S, Girzalsky W, Erdmann R (2007) Ubiquitination of the peroxisomal import receptor Pex5p is required for its recycling. J Cell Biol 177:197–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Williams C, Van Den Berg M, Sprenger RR, Distel B (2007) A conserved cysteine is essential for Pex4p-dependent ubiquitination of the peroxisomal import receptor Pex5p. J Biol Chem 282:22534–22543

    Article  CAS  PubMed  Google Scholar 

  104. Leon S, Subramani S (2007) A conserved cysteine residue of Pichia pastoris Pex20p is essential for its recycling from the peroxisome to the cytosol. J Biol Chem 282:7424–7430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu X, Subramani S (2013) Unique requirements for mono- and polyubiquitination of the peroxisomal targeting signal co-receptor, Pex20. J Biol Chem 288:7230–7240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dohmen RJ, Stappen R, Mcgrath JP, Forrova H, Kolarov J, Goffeau A, Varshavsky A (1995) An essential yeast gene encoding a homolog of ubiquitin-activating enzyme. J Biol Chem 270:18099–18109

    Article  CAS  PubMed  Google Scholar 

  107. Koller A, Snyder WB, Faber KN, Wenzel TJ, Rangell L, Keller GA, Subramani S (1999) Pex22p of Pichia pastoris, essential for peroxisomal matrix protein import, anchors the ubiquitin-conjugating enzyme, Pex4p, on the peroxisomal membrane. J Cell Biol 146:99–112

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Zolman BK, Monroe-Augustus M, Silva ID, Bartel B (2005) Identification and functional characterization of Arabidopsis PEROXIN4 and the interacting protein PEROXIN22. Plant Cell 17:3422–3435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Williams C, Van Den Berg M, Panjikar S, Stanley WA, Distel B, Wilmanns M (2012) Insights into ubiquitin-conjugating enzyme/co-activator interactions from the structure of the Pex4p:Pex22p complex. EMBO J 31:391–402

    Article  CAS  PubMed  Google Scholar 

  110. El Magraoui F, Schrotter A, Brinkmeier R, Kunst L, Mastalski T, Muller T, Marcus K, Meyer HE, Girzalsky W, Erdmann R, Platta HW (2014) The cytosolic domain of Pex22p stimulates the Pex4p-dependent ubiquitination of the PTS1-receptor. PLoS ONE 9:e105894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ali AM, Atmaj J, Adawy A, Lunev S, Van Oosterwijk N, Yan SR, Williams C, Groves MR (2018) The Pex4p-Pex22p complex from Hansenula polymorpha: biophysical analysis, crystallization and X-ray diffraction characterization. Acta Crystallogr Sect F Struct Biol Commun 74:76–81

    Article  CAS  Google Scholar 

  112. Grou CP, Carvalho AF, Pinto MP, Wiese S, Piechura H, Meyer HE, Warscheid B, Sa-Miranda C, Azevedo JE (2008) Members of the E2D (UbcH5) family mediate the ubiquitination of the conserved cysteine of Pex5p, the peroxisomal import receptor. J Biol Chem 283:14190–14197

    Article  CAS  PubMed  Google Scholar 

  113. Platta HW, El Magraoui F, Baumer BE, Schlee D, Girzalsky W, Erdmann R (2009) Pex2 and pex12 function as protein-ubiquitin ligases in peroxisomal protein import. Mol Cell Biol 29:5505–5516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. El Magraoui F, Baumer BE, Platta HW, Baumann JS, Girzalsky W, Erdmann R (2012) The RING-type ubiquitin ligases Pex2p, Pex10p and Pex12p form a heteromeric complex that displays enhanced activity in an ubiquitin conjugating enzyme-selective manner. FEBS J 279:2060–2070

    Article  CAS  PubMed  Google Scholar 

  115. Williams C, Van Den Berg M, Geers E, Distel B (2008) Pex10p functions as an E3 ligase for the Ubc4p-dependent ubiquitination of Pex5p. Biochem Biophys Res Commun 374:620–624

    Article  CAS  PubMed  Google Scholar 

  116. Okumoto K, Misono S, Miyata N, Matsumoto Y, Mukai S, Fujiki Y (2011) Cysteine ubiquitination of PTS1 receptor Pex5p regulates Pex5p recycling. Traffic 12:1067–1083

    Article  CAS  PubMed  Google Scholar 

  117. Hensel A, Beck S, El Magraoui F, Platta HW, Girzalsky W, Erdmann R (2011) Cysteine-dependent ubiquitination of Pex18p is linked to cargo translocation across the peroxisomal membrane. J Biol Chem 286:43495–43505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schwartzkopff B, Platta HW, Hasan S, Girzalsky W, Erdmann R (2015) Cysteine-specific ubiquitination protects the peroxisomal import receptor Pex5p against proteasomal degradation. Biosci Rep 35:e00215

    PubMed  PubMed Central  Google Scholar 

  119. Komander D, Clague MJ, Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10:550–563

    Article  CAS  PubMed  Google Scholar 

  120. Debelyy MO, Platta HW, Saffian D, Hensel A, Thoms S, Meyer HE, Warscheid B, Girzalsky W, Erdmann R (2011) Ubp15p, a ubiquitin hydrolase associated with the peroxisomal export machinery. J Biol Chem 286:28223–28234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Grou CP, Francisco T, Rodrigues TA, Freitas MO, Pinto MP, Carvalho AF, Domingues P, Wood SA, Rodriguez-Borges JE, Sa-Miranda C, Fransen M, Azevedo JE (2012) Identification of ubiquitin-specific protease 9X (USP9X) as a deubiquitinase acting on ubiquitin-peroxin 5 (PEX5) thioester conjugate. J Biol Chem 287:12815–12827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. El Magraoui F, Brinkmeier R, Mastalski T, Hupperich A, Strehl C, Schwerter D, Girzalsky W, Meyer HE, Warscheid B, Erdmann R, Platta HW (2019) The deubiquitination of the PTS1-import receptor Pex5p is required for peroxisomal matrix protein import. Biochim Biophys Acta Mol Cell Res 1866:199–213

    Article  CAS  PubMed  Google Scholar 

  123. Zhang J, Tripathi DN, Jing J, Alexander A, Kim J, Powell RT, Dere R, Tait-Mulder J, Lee JH, Paull TT, Pandita RK, Charaka VK, Pandita TK, Kastan MB, Walker CL (2015) ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat Cell Biol 17:1259–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang W, Xia ZJ, Farre JC, Subramani S (2017) TRIM37, a novel E3 ligase for PEX5-mediated peroxisomal matrix protein import. J Cell Biol 216:2843–2858

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Williams C, Van Der Klei IJ (2013) Pexophagy-linked degradation of the peroxisomal membrane protein Pex3p involves the ubiquitin-proteasome system. Biochem Biophys Res Commun 438:395–401

    Article  CAS  PubMed  Google Scholar 

  126. Chen X, Devarajan S, Danda N, Williams C (2018) Insights into the role of the peroxisomal ubiquitination machinery in Pex13p degradation in the yeast Hansenula polymorpha. J Mol Biol 430:1545–1558

    Article  CAS  PubMed  Google Scholar 

  127. Miyata N, Fujiki Y (2005) Shuttling mechanism of peroxisome targeting signal type 1 receptor Pex5: ATP-independent import and ATP-dependent export. Mol Cell Biol 25:10822–10832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Platta HW, Grunau S, Rosenkranz K, Girzalsky W, Erdmann R (2005) Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol. Nat Cell Biol 7:817–822

    Article  CAS  PubMed  Google Scholar 

  129. Kaur N, Zhao Q, Xie Q, Hu J (2013) Arabidopsis RING peroxins are E3 ubiquitin ligases that interact with two homologous ubiquitin receptor proteins(F). J Integr Plant Biol 55:108–120

    Article  CAS  PubMed  Google Scholar 

  130. Erdmann R, Wiebel FF, Flessau A, Rytka J, Beyer A, Frohlich KU, Kunau WH (1991) PAS1, a yeast gene required for peroxisome biogenesis, encodes a member of a novel family of putative ATPases. Cell 64:499–510

    Article  CAS  PubMed  Google Scholar 

  131. Ciniawsky S, Grimm I, Saffian D, Girzalsky W, Erdmann R, Wendler P (2015) Molecular snapshots of the Pex1/6 AAA+ complex in action. Nat Commun 6:7331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Blok NB, Tan D, Wang RY, Penczek PA, Baker D, Dimaio F, Rapoport TA, Walz T (2015) Unique double-ring structure of the peroxisomal Pex1/Pex6 ATPase complex revealed by cryo-electron microscopy. Proc Natl Acad Sci USA 112:E4017–E4025

    Article  CAS  PubMed  Google Scholar 

  133. Birschmann I, Stroobants AK, Van Den Berg M, Schafer A, Rosenkranz K, Kunau WH, Tabak HF (2003) Pex15p of Saccharomyces cerevisiae provides a molecular basis for recruitment of the AAA peroxin Pex6p to peroxisomal membranes. Mol Biol Cell 14:2226–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Matsumoto N, Tamura S, Fujiki Y (2003) The pathogenic peroxin Pex26p recruits the Pex1p-Pex6p AAA ATPase complexes to peroxisomes. Nat Cell Biol 5:454–460

    Article  CAS  PubMed  Google Scholar 

  135. Weller S, Cajigas I, Morrell J, Obie C, Steel G, Gould SJ, Valle D (2005) Alternative splicing suggests extended function of PEX26 in peroxisome biogenesis. Am J Hum Genet 76:987–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Guder P, Lotz-Havla AS, Woidy M, Reiss DD, Danecka MK, Schatz UA, Becker M, Ensenauer R, Pagel P, Buttner L, Muntau AC, Gersting SW (2019) Isoform-specific domain organization determines conformation and function of the peroxisomal biogenesis factor PEX26. Biochim Biophys Acta Mol Cell Res 1866:518–531

    Article  CAS  PubMed  Google Scholar 

  137. Grimm I, Saffian D, Girzalsky W, Erdmann R (2016) Nucleotide-dependent assembly of the peroxisomal receptor export complex. Sci Rep 6:19838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Pedrosa AG, Francisco T, Bicho D, Dias AF, Barros-Barbosa A, Hagmann V, Dodt G, Rodrigues TA, Azevedo JE (2018) Peroxisomal monoubiquitinated PEX5 interacts with the AAA ATPases PEX1 and PEX6 and is unfolded during its dislocation into the cytosol. J Biol Chem 293:11553–11563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Schwerter D, Grimm I, Girzalsky W, Erdmann R (2018) Receptor recognition by the peroxisomal AAA complex depends on the presence of the ubiquitin moiety and is mediated by Pex1p. J Biol Chem 293:15458–15470

    Article  CAS  PubMed  Google Scholar 

  140. Hagmann V, Sommer S, Fabian P, Bierlmeier J, Van Treel N, Mootz HD, Schwarzer D, Azevedo JE, Dodt G (2018) Chemically monoubiquitinated PEX5 binds to the components of the peroxisomal docking and export machinery. Sci Rep 8:16014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Miyata N, Okumoto K, Mukai S, Noguchi M, Fujiki Y (2012) AWP1/ZFAND6 functions in Pex5 export by interacting with cys-monoubiquitinated Pex5 and Pex6 AAA ATPase. Traffic 13:168–183

    Article  CAS  PubMed  Google Scholar 

  142. Leon S, Zhang L, Mcdonald WH, Yates J 3rd, Cregg JM, Subramani S (2006) Dynamics of the peroxisomal import cycle of PpPex20p: ubiquitin-dependent localization and regulation. J Cell Biol 172:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hagstrom D, Ma C, Guha-Polley S, Subramani S (2014) The unique degradation pathway of the PTS2 receptor, Pex7, is dependent on the PTS receptor/coreceptor, Pex5 and Pex20. Mol Biol Cell 25:2634–2643

    Article  PubMed  PubMed Central  Google Scholar 

  144. Gardner BM, Castanzo DT, Chowdhury S, Stjepanovic G, Stefely MS, Hurley JH, Lander GC, Martin A (2018) The peroxisomal AAA-ATPase Pex1/Pex6 unfolds substrates by processive threading. Nat Commun 9:135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Schliebs W, Girzalsky W, Erdmann R (2010) Peroxisomal protein import and ERAD: variations on a common theme. Nat Rev Mol Cell Biol 11:885–890

    Article  CAS  PubMed  Google Scholar 

  146. Francisco T, Rodrigues TA, Freitas MO, Grou CP, Carvalho AF, Sa-Miranda C, Pinto MP, Azevedo JE (2013) A cargo-centered perspective on the PEX5 receptor-mediated peroxisomal protein import pathway. J Biol Chem 288:29151–29159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kumar S, Singh R, Williams CP, Van Der Klei IJ (2016) Stress exposure results in increased peroxisomal levels of yeast Pnc1 and Gpd1, which are imported via a piggy-backing mechanism. Biochem Biophys Acta 1863:148–156

    Article  CAS  PubMed  Google Scholar 

  148. Saryi NA, Hutchinson JD, Al-Hejjaj MY, Sedelnikova S, Baker P, Hettema EH (2017) Pnc1 piggy-back import into peroxisomes relies on Gpd1 homodimerisation. Sci Rep 7:42579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sandmeier JJ, Celic I, Boeke JD, Smith JS (2002) Telomeric and rDNA silencing in Saccharomyces cerevisiae are dependent on a nuclear NAD(+) salvage pathway. Genetics 160:877–889

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Deutsche Forschungsgemeinschaft (Grant FOR1905 to R. E.) and from the EU Marie Curie Initial Training Networks (ETN) program PerICo (Grant Agreement Number 812968 to R.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Erdmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walter, T., Erdmann, R. Current Advances in Protein Import into Peroxisomes. Protein J 38, 351–362 (2019). https://doi.org/10.1007/s10930-019-09835-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-019-09835-6

Keywords

Navigation