Skip to main content
Log in

2-Hexadecenal Regulates ROS Production and Induces Apoptosis in Polymorphonuclear Leucocytes

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

2-Hexadecenal (2-HD)—a biologically active long-chain fatty aldehyde formed in organism enzymatically or nonenzymatically in the reaction of free-radical destruction of sphingolipids under the action of hypochlorous acid, producing by myeloperoxidase. This research aimed to study 2-HD effects on polymorphonuclear leukocytes’ (PMNLs) functions. It has been shown that at submicromolar concentrations, 2-HD causes an elevation in ROS production by PMNLs. It has been found that such effect is associated with signal transduction pathways modification and expressed in elevation of NADPH oxidase, MPO, and JNK-MAPK contributions to this process. At higher concentrations, 2-HD induces apoptosis, which correlates with a significant increase in free Ca2+ in the cytoplasm, a decrease in ROS production, and a decline in mitochondrial potential. Both of these processes are accompanied by cytoskeleton reorganization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Bartke, N., & Hannun, Y. A. (2009). Bioactive sphingolipids: metabolism and function. Journal of Lipid Research, Suppl 50, S91–S96.

    Article  Google Scholar 

  2. An, S., Zheng, Y., & Bleu, T. (2000). Sphingosine 1-phosphate-induced cell proliferation, survival, and related signaling events mediated by G protein-coupled receptors Edg3 and Edg5. Journal of Biological Chemistry, 275, 288–296.

    Article  CAS  PubMed  Google Scholar 

  3. Harada, J., Foley, M., Moskowitz, M. A., & Waeber, C. (2004). Sphingosine-1-phosphate induces proliferation and morphological changes of neural progenitor cells. Journal of Neurochemistry, 88, 1026–1039.

    Article  CAS  PubMed  Google Scholar 

  4. Pyne, N. J., & Pyne, S. (2010). Sphingosine 1-phosphate and cancer. Nature Review Cancer, 10, 489–503.

    Article  CAS  Google Scholar 

  5. Kumar, A., Byun, H.-S., Bittman, R., & Saba, J. D. (2011). The sphingolipid degradation product trans-2-hexadecenal induces cytoskeletal reorganization and apoptosis in a JNK-dependent manner. Cell Signaling, 23, 1144–1152.

    Article  CAS  Google Scholar 

  6. Amaegberi, N. V., Semenkova, G. N., Kvacheva, Z. B., Lisovskaya, A. G., Pinchuk, S. V., & Shadyro, O. I. (2019). 2-Hexadecenal inhibits growth of C6 glioma cells. Cell Biochemistry & Function, 37, 281–289.

    Article  CAS  Google Scholar 

  7. Ebenezer, D. L., Fu, P., Ramchandran, R., Ha, A. W., Putherickal, V., Sudhadevi, T., Harijith, A., Schumacher, F., Kleuser, B., & Natarajan, V. (2020). S1P and plasmalogen derived fatty aldehydes in cellular signaling and functions. Biochimica et Biophysica Acta, 1865, 158681.

    Article  CAS  PubMed  Google Scholar 

  8. Amaegberi, N. V., Semenkova, G. N., Lisovskaya, A. G., Kvacheva, Z. B., & Shadyro, O. I. (2019). Modification of redox processes in C6 glioma cells by 2-hexadeсenal, the product of sphingolipid destruction. Biophysica (Russian Federation), 64, 424–430.

    CAS  Google Scholar 

  9. Ebenezer, D. L., Ramchandran, R., Fu, P., Mangio, L. A., Suryadevara, V., Ha, A. W., Berdyshev, E., Van Veldhoven, P. P., Kron, S. J., Schumacher, F., Kleuser, B., & Natarajan, V. (2021). Nuclear sphingosine-1-phosphate lyase generated ∆2-hexadecenal is a regulator of HDAC activity and chromatin remodeling in lung epithelial cells. Cell Biochemistry and Biophysics, 79(3), 575–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brahmbhatt, V. V., Hsu, F. F., Kao, J. L. F., Frank, E. C., & Ford, D. A. (2007). Novel carbonyl and nitrile products from reactive chlorinating species attack of lysosphingolipid. Chemistry and Physics of Lipids, 145, 72–84.

    Article  CAS  PubMed  Google Scholar 

  11. Lisovskaya, A. G., Shadyro, O. I., & Edimecheva, I. P. (2011). A new mechanism for photo- and radiation-induced decomposition of sphingolipids. Lipids, 46, 271–276.

    Article  CAS  PubMed  Google Scholar 

  12. Lisovskaya, A. G., Edimecheva, I. P., & Shadyro, O. I. (2012). A novel pathway of photoinduced decomposition of sphingolipids. Photochemistry and Photobiology, 88(4), 899–903.

    Article  CAS  PubMed  Google Scholar 

  13. Shadyro, O., Lisovskaya, A., Semenkova, G., Edimecheva, I., & Amaegberi, N. (2015). Free-radical destruction of sphingolipids resulting in 2-hexadecenal formation. Lipid Insights, 8, 1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shadyro, O., & Lisovskaya, A. (2019). ROS-induced lipid transformations without oxygen participation. Chemistry and Physics of Lipids, 221, 176–183.

    Article  CAS  PubMed  Google Scholar 

  15. Lisovskaya, A., Pratsenka, K., Kulinkina, A., Semenkova, G. N., & Shadyro, O. (2015). Sphingolipid destruction in HOCl-treated red blood cellsle. FEBS Journal, 282, 235.

    Google Scholar 

  16. Arnhold, J. (2020). The dual role of myeloperoxidase in immune response. International Journal of Molecular Science, 21(21), 8057.

    Article  CAS  Google Scholar 

  17. Babior, B. M. (2000). Phagocytes and oxidative stress. The American Journal of Medicine, 109, 33–44.

    Article  CAS  PubMed  Google Scholar 

  18. Kolaczkowska, E., & Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology, 13, 159–175.

    Article  CAS  PubMed  Google Scholar 

  19. Leick, M., Azcutia, V., Newton, G., & Luscinskas, F. W. (2014). Leukocyte recruitment in inflammation: Basic concepts and new mechanistic insights based on new models and microscopic imaging technologies. Cell and Tissue Research, 355, 647–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kettle, A. J., & Winterbourn, C. C. (1997). Myeloperoxidase: A key regulator of neutrophil oxidant product. Redox Report, 3(1), 3–15.

    Article  CAS  PubMed  Google Scholar 

  21. Kuznetsova, T., Kulahava, T., Zholnerevich, I., Amaegberi, N., Semenkova, G., Shadyro, O., & Arnhold, J. (2017). Morphometric characteristics of neutrophils stimulated by adhesion and hypochlorite. Molecular Immunology, 87, 317–324.

    Article  CAS  PubMed  Google Scholar 

  22. Brahmbhatt, V. V., Albert, C. J., Anbukumar, D. S., Cunningham, B. A., Neumann, W. L., & Ford, D. A. (2010). ω-oxidation of α-chlorinated fatty acids: Identification of α-chlorinated dicarboxylic acids. Journal of Biological Chemistry, 285, 41255–41269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hawkins, C. L. (2019). Hypochlorous acid-mediated modification of proteins and its consequences. Essays in Biochemistry, 64, 75–86.

    Article  Google Scholar 

  24. Thukkani, A. K., Hsu, F. F., Crowley, J. R., Wysolmerski, R. B., Albert, C. J., & Ford, D. A. (2002). Reactive chlorinating species produced during neutrophil activation target tissue plasmalogens: Production of the chemoattractant, 2-chlorohexadecanal. Journal of Biological Chemistry, 277, 3842–3849.

    Article  CAS  PubMed  Google Scholar 

  25. Amaegberi, N. V., Semenkova, G. N., Lisovskaya, A. G., Gusakova, S. S., Prokasheva, V. А, & Shadyro, O. I. (2019). Investigation of the regulatory effect of 2-hexadecenal on neutrophils by the chemiluminescence method. Journal of Applied Spectroscopy, 86, 636–642.

    Article  CAS  Google Scholar 

  26. Liu, Z., Gong, Y., Byun, H. S., & Bittman, R. (2010). An improved two-step synthetic route to primary allylic alcohols from aldehydes. New Journal of Chemistry, 34, 470–475.

    Article  CAS  Google Scholar 

  27. Bøyum, A. (1976). Isolation of lymphocytes, granulocytes and macrophages. Scandinavian Journal of Immunology, Suppl 5, 9–15.

    Article  PubMed  Google Scholar 

  28. Kato, F., Tanaka, M., & Nakamura, K. (1999). Rapid fluorometric assay for cell viability and cell growth using nucleic acid staining and cell lysis agents. Toxicology in Vitro, 13, 923–929.

    Article  CAS  PubMed  Google Scholar 

  29. Liu, L., Dahlgren, C., Elwing, H., & Lundqvist, H. (1996). A simple chemiluminescence assay for the determination of reactive oxygen species produced by human neutrophils. Journal of Immunology, 192, 173–178.

    CAS  Google Scholar 

  30. Semenkova, G. N., Cherenkevich, S. N., Levin, V. I., & Svirnovskiĭ, A. I. (1985). Generation of active forms of oxygen by human peripheral blood neutrophils and lymphocytes during adhesion to glass. Biofizika, 30, 864–867.

    CAS  PubMed  Google Scholar 

  31. Kavalenka, A. I., Semenkova, G. N., & Cherenkevich, S. N. (2007). Effects of hydrogen peroxide on neutrophil ability to generate reactive oxygen and chlorine species and to secrete myeloperoxidase in vitro. Cell and Tissue Biology, 1, 551–559.

    Article  Google Scholar 

  32. Cui, X., Zhang, X., Yin, Q., Meng, A., Su, S., Jing, X., Li, H., Guan, X., Li, X., Liu, S., & Cheng, M. (2014). F‑actin cytoskeleton reorganization is associated with hepatic stellate cell activation. Molecular Medicine Reports, 9, 1641–1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sivandzade, F., Bhalerao, A., & Cucullo, L. (2019). Analysis of the mitochondrial membrane potential using the cationic JC-1 Dye as a sensitive fluorescent probe. Bio-Protocol, 9, 1–13.

    Article  Google Scholar 

  34. Patel, A., Hirst, R. A., Harrison, C., Hirota, K., & Lambert, D. G. (2013). Measurement of [Ca2+]i in whole cell suspensions using fura-2. Methods in Molecular Biology, 937, 37–47.

    Article  CAS  PubMed  Google Scholar 

  35. Ishaque, A., & Al-Rubeai, M. (2007). Measurement of apoptosis in cell culture. In R. Pörtner ed, Animal cell biotechnology. Methods in biotechnology (pp. 285–299). Totowa, NJ: Humana.

    Chapter  Google Scholar 

  36. Görlach, A., Bertram, K., Hudecova, S., & Krizanova, O. (2015). Calcium and ROS: a mutual interplay. Redox Biology, 6, 260–271.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pinton, P., Giorgi, C., Siviero, R., Zecchini, E., & Rizzuto, R. (2008). Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene, 27, 6407–6418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McCracken, J. M., & Allen, L. A. H. (2014). Regulation of human neutrophil apoptosis and lifespan in health and disease. Journal of Cell Death, 7, 15–23.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bengtsson, T., Orselius, K., & Wetterö, J. (2006). Role of the actin cytoskeleton during respiratory burst in chemoattractant-stimulated neutrophils. Cell Biology International, 30, 154–163.

    Article  CAS  PubMed  Google Scholar 

  40. Lakshman, R., & Finn, A. (2001). Neutrophil disorders and their management. Journal of Clinical Pathology, 54, 7–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P., & Malik, A. B. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxidants & Redox Signaling, 20, 1126–1167.

    Article  CAS  Google Scholar 

  42. Nauseef, W. M. (2004). Assembly of the phagocyte NADPH oxidase. Histochemistry and Cell Biology, 122, 277–291.

    Article  CAS  PubMed  Google Scholar 

  43. Panday, A., Sahoo, M. K., Osorio, D., & Batra, S. (2015). NADPH oxidases: An overview from structure to innate immunity-associated pathologies. Cellular & Molecular Immunology, 12, 5–23.

    Article  CAS  Google Scholar 

  44. Herlaar, E., & Brown, Z. (1999). p38 MAPK signalling cascades in inflammatory disease. Molecular Medicine Today, 10, 439–447.

    Article  Google Scholar 

  45. Mócsai, A., Jakus, Z., Vántus, T., Berton, G., Lowell, C. A., & Ligeti, E. (2000). Kinase pathways in chemoattractant-induced degranulation of neutrophils: The role of p38 mitogen-activated protein kinase activated by Src family kinases. Journal of Immunology, 164, 4321–4331.

    Article  Google Scholar 

  46. Dhanasekaran, D. N., & Reddy, E. P. (2008). JNK signaling in apoptosis. Oncogene, 27, 6245–6251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Son, Y., Cheong, Y.-K., Kim, N.-H., Chung, H.-T., Kang, D. G., & Pae, H.-O. (2011). Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? Journal of Signal Transduction, 2011, 1–6.

    Article  Google Scholar 

  48. Cohen, D. T., Wales, T. E., McHenry, M. W., Engen, J. R., & Walensky, L. D. (2020). Site-dependent cysteine lipidation potentiates the activation of proapoptotic BAX. Cell Reports, 30(10), 3229–3239.

    Article  CAS  PubMed  Google Scholar 

  49. Bernhart, E., Kogelnik, N., Prasch, J., Gottschalk, B., Goeritzer, M., Depaoli, M. R., Reicher, H., Nusshold, C., Plastira, I., Hammer, A., Fauler, G., Malli, R., Graier, W. F., Malle, E., & Sattler, W. (2018). 2-Chlorohexadecanoic acid induces ER stress and mitochondrial dysfunction in brain microvascular endothelial cells. Redox Biology, 15, 441–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Messner, M. C., Albert, C. J., & Ford, D. A. (2008). 2-Chlorohexadecanal and 2-chlorohexadecanoic acid induce COX-2 expression in human coronary artery endothelial cells. Lipids, 43, 581–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bengtsson, T., Orselius, K., & Wetterö, J. (2006). Role of the actin cytoskeleton during respiratory burst in chemoattractant-stimulated neutrophils. Cell Biology International, 30, 154–163.

    Article  CAS  PubMed  Google Scholar 

  52. Stanley, A., Thompson, K., Hynes, A., Brakebusch, C., & Quondamatteo, F. (2014). NADPH oxidase complex-derived reactive oxygen species, the actin cytoskeleton, and rho GTPases in cell migration. Antioxidants & Redox Signaling, 20, 2026–2042.

    Article  CAS  Google Scholar 

  53. Ayub, K., & Hallett, M. B. (2004). Ca2+ influx shutdown during neutrophil apoptosis: importance and possible mechanism. Immunology, 111, 8–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bagur, R., & Hajnóczky, G. (2017). Intracellular Ca2+ sensing: role in calcium homeostasis and signaling. Physiology & Behavior, 176, 139–148.

    Google Scholar 

  55. Pinton, P., Giorgi, C., Siviero, R., Zecchini, E., & Rizzuto, R. (2008). Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene, 27, 6407–6418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim-Park, W. K., Moore, M. A., Hakki, Z. W., & Kowolik, M. J. (1997). Activation of the neutrophil respiratory burst requires both intracellular and extracellular calcium. Annals of the New York Academy of Sciences, 832, 394–404.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Ministry of Education of Belarus [grant number 20180589] and the World Federation of Scientists.

Author information

Authors and Affiliations

Authors

Contributions

Galina Semenkova and Oleg Shadyro conceived and designed the experimental study. Nadezda Amaegberi, Alexandra Lisovskaya, Anna Poleshko and Serge Pinchuk performed the experiments, acquired and analyze data. All authors participated in the writing of manuscript. All authors read and approved the final version of manuscript.

Corresponding author

Correspondence to Nadezda V. Amaegberi.

Ethics declarations

Conflict of interest

The authors declare no Competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenkova, G.N., Amaegberi, N.V., Lisovskaya, A.G. et al. 2-Hexadecenal Regulates ROS Production and Induces Apoptosis in Polymorphonuclear Leucocytes. Cell Biochem Biophys 81, 77–86 (2023). https://doi.org/10.1007/s12013-022-01117-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-022-01117-w

Keywords

Navigation