Skip to main content
Log in

BADH-NAD+-K+ Complex Interaction Studies Reveal a New Possible Mechanism between Potassium and Glutamic 254 at the Coenzyme Binding Site

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Betaine aldehyde dehydrogenase (BADH EC 1.2.1.8) catalyzes the irreversible oxidation of betaine aldehyde to glycine betaine using NAD+ as a coenzyme. Incubation of porcine kidney BADH (pkBADH) with NAD+ decreases the catalytic cysteine (C288) reactivity. Potassium ion increases the pkBADH affinity by the coenzyme. This work aimed to analyze pkBADH and NAD+ interaction in the presence and absence of K+ using 1H NMR to identify the amino acids that interact with NAD+ and/or K+ to understand the regulation process of pkBADH-NAD+ complex formation mediated by the K+ ion and their impact on the substrate binding and catalysis. Nuclear magnetic resonance spectra of pkBADH were obtained in the presence and absence of NAD+ and K+. The results show a chemical shift of the signals corresponding to the catalytic glutamic that participates in the transfer of H+ in the reaction of the pkBADH-NAD+-K+ complex formation. Furthermore, there is a widening of the signal that belongs to the catalytic cysteine indicating higher rigidity or less grade of rotation of the structure, which is consistent with the possible conformations of C288 in the catalytic process; in addition, there is evidence of changes in the chemical environment that surrounds NAD+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Izaguirre, G., Kikonyogo, A., & Pietruszko, R. (1997). Tissue distribution of human aldehyde dehydrogenase E3 (ALDH9): Comparison of enzyme activity with E3 protein and mRNA distribution. Comparative Biochemistry and Physiology - Part B Biochemistry and Molecular Biology, 118(1), 59–64. https://doi.org/10.1016/S0305-0491(97)00022-9.

    Article  CAS  Google Scholar 

  2. Neuhofer, W., & Beck, F. X. (2006). Survival in hostile environments: strategies of renal medullary cells. Physiology, 21, 171–180. https://doi.org/10.1152/physiol.00003.2006.

    Article  CAS  PubMed  Google Scholar 

  3. Burg, M. B., & Ferraris, J. D. (2008). Intracellular organic osmolytes: function and regulation. Journal of Biological Chemistry, 283(12), 7309–7313. https://doi.org/10.1074/jbc.R700042200.

    Article  CAS  Google Scholar 

  4. Jelski, W., Chrostek, L., & Szmitkowski, M. (2001). Human aldehyde dehydrogenase (ALDH). Postepy Higiene i Medycyny Doświadczalnej, 55, 339–348.

    CAS  Google Scholar 

  5. Lin, S. W., Chen, J. C., Hsu, L. C., Hsieh, C. L., & Yoshida, A. (1996). Human γ-aminobutyraldehyde dehydrogenase (ALDH9): cDNA sequence, genomic organization, polymorphism, chromosomal localization, and tissue expression. Genomics, 34(3), 376–380. https://doi.org/10.1006/geno.1996.0300.

    Article  CAS  PubMed  Google Scholar 

  6. Vaz, F. M., Fouchier, S. W., Ofman, R., Sommer, M., & Wanders, R. J. A. (2000). Molecular and biochemical characterization of rat γ- trimethylaminobutyraldehyde dehydrogenase and evidence for the involvement of human aldehyde dehydrogenase 9 in carnitine biosynthesis. Journal of Biological Chemistry, 275(10), 7390–7394. https://doi.org/10.1074/jbc.275.10.7390.

    Article  CAS  Google Scholar 

  7. Chern, M. K., & Pietruszko, R. (1995). Human aldehyde dehydrogenase e3 isozyme is a betaine aldehyde dehydrogenase. Biochemical and Biophysical Research Communications, 213(2), 561–568. https://doi.org/10.1006/bbrc.1995.2168.

    Article  CAS  PubMed  Google Scholar 

  8. Vasiliou, V., & Nebert, D. W. (2005). Analysis and update of the human aldehyde dehydrogenase (ALDH) gene family. Human Genomics, 2, 138–143. https://doi.org/10.1186/1479-7364-2-2-138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Julián-Sánchez, A., Riveros-Rosas, H., Martínez-Castilla, L. P., Velasco-García, R., & Muñoz-Clares, R. A. (2007). Phylogenetic and structural relationships of the betaine aldehyde dehydrogenases. In H. Weiner, B. Plapp, R. Lindhal & E. Maser (eds), Enzymology and Molecular Biology of Carbonyl Metabolism (pp. 64–76). West Lafayette: Purdue University Press.

    Google Scholar 

  10. Valenzuela-Soto, E. M., Velasco-García, R., Mújica-Jiménez, C., Gaviria-González, L. L., & Muñoz-Clares, R. A. (2003). Monovalent cations requirements for the stability of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa, porcine kidney and amaranth leaves. Chemico-Biological Interactions, 143–144, 139–148. https://doi.org/10.1016/S0009-2797(02)00198-9.

    Article  CAS  PubMed  Google Scholar 

  11. Velasco-García, R., Villalobos, M. A., Ramírez-Romero, M. A., Mújica-Jiménez, C., Iturriaga, G., & Muñoz-Clares, R. A. (2006). Betaine aldehyde dehydrogenase from Pseudomonas aeruginosa: Cloning, over-expression in Escherichia coli, and regulation by choline and salt. Archieves of Microbiology, 185, 14–22. https://doi.org/10.1007/s00203-005-0054-8.

    Article  CAS  Google Scholar 

  12. Muñoz-Clares, R. A., & Valenzuela-Soto, E. M. (2008). Betaine aldehyde dehydrogenases: evolution, physiological functions, mechanism, kinetics, regulation, structure, and stability. In E. García-Hernández & A. Fernández-Velasco eds., Advances in Protein Physical Chemistry (pp. 279–302). Kerala: Transworld Research Network.

    Google Scholar 

  13. Valenzuela-Soto, E. M., Ayala-Castro, H., Muñoz-Clares, R. A., Maser, E., Plapp, B., Lindahl, R., & Weiner, H. (2005). Effects of monovalent and divalent cations on the thermostability of porcine kidney betaine aldehyde dehydrogenase. In H. Weiner, B. Plapp, R. Lindhal & E. Maser (eds), Enzymology and Molecular Biology of Carbonyl Metabolism 12 (pp. 104–109). West Lafayette: Purdue University Press.

    Google Scholar 

  14. Garza-Ramos, G., Carrillo-Nava, E., Costas, M., & Mújica-Jiménez, C. (2007). Thermal Stability of Betaine Aldehyde Dehydrogenase. In: Weiner H., Plapp B., Lindhal R., Maser E. eds. Enzymology and Molecular Biology of Carbonyl Metabolism 13, Purdue University Press, West Lafayette, 64–76.

  15. Garza-Ramos, G., Mújica-Jiménez, C., & Muñoz-Clares, R. A. (2013). Potassium and Ionic Strength Effects on the Conformational and Thermal Stability of Two Aldehyde Dehydrogenases Reveal Structural and Functional Roles of K+-Binding Sites. PLoS One, 8(1). https://doi.org/10.1371/journal.pone.0054899.

  16. González-Segura, L., Riveros-Rosas, H., Díaz-Sánchez, Á. G., Julián-Sánchez, A., & Muñoz-Clares, R. A. (2013). Potential monovalent cation-binding sites in aldehyde dehydrogenases. Chemico-Biological Interactions, 202(1–3), 41–50. https://doi.org/10.1016/j.cbi.2012.12.007.

    Article  CAS  PubMed  Google Scholar 

  17. González-Segura, L., Rudiño-Piñera, E., Muñoz-Clares, R. A., & Horjales, E. (2009). The crystal structure of a ternary complex of betaine aldehyde dehydrogenase from pseudomonas aeruginosa provides new insight into the reaction mechanism and shows a novel binding mode of the 2′-Phosphate of NADP+ and a novel cation binding site. Journal of Molecular Biology, 385(2), 542–557. https://doi.org/10.1016/j.jmb.2008.10.082.

    Article  CAS  PubMed  Google Scholar 

  18. Delgado-Gaytán, M. F., Rosas-Rodríguez, J. A., Yepiz-Plascencia, G., Figueroa-Soto, C. G., & Valenzuela-Soto, E. M. (2017). Cloning and molecular characterization of the betaine aldehyde dehydrogenase involved in the biosynthesis of glycine betaine in white shrimp (Litopenaeus vannamei). Chemico-Biological Interactions, 276, 65–74. https://doi.org/10.1016/j.cbi.2017.02.006.

    Article  CAS  PubMed  Google Scholar 

  19. Muñoz-Bacasehua, C., Rosas-Rodríguez, J. A., Arvizu-Flores, A. A., Stephens-Camacho, A., Soñanez-Organis, J. G., Figueroa-Soto, C. G., & Valenzuela-Soto, E. M. (2020a). Heterogeneity of active sites in recombinant betaine aldehyde dehydrogenase is modulated by potassium. Journal of Molecular Recognition, 33(10), e2869 https://doi.org/10.1002/jmr.2869.

    Article  CAS  PubMed  Google Scholar 

  20. Ayala-Castro, H. G., Valenzuela-Soto, E. M., Figueroa-Soto, C. G., & Muñoz-Clares, R. A. (2007). Complex, unusual conformational changes in kidney betaine aldehyde dehydrogenase suggested by chemical modification with disulfiram. Archieves of Biochemistry and Biophysics, 468(2), 167–173. https://doi.org/10.1016/j.abb.2007.09.022.

    Article  CAS  Google Scholar 

  21. Muñoz-Bacasehua, C., Rosas-Rodríguez, J. A., Arvizu-Flores, A. A., & Valenzuela-Soto, E. M. (2020b). Role of potassium levels in pkBADH heterogeneity of NAD+ binding site. Journal of Bioenergetics and Biomembranes, 52, 61–70. https://doi.org/10.1007/s10863-020-09827-7.

    Article  CAS  PubMed  Google Scholar 

  22. Končitíková, R., Vigouroux, A., Kopečná, M., Šebela, M., Moréra, S., & Kopečný, D. (2019). Kinetic and structural analysis of human ALDH9A1. Bioscience Reports, 39 (4), https://doi.org/10.1042/BSR20190558.

  23. Gruez, A., Roig-Zamboni, V., Grisel, S., Salomoni, A., Valencia, C., Campanacci, V., Tegoni, M., & Cambillau, C. (2004). Crystal structure and kinetics identify Escherichia coli YdcW gene product as a medium-chain aldehyde dehydrogenase. Journal of Molecular Biology, 343(1), 29–41. https://doi.org/10.1016/j.jmb.2004.08.030.

    Article  CAS  PubMed  Google Scholar 

  24. Muñoz-Clares, R. A., González-Segura, L., & Díaz-Sánchez, Á. G. (2011). Crystallographic evidence for active-site dynamics in the hydrolytic aldehyde dehydrogenases. Implications for the deacylation step of the catalyzed reaction. Chemico-Biological Interactions, 191(1–3), 137–146. https://doi.org/10.1016/j.cbi.2010.12.024.

    Article  CAS  PubMed  Google Scholar 

  25. Steinmetz, C. G., Xie, P., Weiner, H., & Hurley, T. D. (1997). Structure of mitochondrial aldehyde dehydrogenase: The genetic component of ethanol aversion. Structure, 5(5), 701–711. https://doi.org/10.1016/S0969-2126(97)00224-4.

    Article  CAS  PubMed  Google Scholar 

  26. C. Muñoz-Bacasehua, J. A. Rosas-Rodríguez, A. A. Lopez-Zavala, & E. M. Valenzuela-Soto (2021) Spectroscopic analysis of coenzyme binding to betaine aldehyde dehydrogenase dependent of potassium. Journal of Luminescence (accepted). https://doi.org/10.1002/bio.4115.

Download references

Acknowledgements

CMB gratefully acknowledges a scholarship from CONACyT for graduate studies.

Author information

Authors and Affiliations

Authors

Contributions

C.M.B. and H.S.O. performed the experiments, E.M.V.S. and C.M.B. conceived the experiments, C.M.B. and H.S.O. analyzed the data, E.M.V.S. and C.M.B. wrote the paper with comments of all authors.

Corresponding author

Correspondence to Elisa M. Valenzuela-Soto.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz-Bacasehua, C., Santacruz-Ortega, H. & Valenzuela-Soto, E.M. BADH-NAD+-K+ Complex Interaction Studies Reveal a New Possible Mechanism between Potassium and Glutamic 254 at the Coenzyme Binding Site. Cell Biochem Biophys 80, 39–44 (2022). https://doi.org/10.1007/s12013-021-01051-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-01051-3

Keywords

Navigation