Skip to main content
Log in

A Comparative Study of the Action of Protonophore Uncouplers and Decoupling Agents as Inducers of Free Respiration in Mitochondria in States 3 and 4: Theoretical and Experimental Approaches

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Theoretical and experimental studies have revealed that that in the liver mitochondria an increase in the rate of free respiration in state 3 induced by protonophore uncouplers 2,4-dinitrophenol and сarbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone is equal to or slightly greater than the increase in respiration rate in state 4 induced by these uncouplers. In contrast to these protonophore uncouplers, the decoupler α,ω-tetradecanedioic acid, increasing the rate of respiration in state 4, does not significantly affect the rate of free respiration in state 3. We have proposed quantitative indicators that allow determining the constituent part of the rate of respiration in state 4, associated with the decoupling effect of the uncoupler. Using the example of palmitic acid, we have found out the fundamental possibility of the simultaneous functioning of uncouplers by two mechanisms: as protonophores and as decouplers. The data obtained contradict the delocalized version of Mitchell’s chemiosmotic theory, but are in complete agreement with its local version. It can be assumed that the F0F1-ATP synthase and nearby respiratory chain complexes form a local zone of coupled respiration and oxidative ATP synthesis (zones of oxidative phosphorylation). The uncoupler-induced stimulation of mitochondrial free respiration of mitochondria in state 3 is mainly due to the return of protons to the matrix in local zones, where the generation of a proton motive force (Δр) by respiratory chain complexes is associated with various transport processes, but not with ATP synthesis (zones of protonophore uncoupling). In contrast, respiratory stimulation in state 4 by decouplers is realized in local zones of oxidative phosphorylation by switching the respiratory chain complexes to the idle mode of operation in the absence of ATP synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DNP:

2,4-dinitrophenol

FCCP:

сarbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone

TDA:

α,ω-tetradecanedioic acid

References

  1. Skulachev, V. P., Bogachev, A. V., & Kasparinsky, F. O. (2013). Principles of bioenergetics. Berlin: Springer-Verlag.

    Book  Google Scholar 

  2. Boekema, E. J., & Braun, H. P. (2007). Supramolecular structure of the mitochondrial oxidative phosphorylation system. Journal of Biological Chemistry, 282, 1–4.

    Article  CAS  PubMed  Google Scholar 

  3. Mitchell, P.(2011). Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. 1966. Biochimica et Biophysica Acta, 1807, 1507–1538.

    Article  CAS  PubMed  Google Scholar 

  4. Kocherginsky, N. (2009). Acidic lipids, H(+)-ATPases, and mechanism of oxidative phosphorylation. Physico-chemical ideas 30 years after P. Mitchell’s Nobel Prize award. Progress in Biophysics & Molecular Biology, 99, 20–41.

    Article  CAS  Google Scholar 

  5. Szabo, I., & Zoratti, M. (2014). Mitochondrial channels: ion fluxes and more. Physiological Reviews, 94, 519–608.

    Article  CAS  PubMed  Google Scholar 

  6. Zorova, L. D., Popkov, V. A., & Plotnikov, E. Y. et al. (2018). Mitochondrial membrane potential. Analytical Biochemistry, 552, 50–59.

    Article  CAS  PubMed  Google Scholar 

  7. Mironova, G. D., Kachaeva, E. V., & Kopylov, A. T. (2007). Mitochondrial ATP-dependent potassium channel. 1. The structure of the channel, the mechanisms of its functioning and regulation. Vestn Ross Akad Med Nauk, 2, 34–43.

    Google Scholar 

  8. Belosludtsev, K. N., Dubinin, M. V., Belosludtseva, N. V., & Mironova, G. D. (2019). Mitochondrial Ca2+ transport: mechanisms, molecular structures, and role in cells. Biochemistry (Moscow), 84, 593–607.

    Article  CAS  Google Scholar 

  9. Satrústegui, J., Pardo, B., & Del Arco, A. (2007). Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiological Reviews, 87(1), 29–67.

    Article  PubMed  CAS  Google Scholar 

  10. Papa, S., Lorusso, M., & Di Paola, M. (2006). Cooperativity and flexibility of the protonmotive activity of mitochondrial respiratory chain. Biochimica et Biophysica Acta, 1757, 428–436.

    Article  CAS  PubMed  Google Scholar 

  11. Xiong, J. W., Zhu, L., Jiao, X., & Liu, S. S. (2010). Evidence for ΔpH surface component (ΔpH(S)) of proton motive force in ATP synthesis of mitochondria. Biochimica et Biophysica Acta, 1800(3), 213–222.

    Article  CAS  PubMed  Google Scholar 

  12. Yaguzhinsky, L. S., Yurkov, V. I., & Krasinskaya, I. P. (2006). On the localized coupling of respiration and phosphorylation in mitochondria. Biochimica et Biophysica Acta, 1757, 408–414.

    Article  CAS  PubMed  Google Scholar 

  13. Gasanov, S. E., Kim, A. A., Yaguzhinsky, L. S., & Dagda, R. K. (2018). Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity. Biochimica et Biophysica Acta, 1960, 586–599.

    Article  CAS  Google Scholar 

  14. Haines, T. H., & Dencher, N. A. (2002). Cardiolipin: a proton trap for oxidative phosphorylation. FEBS Letters, 528, 35–39.

    Article  CAS  PubMed  Google Scholar 

  15. Mookerjee, S. A., Divakaruni, A. S., Jastroch, M., & Brand, M. D. (2010). Mitochondrial uncoupling and lifespan. Mechanisms of Ageing and Development, 131, 463–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rolfe, D. E., & Brand, M. D. (1997). The physiological significance of mitochondrial proton leak in animal cells and tissues. Bioscience Reports, 17, 9–16.

    Article  CAS  PubMed  Google Scholar 

  17. Skulachev, V. P. (1998). Uncoupling: new approaches to an old problem of bioenergetics. Biochimica et Biophysica Acta, 1363, 100–124.

    Article  CAS  PubMed  Google Scholar 

  18. Cadenas, S. (2018). Mitochondrial uncoupling, ROS generation and cardioprotection. Biochimica et Biophysica Acta Bioenergetics, 1859, 940–950.

    Article  CAS  PubMed  Google Scholar 

  19. Divakaruni, A. S., & Brand, M. D. (2011). The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda), 26, 192–205.

    CAS  Google Scholar 

  20. Samartsev, V. N., Kozhina, O. V., & Polishchuk, L. S. (2005). Relationship between respiration and ATP synthesis in mitochondria at different extents of uncoupling. Biophysics, 50(4), 578–584.

    Google Scholar 

  21. Canton, M., Luvisetto, S., Schmehl, I., & Azzone, G. F. (1995). The nature of mitochondrial respiration and discrimination between membrane and pump properties. Biochemical Journal, 310(Pt 2), 477–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Krishnamoorthy, G., & Hinkle, P. C. (1984). Non-ohmic proton conductance of mitochondria and liposomes. Biochemistry, 23, 1640–1645.

    Article  CAS  PubMed  Google Scholar 

  23. Samartsev, V. N., Vedernikov, A. A., Khoroshavina, E. I., & Dubinin, M. V. (2017). Comparative study of free oxidation and ATP synthesis in mitochondria in the liver of different animal species. Journal of Evolutionary Biochemistry and Physiology, 53(3), 245–247.

    Article  CAS  Google Scholar 

  24. Hinkle, P. C., Kumar, M. A., Resetar, A., & Harris, D. L. (1991). Mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Biochemistry, 30, 3576–3582.

    Article  CAS  PubMed  Google Scholar 

  25. Brand, M. D., Chien, L. F., & Diolez, P. (1994). Experimental discrimination between proton leak and redox slip during mitochondrial electron transport. Biochemical Journal, 297(Pt 1), 27–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zoratti, M., & Petronilli, V. (1985). Multiple relationships between rate of oxidative phosphorylation and ΔμН in rat liver mitochondria. FEBS Letters, 193(2), 276–282.

    Article  CAS  PubMed  Google Scholar 

  27. Brand, M. D., & Nicholls, D. G. (2011). Assessing mitochondrial dysfunction in cells. Biochemical Journal, 435(2), 297–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Davis, E. J., & Davis-van Thienen, W. I. (1991). An assessment of the role of proton leaks in the mechanistic stoichiometry of oxidative phosphorylation. Archives of Biochemistry and Biophysics, 289, 184–186.

    Article  CAS  PubMed  Google Scholar 

  29. Geisler, J. G. (2019). 2,4 dinitrophenol as medicine. Cells, https://doi.org/10.3390/cells8030280.

  30. Korde, A. S., Sullivan, P. G., & Maragos, W. F. (2005). The uncoupling agent 2,4-dinitrophenol improves mitochondrial homeostasis following striatal quinolinic acid injections. Journal of Neurotrauma, 22, 1142–1149.

    Article  PubMed  Google Scholar 

  31. Silachev, D. N., Zorova, L. D., & Usatikova, E. A., et al. (2015). Mitochondria as a target for neuroprotection. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 10(1), 28–36.

    Article  Google Scholar 

  32. Zakharova, V. V., Pletjushkina, O. Y., & Galkin, I. I. et al. (2017). Low concentration of uncouplers of oxidative phosphorylation decreases the TNF-induced endothelial permeability and lethality in mice. Biochimica et Biophysica Acta Molecular Basis of Disease, 1863(4), 968–977.

    Article  CAS  PubMed  Google Scholar 

  33. Adakeeva, S. I., Dubinin, M. V., & Samartsev, V. N. (2015). Malonate as an inhibitor of cyclosporine A-sensitive calcium-independent free oxidation in liver mitochondria induced by fatty acids. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 9(2), 107–115.

    Article  Google Scholar 

  34. Samartsev, V. N., Smirnov, A. V., Zeldi, I. P., Markova, O. V., Mokhova, E. N., & Skulachev, V. P. (1997). Involved of aspartate/glutamate antiporter in fatty acid-induced uncoupling of liver mitochondria. Biochimica et Biophysica Acta, 1339, 251–257.

    Article  Google Scholar 

  35. Chien, L. F., & Brand, M. D. (1996). The effect of chloroform on mitochondrial energy transduction. Biochemical Journal, 320, 837–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Terada, H., Shima, O., Yoshida, K., & Shinohara, Y. (1990). Effects of the local anesthetic bupivacaine on oxidative phosphorilation in mitochondria. Change from decoupling to uncoupling by formation of a leakage type ion pathway specific for H+ in cooperation with hydrophobic anions. Journal of Biological Chemistry, 265, 7837–7842.

    CAS  PubMed  Google Scholar 

  37. Van Dam, K., Shinohara, Y., Unami, A., Yoshida, K., & Terada, H. (1990). Slipping pumps or proton leaks in oxidative phosphorylation. The local anesthetic bupivacaine causes slip in cytochrome c oxidase of mitochondria. FEBS Letters, 277, 131–133.

    Article  PubMed  Google Scholar 

  38. Markova, O. V., Bondarenko, D. I., & Samartsev, V. N. (1999). The anion-carrier mediated uncoupling effect of dicarboxylic fatty acids in liver mitochondria depends on the position of the second carboxyl group. Biochemistry (Moscow), 64(5), 565–570.

    CAS  Google Scholar 

  39. Rybakova, S. R., Dubinin, M. V., & Samartsev, V. N. (2013). The features of activation of free oxidation by α,ω- tetradecanedioic acid in liver mitochondria. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 7(1), 58–66.

    Article  Google Scholar 

  40. Semenova, A. A., Samartsev, V. N., Pavlova, S. I., & Dubinin, M. V. (2019). ω-Hydroxypalmitic and α,ω-hexadecanedioic acids as activators of free respiration and inhibitors of H2O2 generation in liver mitochondria. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 14, 24–33.

    Article  Google Scholar 

  41. Belosludtsev, K. N., Belosludtseva, N. V., Talanov, E. Y., Tenkov, K. S., Starinets, V. S., Agafonov, A. V., Pavlik, L. L., & Dubinin, M. V. (2019). Effect of bedaquiline on the functions of rat liver mitochondria. Biochimica et Biophysica Act Biomembranes, 1861(1), 288–297.

    Article  CAS  Google Scholar 

  42. Chance, B., & Williams, G. R. (1955). Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. Journal of Biological Chemistry, 217, 383–393.

    CAS  PubMed  Google Scholar 

  43. Lemasters, J. J.(1984). The ATP-to-oxygen stoichiometries of oxidative phosphorylation by rat liver mitochondria. An analysis of ADP-induced oxygen jumps by linear nonequilibrium thermodynamics. Journal of Biological Chemistry, 259, 13123–13130.

    CAS  PubMed  Google Scholar 

  44. Kamo, N., Muratsugu, M., Hongoh, R., & Kobatake, Y. (1979). Membrane potential of mitochondria measured with an electrode sensitive to tetraphenylphosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. The Journal of Membrane Biology, 49, 105–121.

    Article  CAS  PubMed  Google Scholar 

  45. Garlid, K. D., & Nakashima, R. A. (1983). Studies on the mechanism of uncoupling by amine local anesthetics. Evidence for mitochondrial proton transport mediated by lipophilic ion pairs. Journal of Biological Chemistry, 258, 7974–7980.

    CAS  PubMed  Google Scholar 

  46. Popova, L. B., Nosikova, E. S., Kotova, E. A., Tarasova, E. O., Nazarov, P. A., Khailova, L. S., Balezina, O. P., & Antonenko, Y. N. (2018). Protonophoric action of triclosan causes calcium efflux from mitochondria, plasma membrane depolarization and bursts of miniature end-plate potentials. Biochimica et Biophysica Acta Biomembranes, 1860(5), 1000–1007.

    Article  CAS  PubMed  Google Scholar 

  47. Denisov, S. S., Kotova, E. A., Khailova, L. S., Korshunova, G. A., & Antonenko, Y. N. (2014). Tuning the hydrophobicity overcomes unfavorable deprotonation making octylamino-substituted 7-nitrobenz-2-oxa-1,3-diazole (n-octylamino-NBD) a protonophore and uncoupler of oxidative phosphorylation in mitochondria. Bioelectrochemistry, 98, 30–38.

    Article  CAS  PubMed  Google Scholar 

  48. Shchepinova, M. M., Denisov, S. S., Kotova, E. A., Khailova, L. S., Knorre, D. A., Korshunova, G. A., Tashlitsky, V. N., Severin, F. F., & Antonenko, Y. N. (2014). Dodecyl and octyl esters of fluorescein as protonophores and uncouplers of oxidative phosphorylation in mitochondria at submicromolar concentrations. Biochimica et Biophysica Acta, 1837, 149–158.

    Article  CAS  PubMed  Google Scholar 

  49. Beavis, A. D., & Lehninger, A. L. (1986). The upper and lower limits of the mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Stoichiometry of oxidative phosphorylation. European Journal of Biochemistry, 158, 315–322.

    Article  CAS  PubMed  Google Scholar 

  50. Gilkerson, R. W., Selker, J. M., & Capaldi, R. A. (2003). The cristal membrane of mitochondria is the principal site of oxidative phosphorylation. FEBS Letters, 546, 355–358.

    Article  CAS  PubMed  Google Scholar 

  51. Ko, Y. H., Delannoy, M., Hulliben, J., Chiu, W., & Pedersen, P. L. (2003). Mitochondrial ATP synthasome. Cristae-enriched membranes and a multiwell detergent screening assay yield dispersed single complexes containing the ATP synthase and carriers for Pi and ADP/ATP. Journal of Biological Chemistry, 278, 12305–12309.

    Article  CAS  PubMed  Google Scholar 

  52. Vogel, F., Bornhövd, C., Neupert, W., & Reichert, A. S. (2006). Dynamic subcompartmentalization of the mitochondrial inner membrane. Journal of Cell Biology, 175, 237–247.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by grant from the Russian Foundation for Basic Research (20-015-00124) and by the grant of the President of the Russian Federation (MK-61.2019.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail V. Dubinin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Statement on the welfare of animals. All procedures were performed in accordance with the European Communities Council Directive (November 24, 1986; 86/609/EEC) and the Declaration on humane treatment of animals. The Protocol of experiments was approved by the Mari State University Ethics Committee.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samartsev, V.N., Semenova, A.A. & Dubinin, M.V. A Comparative Study of the Action of Protonophore Uncouplers and Decoupling Agents as Inducers of Free Respiration in Mitochondria in States 3 and 4: Theoretical and Experimental Approaches. Cell Biochem Biophys 78, 203–216 (2020). https://doi.org/10.1007/s12013-020-00914-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-020-00914-5

Keywords

Navigation