Skip to main content
Log in

Anti-gliomas Effect of Chlorotoxin-Conjugated Onconase at High Dose

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Malignant gliomas are rarely curable malignant tumors in the central nervous system. Chlorotoxin (CTX) is a peptide derived from scorpion venom, which can selectively target malignant gliomas. Onconase (Onc) is a small cytotoxic ribonuclease derived from frogspawn that exhibits cytotoxicity against some tumor cells. In the present study, we found that CTX-conjugated Onc (CTX–Onc) shows better anti-tumor effect than the physical mixture of CTX and Onc (CTX + Onc) on the nude mice carrying subcutaneous glioblastoma cell-derived tumor. However, CTX–Onc does not show dose-dependent anti-tumor effect. In addition, apoptosis in tumor tissue does not show significant difference between the treatment groups. Our results confirmed that CTX–Onc has better anti-tumor effect than CTX + Onc and suggest that it can be potentially used for glioma therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adamson, C., Kanu, O. O., Mehta, A. I., Di, C., Lin, N., Mattox, A. K., & Bigner, D. D. (2009). Glioblastoma multiforme: A review of where we have been and where we are going. Expert Opinion on Investigational Drugs, 18, 1061–1083.

    Article  CAS  PubMed  Google Scholar 

  2. Gilbert, M. R., Dignam, J. J., Armstrong, T. S., Wefel, J. S., Blumenthal, D. T., Vogelbaum, M. A., et al. (2014). A randomized trial of bevacizumab for newly diagnosed glioblastoma. New England Journal of Medicine, 370, 699–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lima, F. R., Kahn, S. A., Soletti, R. C., Biasoli, D., Alves, T., da Fonseca, A. C., et al. (2012). Glioblastoma: therapeutic challenges, what lies ahead. Biochimica et Biophysica Acta, 1826, 338–349.

    CAS  PubMed  Google Scholar 

  4. Watkins, S., & Sontheimer, H. (2012). Unique biology of gliomas: Challenges and opportunities. Trends in Neurosciences, 35, 546–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. DeBin, J. A., Maggio, J. E., & Strichartz, G. R. (1993). Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. American Journal of Physiology, 264, C361–C369.

    CAS  PubMed  Google Scholar 

  6. Lyons, S. A., O’Neal, J., & Sontheimer, H. (2002). Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia, 39, 162–173.

    Article  PubMed  Google Scholar 

  7. Deshane, J., Garner, C. C., & Sontheimer, H. (2003). Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. Journal of Biological Chemistry, 278, 4135–4144.

    Article  CAS  PubMed  Google Scholar 

  8. Kesavan, K., Ratliff, J., Johnson, E. W., Dahlberg, W., Asara, J. M., Misra, P., et al. (2010). Annexin A2 is a molecular target for TM601, a peptide with tumor-targeting and anti-angiogenic effects. Journal of Biological Chemistry, 285, 4366–4374.

    Article  CAS  PubMed  Google Scholar 

  9. Polivka, J, Jr, Rohan, V., Topolcan, O., & Ferda, J. (2012). New molecularly targeted therapies for glioblastoma multiforme. Anticancer Research, 32, 2935–2946.

    CAS  PubMed  Google Scholar 

  10. Veiseh, M., Gabikian, P., Bahrami, S. B., Veiseh, O., Zhang, M., Hackman, R. C., et al. (2007). Tumor paint: A chlorotoxin: Cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer Research., 67, 6882–6888.

    Article  CAS  PubMed  Google Scholar 

  11. Fu, Y., An, N., Li, K., Zheng, Y., & Liang, A. (2012). Chlorotoxin-conjugated nanoparticles as potential glioma-targeted drugs. Journal of Neuro-oncology, 107, 457–462.

    Article  CAS  PubMed  Google Scholar 

  12. Darzynkiewicz, Z., Carter, S. P., Mikulski, S. M., Ardelt, W. J., & Shogen, K. (1988). Cytostatic and cytotoxic effects of Pannon (P-30 protein), a novel anticancer agent. Cell Tissue Kinet, 21, 169–182.

    CAS  PubMed  Google Scholar 

  13. Ardelt, W., Mikulski, S. M., & Shogen, K. (1991). Amino acid sequence of an anti-tumor protein from Rana pipiens oocytes and early embryos. Homology to pancreatic ribonucleases. Journal of Biological Chemistry, 266, 245–251.

    CAS  PubMed  Google Scholar 

  14. Wu, Y., Mikulski, S. M., Ardelt, W., Rybak, S. M., & Youle, R. J. (1993). A cytotoxic ribonuclease. Study of the mechanism of onconase cytotoxicity. Journal of Biological Chemistry, 268, 10686–10693.

    CAS  PubMed  Google Scholar 

  15. Saxena, S. K., Sirdeshmukh, R., Ardelt, W., Mikulski, S. M., Shogen, K., & Youle, R. J. (2002). Entry into cells and selective degradation of tRNAs by a cytotoxic member of the RNase A family. Journal of Biological Chemistry, 277, 15142–15146.

    Article  CAS  PubMed  Google Scholar 

  16. Suhasini, A. N., & Sirdeshmukh, R. (2006). Transfer RNA cleavages by onconase reveal unusual cleavage sites. Journal of Biological Chemistry., 281, 12201–12209.

    Article  CAS  PubMed  Google Scholar 

  17. Pavlakis, N., & Vogelzang, N. J. (2006). Ranpirnase—an antitumour ribonuclease: Its potential role in malignant mesothelioma. Expert Opinion on Biological Theraphy, 6, 391–399.

    Article  CAS  Google Scholar 

  18. Lee, I., Kalota, A., Gewirtz, A. M., & Shogen, K. (2007). Antitumor efficacy of the cytotoxic RNase, ranpirnase, on A549 human lung cancer xenografts of nude mice. Anticancer Research, 27, 299–307.

    CAS  PubMed  Google Scholar 

  19. Wang, X. M., Luo, X., & Guo, Z. Y. (2013). Recombinant expression and downstream processing of the disulfide-rich tumor-targeting peptide chlorotoxin. Experimental and Therapeutic Medicine, 6, 1049–1053.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, Xiaomin, & Guo, Zhanyun. (2013). Recombinant expression, different downstream processing of the disulfide-rich anti-tumor peptide Ranpirnase and its effect on the growth of human glioma cell line SHG-44. Biomedical Reports, 1(5), 747–750.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, X., & Guo, Z. (2015). Chlorotoxin-conjugated onconase as a potential targeted anti-glioma drug. Oncology Letters., 9, 1337–1342.

    PubMed  Google Scholar 

  22. Cheng, Y., Zhao, J., Qiao, W., & Chen, K. (2014). Recent advances in diagnosis and treatment of gliomas using chlorotoxin-based bioconjugates. American Journal of Nuclear Medicine and Molecular Imaging., 4, 385–405.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chinese Major Scientific and Technological Special Project for “Major New Drugs Creation” (2009ZX09103-656).

Conflict of interest

We have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanyun Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Guo, Z. Anti-gliomas Effect of Chlorotoxin-Conjugated Onconase at High Dose. Cell Biochem Biophys 73, 389–392 (2015). https://doi.org/10.1007/s12013-015-0634-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-015-0634-4

Keywords

Navigation