Skip to main content
Log in

ZnRF3 Induces Apoptosis of Gastric Cancer Cells by Antagonizing Wnt and Hedgehog Signaling

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

A large proportion of malignant cancers of the stomach are gastric adenocarcinoma type. In spite of many studies, the molecular basis for this cancer is still unclear. Deregulated cell proliferative signaling via Wnt/β-catenin and Hedgehog pathways is considered important in the pathogenesis of many cancers including the gastric cancer. Recent studies identified ZnRF3 protein, which is a E3-ubiquitin ligase and which is either deleted or mutated in cancers, to inhibit Wnt signaling. However, the significance of ZnRF3 in the control of gastric cancer and whether it also regulates Hedgehog signaling pathway, is not known. In the present study, we assessed the expression of ZnRF3 in gastric tumors and paracancerous tissues from 58 patients (44 male and 14 female) of different ages and related this to patient survival. We observed a clear relationship between ZnRF3 expression in paracancerous tissue and tumor size. Also, ZnRF3 expression was much higher in tumors from aged patients. Male patients showed higher mortality than the females. Mechanistic studies using normal gastric cells (GES1) and gastric cancer cells (MGC-803) infected with either AdZnRF3 or AdGFP viral vectors, revealed that ZnRF3 overexpression causes significantly more apoptosis and lowered proliferation of cancer cells. ZnRF3 overexpression led to greatly reduced levels of Lgr5, a component of Wnt signaling and also Gli1, a component of Hedgehog signaling. Thus, ZnRF3 negatively influences both the Wnt and Hedgehog proliferative pathways, and probably this way it negatively regulates cancer progression. These results suggest the importance of normal ZnRF3 function in checking the progression of cancer cell growth and indicate that a lack of this protein can lead to poorer clinical outcomes for gastric cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smith, M. G., Hold, G. L., Tahara, E., & El-Omar, E. M. (2006). Cellular and molecular aspects of gastric cancer. World Journal of Gastroenterology, 12, 2979–2990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ushijima, T., & Sasako, M. (2004). Focus on gastric cancer. Cancer Cell, 5, 121–125.

    Article  CAS  PubMed  Google Scholar 

  3. Cho, L. Y., Yang, J. J., Ko, K. P., Ma, S. H., Shin, A., Choi, B. Y., et al. (2012). Genetic susceptibility factors on genes involved in the steroid hormone biosynthesis pathway and progesterone receptor for gastric cancer risk. PLoS ONE, 7, e47603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Clevers, H., & Nusse, R. (2012). Wnt/beta-catenin signaling and disease. Cell, 149, 1192–1205.

    Article  CAS  PubMed  Google Scholar 

  5. Zhou, Y., Lan, J., Wang, W., Shi, Q., Lan, Y., Cheng, Z., & Guan, H. (2013). Znrf3 acts as a tumour suppressor by the Wnt signalling pathway in human gastric adenocarcinoma. Journal of Molecular Histology, 44, 555–563.

    Article  CAS  PubMed  Google Scholar 

  6. Lowy, A. M., Clements, W. M., Bishop, J., Kong, L., Bonney, T., Sisco, K., et al. (2006). Beta-catenin/Wnt signaling regulates expression of the membrane type 3 matrix metalloproteinase in gastric cancer. Cancer Research, 66, 4734–4741.

    Article  CAS  PubMed  Google Scholar 

  7. Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell, 127, 469–480.

    Article  CAS  PubMed  Google Scholar 

  8. Macdonald, B. T., Tamai, K., & He, X. (2009). Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Developmental Cell, 17, 9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pecina-Slaus, N. (2010). Wnt signal transduction pathway and apoptosis: A review. Cancer Cell International, 10, 22.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Grossmann, T. N., Yeh, J. T., Bowman, B. R., Chu, Q., Moellering, R. E., & Verdine, G. L. (2012). Inhibition of oncogenic Wnt signaling through direct targeting of beta-catenin. Proceedings of the National Academy of Sciences USA, 109, 17942–17947.

    Article  CAS  Google Scholar 

  11. Schepers, A., & Clevers, H. (2012). Wnt signaling, stem cells, and cancer of the gastrointestinal tract. Cold Spring Harbor Perspectives in Biology, 4, a007989.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim, K. A., Wagle, M., Tran, K., Zhan, X., Dixon, M. A., Liu, S., et al. (2008). R-spondin family members regulate the Wnt pathway by a common mechanism. Molecular Biology of the Cell, 19, 2588–2596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kazanskaya, O., Ohkawara, B., Heroult, M., Wu, W., Maltry, N., Augustin, H. G., & Niehrs, C. (2008). The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development. Development, 135, 3655–3664.

    Article  CAS  PubMed  Google Scholar 

  14. Parma, P., Radi, O., Vidal, V., Chaboissier, M. C., Dellambra, E., Valentini, S., et al. (2006). R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nature Genetics, 38, 1304–1309.

    Article  CAS  PubMed  Google Scholar 

  15. Ootani, A., Li, X., Sangiorgi, E., Ho, Q. T., Ueno, H., Toda, S., et al. (2009). Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nature Medicine, 15, 701–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carmon, K. S., Gong, X., Lin, Q., Thomas, A., & Liu, Q. (2011). R-spondins function as ligands of the orphan receptors lgr4 and lgr5 to regulate Wnt/beta-catenin signaling. Proceedings of the National Academy of Sciences USA, 108, 11452–11457.

    Article  CAS  Google Scholar 

  17. de Lau, W., Barker, N., Low, T. Y., Koo, B. K., Li, V. S., Teunissen, H., et al. (2011). Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature, 476, 293–297.

    Article  PubMed  Google Scholar 

  18. Hao, H. X., Xie, Y., Zhang, Y., Charlat, O., Oster, E., Avello, M., et al. (2012). Znrf3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature, 485, 195–200.

    Article  CAS  PubMed  Google Scholar 

  19. de Lau, W., Peng, W. C., Gros, P., & Clevers, H. (2014). The R-spondin/lgr5/rnf43 module: Regulator of Wnt signal strength. Genes & Development, 28, 305–316.

    Article  Google Scholar 

  20. Peng, W. C., de Lau, W., Madoori, P. K., Forneris, F., Granneman, J. C., Clevers, H., & Gros, P. (2013). Structures of Wnt-antagonist znrf3 and its complex with R-spondin 1 and implications for signaling. PLoS ONE, 8, e83110.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sun, Y. (2006). E3 ubiquitin ligases as cancer targets and biomarkers. Neoplasia, 8, 645–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wolpin, B. M., Rizzato, C., Kraft, P., Kooperberg, C., Petersen, G. M., Wang, Z., et al. (2014). Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nature Genetics, 46, 994–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Infante, P., Canettieri, G., Gulino, A., & di Marcotullio, L. (2014). Yin-yang strands of pcaf/hedgehog axis in cancer control. Trends in Molecular Medicine, 20, 416–418.

    Article  CAS  PubMed  Google Scholar 

  24. Remmele, W., & Stegner, H. E. (1987). Recommendation for uniform definition of an immunoreactive score (irs) for immunohistochemical estrogen receptor detection (er-ica) in breast cancer tissue. Der Pathologe, 8, 138–140.

    CAS  PubMed  Google Scholar 

  25. Brenner, H., Rothenbacher, D., & Arndt, V. (2009). Epidemiology of stomach cancer. Methods in Molecular Biology, 472, 467–477.

    Article  PubMed  Google Scholar 

  26. Amakye, D., Jagani, Z., & Dorsch, M. (2013). Unraveling the therapeutic potential of the hedgehog pathway in cancer. Nature Medicine, 19, 1410–1422.

    Article  CAS  PubMed  Google Scholar 

  27. Mazza, D., Infante, P., Colicchia, V., Greco, A., Alfonsi, R., Siler, M., et al. (2013). Pcaf ubiquitin ligase activity inhibits hedgehog/gli1 signaling in p53-dependent response to genotoxic stress. Cell Death and Differentiation, 20, 1688–1697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Grants (Nos. 81272698, 81101883, 81172368) from the National Nature Science Foundation of China. A Grant (No. 20130206) from the Special Scientific Research Foundation of Health Sector from the National Health and Family Planning Commission of China. A Grant form the capital health research and development of special (No. 2011-5001-01). A Grant form Major Science and Technology Progect of “National Significant New Drug Creation” from the Major Science and Technology of China (No. 2011ZX09307-001-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Chen.

Additional information

Hongzhen Qin, Aizhen Cai and Hongqing Xi have contributed equally to this study, should be considered as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, H., Cai, A., Xi, H. et al. ZnRF3 Induces Apoptosis of Gastric Cancer Cells by Antagonizing Wnt and Hedgehog Signaling. Cell Biochem Biophys 73, 361–367 (2015). https://doi.org/10.1007/s12013-015-0607-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-015-0607-7

Keywords

Navigation