Skip to main content

Advertisement

Log in

Upstream and Downstream Processing of Lovastatin by Aspergillus terreus

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The present study describes the enhanced production and purification of lovastatin by Aspergillus terreus in submerged batch fermentation. The enhancement of lovastatin production from A. terreus was attempted by random mutagenesis using ultraviolet radiations and nitrous acid. UV mutants exhibited increased efficiency for lovastatin production as compared with nitrous acid mutants. Among all the mutants developed, A. terreus UV-4 was found to be the hyper producer of lovastatin. This mutant gave 3.5-fold higher lovastatin production than the wild culture of A. terreus NRRL 265. Various cultural conditions were also optimized for hyper-producing mutant strain. 5 % glucose as carbon source, 1.5 % corn steep liquor as nitrogen source, initial pH value of 6, 120 h of incubation period, and 28 °C of incubation temperature were found as best parameters for higher lovastatin production in shake flasks. Production of lovastatin by wild and mutant strains of A. terreus was also scaled up to laboratory scale fermentor. The fermentation process was conducted at 28 °C, 200 rpm agitation, and 1vvm air flow rate without pH control. After the optimization of cultural conditions in 250 ml Erlenmeyer flasks and scaling up to laboratory scale fermentor, the mutant A. terreus UV-4 gave eightfold higher lovastatin production (3249.95 μg/ml) than its production by wild strain in shake flasks. Purification of lovastatin was carried out by solvent extraction method which yielded 977.1 mg/l of lovastatin with 98.99 % chromatographic purity and 26.76 % recovery. The crystal structure of lovastatin was determined using X-ray diffraction analysis which is first ever reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alberts, A. W., Chen, J., Kuron, G., Hunt, V., Huff, J., Hoffman, C., et al. (1980). Mevinolin: A highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme a reductase and a cholesterol-lowering agent. Proceedings of National Academy of Sciences, 77, 3957–3961.

    Article  CAS  Google Scholar 

  2. Alvarez-Lueje, A., Pastine, J., Squella, J. A., & Nunez-Vergara, L. J. (2005). Assessment of the hydrolytic degradation of lovastatin by HPLC. Journal of the Chilean Chemical Society, 50, 639–646.

    Article  CAS  Google Scholar 

  3. Atalla, M. M., Hamed, E. R., & El-Shami, A. R. (2008). Optimization of a culture medium for increased mevinolin production by Aspergillus terreus strain. The Malaysian Journal of Microbiology, 4(2), 6–10.

    Google Scholar 

  4. Bizukojc, M., & Ledakowicz, S. (2008). Biosynthesis of lovastatin and (+)-geodin by Aspergillus terreus in batch and fed-batch culture in the stirred tank bioreactor. Biochemical Engineering Journal, 42, 198–207.

    Article  CAS  Google Scholar 

  5. Brown, A. G., Smale, T. C., King, T. J., Hasenkamp, R., & Thomson, R. H. (1976). Crystal and molecular structure of compactin, a new antifungal metabolite from Penicillium brevicompactum. Journal of the Chemical Society. Perkin transactions 1, 1, 1165–1170.

    Article  Google Scholar 

  6. Buckland, B., Gbewonyo, K., Hallada, T., Kaplan, L., & Masurekar, P. (1989). Production of lovastatin, an inhibitor of cholesterol accumulation in humans. In A. L. Demain, G. A. Somkuti, J. C. Hunter-Cevera, & H. W. Rossmoore (Eds.), Novel microbial products for medicine and agriculture (pp. 161–169). Amsterdam: SIM Publication.

    Google Scholar 

  7. Dekleva, M. L., Titus, J. A., & Strohl, W. R. (1985). Nutrient effects on anthracycline production by Streptomyces peucetius in a defined medium. Canadian Journal of Microbiology, 31(3), 287–294.

    Article  CAS  PubMed  Google Scholar 

  8. Eckert, G. P., Wood, W. G., & Muller, W. E. (2005). Statins: Drugs for Alzheimer’s disease. The Journal of Neural Transmission, 112, 1057–1071.

    Article  CAS  Google Scholar 

  9. Endo, A. (1979). Monacolin K: A new hypocholesterolemic agent produced by Monascus spp. Journal of Antibiotics, 32, 852–854.

    Article  CAS  PubMed  Google Scholar 

  10. Endo, A., Kuroda, M., & Tanazawa, K. (1976). Competitive inhibition of 3-hydroxy-3-methyl glutaryl coenzyme A reductase by ML-236 A and ML-236 B fungal metabolites having hypocholesterolemic activity. FEBS Letters, 72, 323–326.

    Article  CAS  PubMed  Google Scholar 

  11. Friedrich, J., Zuzek, M., Bencina, M., Cimerman, A., Strancer, A., & Radez, I. (1995). High-performance liquid chromatographic analysis of mevinolin as mevinolinic acid in fermentation broths. The Journal of Chromatography A, 704, 363–367.

    Article  CAS  Google Scholar 

  12. Garrett, I. R., Gutierrez, G. E., Rossini, G., Nyman, J., McCluskey, B., & Flores, A. (2007). Locally delivered lovastatin nanoparticles enhance fracture healing in rats. Journal of Orthopaedic Research, 25, 1351–1357.

    Article  CAS  PubMed  Google Scholar 

  13. Grahek, R., Milivojevic, D., Bastarda, A., & Kracun, M. (2001). Chromatographic purification of some 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. The Journal of Chromatography A, 918, 319–324.

    Article  CAS  Google Scholar 

  14. Hajjaj, H., Niedberger, P., & Duboc, P. (2001). Lovastatin biosynthesis by Aspergillus terreus in a chemically defined medium. Applied and Environment Microbiology, 67, 2596–2604.

    Article  CAS  Google Scholar 

  15. Hollaender, A., Sansome, E., Zimmer, E., & Demerec, M. A. (1945). Quantitative irradiation experiments on Neurospora crassa. Il. Ultraviolet irradiation. The American Journal of Botany, 32, 226–235.

    Article  Google Scholar 

  16. Hollaender, A., Raper, K. B., & Coghill, R. D. (1945). The production and characterization of ultraviolet-induced mutations in Aspergillus terreus. I. Production of the mutations. The American Journal of Botany, 32(3), 160–165.

    Article  Google Scholar 

  17. Juzlov, P., Martinkova, L., & Kren, V. (1996). Secondary metabolites of the fungus Monascus: A review. The Journal of Industrial Microbiology, 16, 163–170.

    Article  Google Scholar 

  18. Kumar, M. S., Jana, S. K., Senthil, V., Shashanka, V., Kumar, S. V., & Sadhukhan, A. K. (2000). Repeated fed-batch process for improving lovastatin production. Process Biochemistry, 36, 363–368.

    Article  CAS  Google Scholar 

  19. Kumar, M. S., Kumar, P. M., Sarnaik, H. M., & Sadhukhan, A. K. (2000). A rapid technique for screening of lovastatin-producing strains of Aspergillus terreus by agar plug and Neurospora crassa bioassay. Journal of Microbiological Methods, 40, 99–104.

    Article  CAS  PubMed  Google Scholar 

  20. Kumar, V.S., Harishchandra, T.B. and Rajaram,K.S. (2005). A method for the manufacture of lovastatin. European Patent Specification, EP 1 673 361 B1.

  21. Lai, L. S. T., Pan, C. C., & Tzeng, B. K. (2003). The influence of medium design on lovastatin production and pellet formation with a high-producing mutant of Aspergillus terreus in submerged cultures. Process Biochemistry, 38, 1317–1326.

    Article  CAS  Google Scholar 

  22. Lai, L. S. T., Tsai, T. H., Wang, T. C., & Cheng, T. Y. (2005). The influence of culturing environments on lovastatin production by Aspergillus terreus in submerged cultures. Enzyme and Microbial Technology, 36, 737–748.

    Article  CAS  Google Scholar 

  23. Lockwood, L. B., Raper, K. B., Moyer, A. J., & Coghill, R. D. (1945). The production and characterization of ultraviolet induced mutations in Aspergillus terreus. III. Biochemical characteristics of the mutation. The American Journal of Botany, 52, 214–217.

    Article  Google Scholar 

  24. Lopez, J. L. C., Perez, J. A. S., Sevilla, J. M. F., Fernandez, F. G. A., Grima, E. M., & Chisti, Y. (2003). Production of lovastatin by Aspergillus terreus: Effects of the C: N ratio and the principal nutrients on growth and metabolite production. Enzyme and Microbial Technology, 33, 270–277.

    Article  Google Scholar 

  25. Lopez, J. L. C., Porcel, E. M. R., Ferron, M. A. V., Perez, J. A. S., Sevilla, J. M. F., & Chisti, Y. (2004). Lovastatin inhibits its own synthesis in Aspergillus terreus. Journal of Industrial Microbiology and Biotechnology, 31, 48–50.

    Article  Google Scholar 

  26. Lopez, J. L. C., Perez, J. A. S., Sevilla, J. M. F., Porcel, E. M. R., & Chisti, Y. (2005). Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. Journal of Biotechnology, 116, 61–77.

    Article  Google Scholar 

  27. Mala, J. G. S., Kamini, R. N. R., & Puvanakrishnan, R. (2001). Strain improvement of Aspergillus niger for enhanced lipase production. Journal of General and Applied Microbiology, 47, 181–186.

    Article  CAS  Google Scholar 

  28. Manzoni, M., Rollini, M., Bergomi, S., & Cavazzoni, V. (1998). Production and purification of statins from Aspergillus terreus strains. Biotechnology Techniques, 12, 529–532.

    Article  CAS  Google Scholar 

  29. Manzoni, M., & Rollini, M. (2002). Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Applied Microbiology and Biotechnology, 58, 555–564.

    Article  CAS  PubMed  Google Scholar 

  30. Negishi, S., Haung, Z. C., Hasumi, K., Murakawa, S., & Endo, A. (1986). Productivity of monacolin K (mevinolin) in the genus Monascus. Hakko Kogaku Kaishi, 64(6), 509–512.

    CAS  Google Scholar 

  31. Novak, N., Gerdin, S., & Berovic, M. (1997). Increased lovastatin formation by Aspergillus terreus using repeated fed-batch process. Biotechnology Letters, 19, 947–948.

    Article  CAS  Google Scholar 

  32. Rajh, S. J., Kreft, S., Strukelj, B., & Vrecer, F. (2003). Comparison of CE and HPLC methods for determining lovastatin and its oxidation products after exposure to an oxidative atmosphere. Croatica Chemica Acta, 76, 263–268.

    CAS  Google Scholar 

  33. Raper, K. B., Coghill, R. D., & Hollaender, A. (1945). The production and characterization of ultraviolet-induced mutations in Aspergillus terreus. II. Cultural and morphological characteristics of the mutations. The American Journal of Botany, 32(3), 165–176.

    Article  Google Scholar 

  34. Roze, L. V., & Linz, J. E. (1998). Lovastatin triggers an apoptosis-like cell death process in fungus Mucor racemosus. Fungal Genetics and Biology, 25(2), 119–133.

    Article  CAS  PubMed  Google Scholar 

  35. Samiee, S. M., Moazami, N., Haghighi, S., Mohseni, F. A., Mirdamadi, S., & Bakhtiari, M. R. (2003). Screening of lovastatin production by filamentous fungi. Iran Biomedical Journal, 7(1), 29–33.

    CAS  Google Scholar 

  36. Sayyad, S. A., Panda, B. P., Javed, S., & Ali, M. (2007). Optimization of nutrient parameters for lovastatin production by Monascus purpureus MTCC 369 under submerged fermentation using response surface methodology. Applied Microbiology and Biotechnology, 73, 1054–1058.

    Article  CAS  PubMed  Google Scholar 

  37. Siddiqi, O. H. (1962). Mutagenic action of nitrous acid on Aspergillus nidulans. Genetical Research, 3, 303–314.

    Article  CAS  Google Scholar 

  38. Smith, D. C., & Wood, T. M. (1991). Isolation of mutants of Aspergillus awamori with enhanced production of extracellular xylanase and β-xylosidase. World Journal of Microbiology and Biotechnology, 7, 343–354.

    Article  CAS  PubMed  Google Scholar 

  39. Snedecor, G. W., & Cochran, W. G. (1980). Statistical methods (7th ed., pp. 32–43). Iowa State University.

  40. Steinberg, R. A., & Thom, C. (1940). Chemical induction of genetic changes in Aspergilli. Journal of Heredity, 31, 61–63.

    CAS  Google Scholar 

  41. Steinberg, R. A., & Thom, C. (1940). Mutations and reversions in reproductivity of Aspergilli with nitrite, cochicine and d-lysine. Proceedings of the National Academy of Sciences, 26, 363–366.

    Article  CAS  Google Scholar 

  42. Su, Y. C., Wang, J. J., Lin, T. T., & Pan, T. M. (2003). Production of secondary metabolites, alpha-amino butyric acid and monacolin K by Monascuc anka. Journal of Industrial Microbiology and Biotechnology, 30, 41–46.

    CAS  PubMed  Google Scholar 

  43. Szakacs, G., Morovjan, G., & Tengerdy, R. P. (1998). Production of lovastatin by a wild strain of Aspergillus terreus. Biotechnology Letters, 20, 411–415.

    Article  CAS  Google Scholar 

  44. Valera, H. R., Gomes, J., Lakshmi, S., Gruraja, R., Suryanarayan, S., & Kumar, D. (2005). Lovastatin production by solid state fermentation using Aspergillus flavipes. Enzyme and Microbial Technology, 37, 521–526.

    Article  CAS  Google Scholar 

  45. Vinci, V. A., Hoerner, T. D., Coffman, A. D., Schimmel, T. G., Dabora, R. L., Kirpekar, A. C., et al. (1991). Mutants of lovastatin-hyperproducing Aspergillus terreus deficient in the production of sulochrin. Journal of Industrial Microbiology, 8, 113–120.

    Article  CAS  Google Scholar 

  46. Wang, J. J., Lee, C. L., & Pan, T. M. (2003). Improvement of monacolin K, alpha-amino acid and citrinin production ratio as a function of environmental condition of Monascus purpureus NTU 601. Journal of Industrial Microbiology and Technology, 30, 669–676.

    Article  CAS  Google Scholar 

  47. Youssef, S., Stuve, O., Patarroyo, J. C., Ruiz, P. J., Radosevich, J. L., & Hur, E. M. (2002). The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature, 420, 78–84.

    Article  CAS  PubMed  Google Scholar 

  48. Zaghloul, T. I., Embaby, A. M., & Elmahdy, A. R. (2011). Biodegradation of chicken feathers waste directed by Bacillus subtilis recombinant cells: Scaling up in a laboratory scale fermentor. Bioresource Technology, 102(3), 2387–2393.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Mukhtar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhtar, H., Ijaz, S.S. & Ikram-ul-Haq Upstream and Downstream Processing of Lovastatin by Aspergillus terreus . Cell Biochem Biophys 70, 309–320 (2014). https://doi.org/10.1007/s12013-014-9914-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-9914-7

Keywords

Navigation