Skip to main content

Advertisement

Log in

Study on the Mechanical Properties of Three-Dimensional Directly Binding Hydroxyapatite Powder

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In the three-dimensional directly fabricating hydroxyapatite composite artificial bone scaffold process, the liquid bio-binder is sprayed on the surface of bioceramics powder layer. The spraying volume and the powder size directly influence the mechanical properties of the bone scaffold and the future biodegradation performance. When the size of powder is stable, the amount of binder spraying will directly affect the mechanical strength of bone scaffold. In order to figure out the solidification mechanism of α-n-butyl cyanoacrylate (NBCA) bio-binder on the hydroxyapatite (HA) powder layer, the molecular dynamics simulation method is applied to investigate the binding energy shifts between NBCA on HA crystallographic planes. The mechanical properties can be deduced from this methodology; furthermore, the Knoop identification experiments are used to investigate the effective elastic modules of pure HA system and HA/NBCA composite model. Both the simulation and the experiments results elucidate that HA (110) has the highest binding energy with NBCA as the high planar atom density and the mechanical properties of HA/NBCA mixed system are stronger than the pure HA system on three-dimensional crystallographic; in this sense, the bone scaffolds with different strengths could be fabricated by controlling various NBCA binders liquid doses on the surface of HA powder layers during the 3D printing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bellucci, Devis, Sola, Antonella, & Gazzarri, Matteo. (2013). A new hydroxyapatite-based biocomposite for bone replacement. Materials Science and Engineering C, 33(3), 1091–1101.

    Article  CAS  PubMed  Google Scholar 

  2. Wu, M., Dellacherie, E., Durand, A., et al. (2009). Poly(n-butyl cyanoacrylate) nanoparticles via miniemulsion polymerization (1): Dextran-based surfactants. Colloids and Surfaces B: Biointerfaces, 69(1), 141–146.

    Article  CAS  PubMed  Google Scholar 

  3. Fadaiea, P., Atai, M., et al. (2013). Cyanoacrylate–POSS nanocomposites: Novel adhesives with improved properties for dental applications. Dental Materials, 29(6), 61–69.

    Article  Google Scholar 

  4. Tomlinson, S. K., Ghita, O. R., Hooper, R. M., & Evans, K. E. (2007). Monomer conversion and hardness of novel dental cements based on ethyl cyanoacrylate. Dental Materials, 23(7), 799–806.

    Article  CAS  PubMed  Google Scholar 

  5. Hong, Z., Zhang, P., He, C., Qiu, X., Liu, A., Chen, L., et al. (2005). Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: Mechanical properties and biocompatibility. Biomaterials, 32(26), 6296–6304.

    Article  Google Scholar 

  6. Wang, Kefeng, Leng, Yang, et al. (2014). Molecular dynamics simulation of protein effects on interfacial energy between HA surfaces and solutions. Materials Letters, 123(15), 191–194.

    Article  CAS  Google Scholar 

  7. Zhang, H. P., Lu, X., Leng, Y., Fang, L., Qu, S., Feng, B., et al. (2009). Molecular dynamics simulations on the interaction between polymers and hydroxyapatite with and without coupling agents. Acta Biomaterialia, 5(4), 1169–1181.

    Article  CAS  PubMed  Google Scholar 

  8. Prathab, B., Subramanian, V., & Aminabhavi, T. M. (2007). Molecular dynamics simulations to investigate polymer–polymer and polymer–metal oxide interactions. Polymer, 48(6), 409–416.

    Article  CAS  Google Scholar 

  9. Pan, H. H., Tao, J. H., Wu, T., & Tang, R. K. (2006). Molecular simulation of water behaviors on hydroxyapatite crystal faces. Chinese Journal of Inorganic Chemistry, 22(8), 1392–1399.

    CAS  Google Scholar 

  10. Lai, Z. B., Wang, M., et al. (2014). Molecular dynamics simulation of mechanical behavior of osteopontin-hydroxyapatite interfaces. Journal of the Mechanical Behavior of Biomedical Materials, 36, 12–20.

    Article  CAS  PubMed  Google Scholar 

  11. Martinez de Arenazaa, I., Meaurioa, E., Coto, B., et al. (2010). Molecular dynamics modelling for the analysis and prediction of miscibility in polylactide/polyvinilphenol blends. Polymer, 51(19), 4431–4438.

    Article  Google Scholar 

  12. Yang, W., Zhang, L., & Wu, L. (2009). Synthesis and characterization of MMA–NaAlg/hydroxyapatite composite and the interface analyse with molecular dynamics. Carbohydrate Polymers, 77(2), 331–337.

    Article  CAS  Google Scholar 

  13. Kim, H., Camata, R. P., Chowdhury, S., & Vohra, Y. K. (2010). In-vitro dissolution and mechanical behavior of c-axis preferentially oriented hydroxyapatite thin films fabricated by pulsed laser deposition. Acta Biomaterialia, 6(8), 3234–3241.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Zamiri, A., & De, S. (2011). Mechanical properties of hydroxyapatite single crystals from nanoindentation data. Journal of the Mechanical Behavior of Biomedical Materials, 4(2), 146–152.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gross, K. A., & Rodríguez-Lorenzo, L. M. (2004). Sintered hydroxylfluorapatites. Part II: Mechanical properties of solid solutions determined by microindentation. Biomaterials, 25(7), 1385–1394.

    Article  CAS  PubMed  Google Scholar 

  16. ASTM E384-99. (1984). A Standard test method for microindentation hardness of materials.

  17. Marshall, D. B., Noma, T., & Evans, A. G. (1982). A simple method for determining elastic-modulus–to-hardness ratios using knoop indentation measurements. Journal of the American Ceramic Society, 65, C175.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is sponsored by the National Natural Science Foundation of China (Grant No. 51175432), the Fundamental Research Funds for the Central Universities (Grant No. 3102014JCS05007), the Doctor Special Science and Technological Funding of the China Ministry of Education (Grant No. 20116102110046), and the graduate starting seed fund of Northwestern Polytechnical University (Grant No. Z2014037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanen Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, X., Wei, Q. et al. Study on the Mechanical Properties of Three-Dimensional Directly Binding Hydroxyapatite Powder. Cell Biochem Biophys 72, 289–295 (2015). https://doi.org/10.1007/s12013-014-0452-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0452-0

Keywords

Navigation