Advertisement

Cell Biochemistry and Biophysics

, Volume 71, Issue 3, pp 1475–1481 | Cite as

Cell Staining by Photo-activated Dye and Its Conjugate with Chitosan

  • Sergei Yu. ZaitsevEmail author
  • Mikhail N. Shaposhnikov
  • Daria O. Solovyeva
  • Ilia S. Zaitsev
  • Dietmar Möbius
Original Paper
  • 246 Downloads

Abstract

Photo-activated or “Caged” rhodamine dyes are the most useful for microscopic investigation of biological tissue by various fluorescent techniques. Novel precursor of the fluorescent dye (PFD813) has been studied for photosensitive staining of numerous animal cells. The functional rhodamine dye (Rho813) with intensive fluorescence has been obtained after photoactivation of its precursor PFD813 inside cells. The dye Rho813 has been successfully used for the optical detection of particular features in biological objects (HaCaT cells, HBL-100, MDCK, lymphocytes). Moreover, the chitosan conjugate with PFD molecules (“Chitosan-PFD813″) has been obtained and studied for the first time. The developed procedures and obtained data are important for further applications of novel precursors of fluorescent dyes (“caged” dyes) for microscopic probing of biological objects. As example, the synthesized “Chitosan-PFD813″ has been successfully applied in this study for intracellular transport visualization by fluorescent microscopy.

Keywords

Caged fluorescent dye Cell staining Photoactivation Biomembranes Lipids Conjugate Chitosan 

Notes

Acknowledgments

Some parts of this work were supported by grant from Russian Scientific Foundation (Project 14-16-00046). We thank Dr. Svirshchevskaya E.V. and Ph.D.-student Generalov A.A. for cell cultivation and suggestions on cell staining experiments; Dr. Belov V. N. for preparation of the precursor of fluorescent dye.

References

  1. 1.
    Grimm, J. B., Heckman, L. M., & Lavis, L. D. (2013). The chemistry of small-molecule fluorogenic probes. Progress in Molecular Biology and Translational Science, 113, 1–34.CrossRefPubMedGoogle Scholar
  2. 2.
    Haugland, R. P., Spence, M. T. Z., Johnson, I. D., & Basey, A. (2005). The handbook: a guide to fluorescent probes and labeling technologies (10th ed.). Eugene: Molecular Probes.Google Scholar
  3. 3.
    Lavis, L. D., & Raines, R. T. (2008). Bright ideas for chemical biology. ACS Chemical Biology, 3, 142–155.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Beija, M., Afonso, C. A., & Martinho, J. M. (2009). Synthesis and application of rhodamine derivatives as fluorescent probes. Chemical Society Reviews, 38, 2410–2433.CrossRefPubMedGoogle Scholar
  5. 5.
    Foelling, J., Belov, V., Riedel, D., Schoenle, A., Egner, A., Eggeling, C., et al. (2008). Fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers. ChemPhysChem, 9(2), 321–326.CrossRefGoogle Scholar
  6. 6.
    Wysocki, L. M., Grimm, J. B., Tkachuk, A. N., Brown, T. A., Betzig, E., & Lavis, L. D. (2011). Facile and general synthesis of photoactivatable xanthene dyes. Angewandte Chemie International Edition, 50, 112016–112019.CrossRefGoogle Scholar
  7. 7.
    Mitchison, T. J., Sawin, K. E., Theriot, J. A., Gee, K., Mallavarapo, A., & Manion, G. (1998). Caged fluorescent probes. Methods in Enzymology, 291, 63–79.PubMedGoogle Scholar
  8. 8.
    Belov, V. N., Bossi, M. L., Foiling, J., Boyarskiy, V. P., & Hell, S. W. (2009). Rhodamine spiroamides for multicolor single molecule switching fluorescent nanoscopy. Chemistry A European Journal, 15, 10762–10776.CrossRefGoogle Scholar
  9. 9.
    Zaitsev, S. Y., Belov, V., Mitronova, G. Y., & Moebius, D. (2010). Mixed monolayers of a novel rhodamine derivative. Mendeleev Communications, 20, 203–204.CrossRefGoogle Scholar
  10. 10.
    Lavis, L. D., Grimm, J. B., Wysocki, L. M., Tkachuka, A. N., Browna, T. A., & Betziga, E. (2012). Facile syntheses of photoactivatable rhodamines. Microscopy and Microanalysis, 18, 668–669.CrossRefGoogle Scholar
  11. 11.
    Politz, J. C. (1999). Use of caged fluorochromes to track macromolecular movement in living cells. Cell Biology, 9, 284–287.CrossRefGoogle Scholar
  12. 12.
    Banala, S., Maurel, D., Manley, S., & Johnsson, K. (2012). A caged, localizable rhodamin derivative for superresolution microscopy. ACS Chemical Biology, 7, 289–293.CrossRefPubMedGoogle Scholar
  13. 13.
    Wei, Y., Aydin, Z., Liu, Z., & Guo, M. (2012). A turn-on fluorescent sensor for imaging labile Fe3+ in live neuronal cells at subcellular resolution. ChemBioChem, 13, 1569–1573.CrossRefPubMedGoogle Scholar
  14. 14.
    Hell, S. W. (2007). Far-field optical nanoscopy. Science, 316, 1153–1158.CrossRefPubMedGoogle Scholar
  15. 15.
    Foelling, J., Belov, V., Kunetsky, R., Medda, R., Schoenle, A., Egner, A., et al. (2007). Photochromic rhodamines provide nanoscopy with optical sectioning. Angewandte Chemie International Edition, 46, 6266–6270.CrossRefGoogle Scholar
  16. 16.
    Boyarskiy, V. P., Belov, V., Medda, R., Hein, B., Bossi, M., & Hell, S. W. (2008). Photostable, amino reactive and water-soluble fluorescent labels based on sulfonated rhodamine with a rigidized xanthene fragment. Chemistry-A European Journal, 14, 1784–1792.CrossRefGoogle Scholar
  17. 17.
    Belov, V., Wurm, C. A., Boyarskiy, V. P., Jakobs, S., & Hell, S. W. (2010). Rhodamines N N a novel class of caged fluorescent dyes. Angewandte Chemie International Edition, 49, 3520–3523.CrossRefGoogle Scholar
  18. 18.
    Zaitsev, S Yu., Shaposhnikov, M. N., Solovyeva, D. O., Zaitsev, I. S., & Mobius, D. (2013). Novel precursors of fluorescent dyes. 1. Interaction of the dyes with model phospholipid in monolayers. Cell Biochemistry and Biophysics, 67(3), 1365–1370.CrossRefPubMedGoogle Scholar
  19. 19.
    Zaitsev, S. Y., Shaposhnikov, M. N., & Svirshchevskaya, E. V. (2010). Staining of cells by new photoactivated fluorescent dyes. Veterinary Medicine, 3–4, 32–34. (in Russian).Google Scholar
  20. 20.
    Shaposhnikov, M. N., Chudakov, D. B., Generalov, A. A., Savina, A. A., & Zaitsev, S. Y. (2012). The fluorescence dependence of a new photoactivatable dye on the environment parameters. Fundamental Research, 9(2), 322–327. (in Russian).Google Scholar
  21. 21.
    Shaposhnikov, M. N., Chudakov, D. B., Generalov, A. A., & Zaitsev, S. Y. (2012). Preparation of chitosan conjugate with photoactivatable fluorescent dye and its application in cell microscopy. Veterinary Medicine, 3–4, 32–35. (in Russian).Google Scholar
  22. 22.
    Zaitsev, S. Y. (2010). Supramolecular nanodimensional systems at the interfaces: concepts and perspectives for bio nanotechnology (in Russian). Moscow: LENAND.Google Scholar
  23. 23.
    Zaitsev, S. Y. (2009). Membrane nanostructures on the basis of biologically acitive compounds for bionanotechnological purposes. Nanotechnologies in Russia, 4, 379–396.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sergei Yu. Zaitsev
    • 1
    • 2
    Email author
  • Mikhail N. Shaposhnikov
    • 1
  • Daria O. Solovyeva
    • 1
    • 2
  • Ilia S. Zaitsev
    • 1
  • Dietmar Möbius
    • 3
  1. 1.Moscow State Academy of Veterinary Medicine and BiotechnologyMoscowRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia
  3. 3.Max Planck Institute for Biophysical ChemistryGöttingenGermany

Personalised recommendations