Skip to main content
Log in

Cation–π Interactions in β-Lactamases: The Role in Structural Stability

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

β-lactam group of antibiotics is the most widely used therapeutic molecules for treating bacterial infections. The main mode of bacterial resistance to β-lactams is by β-lactamases. In the present study, we report our results on the role of cation–π interactions in β-lactamases and their environmental preferences. The number of interactions formed by arginine is higher than lysine in the cationic group, while tyrosine is comparatively higher than phenylalanine and tryptophan in the π group. Our results indicate that cation–π interactions might play an important role in the global conformational stability of β-lactamases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PDB:

Protein data bank

CAPTURE:

Cation–π trends using realistic electrostatics

OPLS:

Optimized potentials for liquid simulations

Arg (R):

Arginine

Lys (K):

Lysine

Tyr (Y):

Tyrosine

Trp (W):

Tryptophan

Phe (F):

Phenylalanine

E es :

Electrostatic

E vdw :

van der Waals

References

  1. Dougherty, D. A. (1996). Cation–π interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp. Science, 271, 163–168.

    Article  PubMed  CAS  Google Scholar 

  2. Gallivan, J. P., & Dougherty, D. A. (1999). Cation–π interactions in structural biology. Proceedings of the National Academy of Sciences, 96, 9459–9464.

    Article  CAS  Google Scholar 

  3. Gallivan, J. P., & Dougherty, D. A. (2000). A computational study of cation–π interactions vs salt bridges in aqueous media: Implications for protein engineering. Journal of the American Chemical Society, 122, 870–874.

    Article  CAS  Google Scholar 

  4. Gromiha, M. M. (2003). Influence of cation–π interactions in different folding types of membrane proteins. Biophysical Chemistry, 25, 251–258.

    Article  Google Scholar 

  5. Ma, J. C., & Dougherty, D. A. (1997). The cationminus signpi interaction. Chemical Reviews, 97(5), 1303–1324.

    Article  PubMed  CAS  Google Scholar 

  6. Wouters, J. (1998). Cation–π interactions in the crystal structure of tetragonal lysozyme. Protein Science, 7, 2472–2475.

    Article  PubMed  CAS  Google Scholar 

  7. Anbarasu, A., & Shrivaishnavi, P. S. (2009). Role of cation–π interactions in the structural stability of bacterial exotoxins. Journal of Microbial Biochemical Technology, 1, 22–29.

    Article  CAS  Google Scholar 

  8. Anitha, P., Sivasakthi, V., Lavanya, P., Bag, S., Kumar, K. M., Anbarasu, A., et al. (2012). Arginine and lysine interactions with π residues in metalloproteins. Bioinformation, 8(17), 820–826.

    Article  PubMed  Google Scholar 

  9. Sophiya, K., & Anbarasu, A. (2011). Structural stability studies in adhesion molecules—role of cation–π interactions. Protoplasma, 248(4), 673–682.

    Article  PubMed  CAS  Google Scholar 

  10. Anbarasu, A., Anand, S., Mathew, L., & Sethumadhavan, R. (2007). Influence of cation–π interactions on RNA-binding proteins. International Journal of Biological Macromolecules, 40, 479–483.

    Article  PubMed  CAS  Google Scholar 

  11. Anbarasu, A., & Sethumadhavan, (2007). Exploring the role of cation–π interactions in glycoproteins lipid-binding proteins and RNA binding proteins. Journal of Theoretical Biology, 247, 346–353.

    Article  PubMed  CAS  Google Scholar 

  12. Martis, R. L., Singh, S. K., Gromiha, M. M., & Santhosh, C. (2008). Role of cation–π interactions in single chain ‘all-alpha’ proteins. Journal of Theoretical Biology, 250, 655–662.

    Article  PubMed  CAS  Google Scholar 

  13. Muraki, M. (2002). The importance of CH/pi interactions to the function of carbohydrate binding proteins. Protein and Peptide Letters, 9, 195–209.

    Article  PubMed  CAS  Google Scholar 

  14. Umezawa, Y., Tsuboyama, S., Tsuboyama, H., Uzawa, J., & Nishio, M. (1999). CH/pi interaction in the conformation of peptides. A database study. Bioorganic & Medicinal Chemistry, 7, 2021–2026.

    Article  CAS  Google Scholar 

  15. Spiwok, V., Lipovová, P., Skálová, T., Buchtelová, E., & Hašek, J. (2004). Role of CH/π interaction in substrate binding by Escherichia coli β-galactosidase. Carbohydrate Research, 339, 2275–2280.

    Article  PubMed  CAS  Google Scholar 

  16. Measer, T. J., Smith, K. B., Decatur, S. M., Zhao, L., Yang, G., & Stenner, S. M. (2009). The self-aggregation of a polyalanine octamer promoted by its C-terminal tyrosine and probed by a strongly enhanced VCD signal. Journal of the American Chemical Society, 131, 18218–18219.

    Article  Google Scholar 

  17. Radu, B. M., Bacalum, M., Marin, A., Chifiriuc, C. M., Lazar, V., & Radu, M. (2011). Mechanisms of ceftazidime and ciprofloxacin transport through porins in multidrug- resistance developed by extended-spectrum beta-lactamase E. coli strains. Journal of Fluorescence, 21, 1421–1429.

    Article  PubMed  CAS  Google Scholar 

  18. Wilke, M. S., Lovering, A. L., & Strynadka, N. C. (2005). Beta-lactam antibiotic resistance: A current structural perspective. Current Opinion in Microbiology, 8, 525–533.

    Article  PubMed  CAS  Google Scholar 

  19. Bush, K. (2001). New β-lactamases in gram-negative bacteria: Diversity and impact on the selection of antimicrobial therapy. Clinical Infectious Diseases, 32, 1085–1089.

    Article  PubMed  CAS  Google Scholar 

  20. Jacoby, G. A., & Munoz-Price, L. S. (2005). The new β-lactamases. New England Journal of Medicine, 352, 380–391.

    Article  PubMed  CAS  Google Scholar 

  21. Nathisuwan, S., Burgess, D. S., & Lewis, J. S. (2001). Extended spectrum beta-lactamases, epidemiology, detection and treatment. Pharmacotherapy, 21, 920–928.

    Article  PubMed  CAS  Google Scholar 

  22. Hartmut, M. L. (2008). Rational antibiotic therapy and the position of ampicillin/sulbactam. International Journal of Antimicrobial Agents, 32, 10–28.

    Article  Google Scholar 

  23. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). The protein data bank. Nucleic Acid Research, 28, 235–242.

    Article  CAS  Google Scholar 

  24. Jorgensen, W. L., & Julian, Rives. R. (1988). The OPLS (optimized potentials for liquid simulations) potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110, 1657–1666.

    Article  CAS  Google Scholar 

  25. Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all atom force field on conformational energetic and properties of organic liquid. Journal of the American Chemical Society, 118, 11225–11236.

    Article  CAS  Google Scholar 

  26. Anbarasu, A., Prasad, V. R., Sathpathy, S., & Sethumadhavan, R. (2009). Influence of cation–π interactions to the structural stability of prokaryotic and eukaryotic translation elongation factor. Protoplasma, 238, 21.

    Article  Google Scholar 

  27. Gromiha, M. M., Santhosh, C., & Ahmad, S. (2004). Structural analysis of cation–π interactions in DNA binding proteins. International Journal of Biological Macromolecules, 34, 203–211.

    Article  PubMed  CAS  Google Scholar 

  28. Ahmad, S., Gromiha, M., Fawareh, H., & Sarain, A. (2004). ASA view: Database and tool for solvent accessibility representation in proteins. BMC Bioinformatics, 5, 51.

    Article  PubMed  Google Scholar 

  29. Gromiha, M. M., & Selvaraj, S. (1997). Influence of medium and long range interaction in different structural classes of globular proteins. Journal of Biological Physics, 23, 151–162.

    Article  PubMed  CAS  Google Scholar 

  30. Dosztanyi, Z., Andras, F., & Istvan, S. (1997). Stabilization centers in proteins: Identification, characterization and predictions. Journal of Molecular Biology, 272, 597–612.

    Article  PubMed  CAS  Google Scholar 

  31. Baker, D. (2000). A surprising simplicity to protein folding. Nature, 405, 39–42.

    Article  PubMed  CAS  Google Scholar 

  32. Dosztanyi, Z., Magyar, C., Tusnady, G., & Simon, I. (2003). SCide: Identification of stabilization of stabilization centers in proteins. Bioinformatics, 19, 899–900.

    Article  PubMed  CAS  Google Scholar 

  33. Landau, M., Maryrose, I., Rosenberg, Y., Glaser, F., Martz, E., Pupko, T., et al. (2005). ConSurf 2005: The projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Research, 33, 299–302.

    Article  Google Scholar 

  34. Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). Ligplot: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8, 127–134.

    Article  PubMed  CAS  Google Scholar 

  35. Hallowita, (2011). Structural and thermochemical studies of cation–π interactions: Elucidation of the fundamental interactions that influence their strength and specificity. Dissertation: Wayne State University.

    Google Scholar 

  36. Burley, S. K., & Petsko, G. A. (1986). Amino-aromatic interactions in proteins. FEBS Letters, 203, 139–143.

    Article  PubMed  CAS  Google Scholar 

  37. Chen, C. C., Hsu, W., Hwang, K. C., Hwu, J. R., Lin, C. C., & Horng, J. C. (2011). Contributions of cation–π interactions to the collagen triple helix stability. Archives of Biochemistry and Biophysics, 508, 46–53.

    Article  PubMed  CAS  Google Scholar 

  38. Malkov, S. N., Miodrag, V., Zivkovic, M. V., Beljanski, M. V., Hall, M. B., & Zaric, S. D. (2008). A reexamination of the propensities of amino acids towards a particular secondary structure: Classification of amino acids based on their chemical structure. Journal of Molecular Modeling, 14, 769–775.

    Article  PubMed  CAS  Google Scholar 

  39. Fuxreiter, M., & Simon, I. (2002). Role of stabilization centers in 4 helix bundle proteins. Proteins: Structure, Function, and Bioinformatics, 48, 320–326.

    Article  CAS  Google Scholar 

  40. Anand, S., Anbarasu, A., & Sethumadhavan, R. (2008). Influence of CH–π hydrogen bonds in interleukins. In Silico Biology, 8, 261–273.

    PubMed  CAS  Google Scholar 

  41. Ko, J., Murga, L. F., Wei, Y., & Ondrechen, M. J. (2005). Prediction of active sites for protein structures from computed chemical properties. Bioinformatics, 21, i258–i265.

    Article  PubMed  CAS  Google Scholar 

  42. Zhao, X. M., Li, X., Chen, L., & Aihara, K. (2007). Protein classification with imbalanced data. Proteins: Structure Function Bioinformatics, 70, 1125–1132.

    Article  Google Scholar 

  43. Gilis, D., & Rooman, M. (1997). Predicting protein stability changes upon mutation using database-derived potentials: Solvent accessibility determines the importance of local versus non-local interactions along the sequence. Journal of Molecular Biology, 272, 276–290.

    Article  PubMed  CAS  Google Scholar 

  44. Durham, E., Dorr, B., Woetzel, N., Startitzbichler, R., & Meiler, J. (2009). Solvent accessible surface area approximations for rapid and accurate protein structure prediction. Journal of Molecular Modeling, 15, 1093–1108.

    Article  PubMed  CAS  Google Scholar 

  45. Perl, D., Mueller, U., Heinemann, U., & Schmid, F. X. (2000). Two exposed amino acid residues confer thermostability on a cold shock protein. Natural Structural Biology, 7, 380–383.

    Article  CAS  Google Scholar 

  46. Levitt, M. (1978). Conformational preferences of amino acids in globular proteins. Biochemistry, 17, 4277–4285.

    Article  PubMed  CAS  Google Scholar 

  47. Pauling, L., & Corey, R. B. (1951). Atomic coordinates and structure factors for two helical configurations of polypeptide chains. Proceedings of the National Academy of Sciences, 37, 235–240.

    Article  CAS  Google Scholar 

  48. Villegas, V., Viguera, A. R., Aviles, F. X., & Serrano, L. (1996). Stabilization of proteins by rational design of alpha-helix stability using helix/coil transition theory. Folding and Design, 1, 29–34.

    Article  PubMed  CAS  Google Scholar 

  49. Simon, A., Dosztanyi, Z., Magyar, C., Szirtes, G., Rajnavolgyi, E., & Simon, I. (2001). Stabilization centers and protein stability. Theoretica Chimica Acta, 106, 121–127.

    CAS  Google Scholar 

  50. Bahar, I., & Jernigan, R. L. (1997). Inter-residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separations. Journal of Molecular Biology, 266, 195–214.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Anand Anbarasu gratefully acknowledges the Indian council of Medical Research (ICMR), Government of India Agency, for the research grant [IRIS ID: 2011-03260] to carry out this research. P. Lavanya thanks ICMR for the Research fellowship through the ICMR grant IRIS ID: 2011-03260. We would like to thank the management of VIT University for providing us the necessary facilities to carry out this research project.

Conflict of interest

The authors declare there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Anbarasu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 84 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavanya, P., Ramaiah, S. & Anbarasu, A. Cation–π Interactions in β-Lactamases: The Role in Structural Stability. Cell Biochem Biophys 66, 147–155 (2013). https://doi.org/10.1007/s12013-012-9463-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9463-x

Keywords

Navigation