Skip to main content
Log in

A reexamination of the propensities of amino acids towards a particular secondary structure: classification of amino acids based on their chemical structure

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The correlation between the primary and secondary structures of proteins was analysed using a large data set from the Protein Data Bank. Clear preferences of amino acids towards certain secondary structures classify amino acids into four groups: α-helix preferrers, strand preferrers, turn and bend preferrers, and His and Cys (the latter two amino acids show no clear preference for any secondary structure). Amino acids in the same group have similar structural characteristics at their Cβ and Cγ atoms that predicts their preference for a particular secondary structure. All α-helix preferrers have neither polar heteroatoms on Cβ and Cγ atoms, nor branching or aromatic group on the Cβ atom. All strand preferrers have aromatic groups or branching groups on the Cβ atom. All turn and bend preferrers have a polar heteroatom on the Cβ or Cγ atoms or do not have a Cβ atom at all. These new rules could be helpful in making predictions about non-natural amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The correlations were calculated for some other thresholds with no significant differences. While specific correlation values differ, the trends and general conclusions are the same. The threshold of 25% is subjectively estimated as a good measure because smaller thresholds raise redundancy and larger thresholds reduce the sample size.

References

  1. Bowie JU, Luthy R, Eisenberg DA (1992) Science 253:164–170

    Article  Google Scholar 

  2. Chen CC, Singh JP, Altman RB (1999) Bioinformatics 15:53–65

    Article  Google Scholar 

  3. Eyrich VA, Standley DM, Felts AK, Friesner RA (1999) Proteins 35:41–57

    Article  CAS  Google Scholar 

  4. Eyrich VA Standley DM, Friesner RA (1999) J Mol Biol 288:725–742

    Article  Google Scholar 

  5. Fischer D, Eisenberg D (1996) Protein Sci 5:947–955

    CAS  Google Scholar 

  6. Kelley LA, MacCallum RM, Sternberg MJE (2000) J Mol Biol 299:499–520

    Article  CAS  Google Scholar 

  7. Koretke KK, Luthey-Schulten L, Wolynes PG (1998) Proc Natl Acad Sci USA 95:2932–2937

    Article  CAS  Google Scholar 

  8. Levitt M, Warshel A (1975) Nature 253:694–698

    Article  CAS  Google Scholar 

  9. Lomize AL, Pogozheva ID, Mosberg HI (1999) Proteins Suppl 3:199–203

    Article  Google Scholar 

  10. Maiorov VN, Crippen GM (1992) J Mol Biol 227:876–888

    Article  CAS  Google Scholar 

  11. Ortiz AR, Kolinski A, Rotkiewicz P, Ilkowsky B, Skolnick J (1999) Proteins Suppl 3:177–185

    Article  Google Scholar 

  12. Rost B (1998) Protein structure prediction in 1D 2D and 3D. In: von Rague-Schleyer P et al (eds) Encyclopedia of computational chemistry. Wiley, Sussex, pp 2242–2255

    Google Scholar 

  13. Samudrala R, Xia Y, Huang E, Levitt M (1000) Proteins Suppl 3:194–198

    Google Scholar 

  14. Samudrala R, Huang E, Koehl P, Levitt M (2000) Protein Eng 13:453–457

    Article  CAS  Google Scholar 

  15. Solis AD, Rackovsky S (2004) Polymer 45:525–546

    Article  CAS  Google Scholar 

  16. Chou PY, Fasman GD (1974) Biochemistry 13:222–245

    Article  CAS  Google Scholar 

  17. Chou PY, Fasman GD (1978) Adv Enzymol Relat Areas Mol Biol 47:45–148

    CAS  Google Scholar 

  18. Levitt M (1978) Biochemistry 17:4277–4285

    Article  CAS  Google Scholar 

  19. Kim CA, Berg JM (1990) Nature 362:267–270

    Article  Google Scholar 

  20. Minor DL, Kim PS (1994) Nature 367:660–663

    Article  CAS  Google Scholar 

  21. O'Neil KT, DeGrado WF (1990) Science 250:646–651

    Article  Google Scholar 

  22. Padmanabhan S, Marqusee S, Ridgeway T, Laue TM, Baldwin RL (1990) Nature 344:268–270

    Article  CAS  Google Scholar 

  23. Street AG, Mayo SL (1999) Proc Natl Acad Sci USA 96:9074–9076

    Article  CAS  Google Scholar 

  24. Penel S, Hughes E, Doig AJ (1999) J Mol Biol 287:127–143

    Article  CAS  Google Scholar 

  25. Petukhov M, Muñoz V, Yumoto N, Yoshikawa S, Serrano L (1998) J Mol Biol 278:279–289

    Article  CAS  Google Scholar 

  26. Engel DE, DeGrado WF (2004) J Mol Biol 337(5):1195–1205

    Article  CAS  Google Scholar 

  27. Mandel-Gutfreund Y, Gregoret LM (2002) J Mol Biol 323(3):453–61

    Article  CAS  Google Scholar 

  28. Fitzkee NC, Fleming PJ, Gong H, Panasik N Jr, Street TO, Rose GD (2005) Trends Biochem Sci 30:73–80

    Article  CAS  Google Scholar 

  29. Gong H, Fleming PJ, Rose GD (2005) Proc Natl Acad Sci USA 102(45):16227–16232

    Article  CAS  Google Scholar 

  30. Fleming PJ, Gong HP, Rose GD (2006) Prot Sci 15(8):1829–1834

    Article  CAS  Google Scholar 

  31. Rose GD, Fleming PJ, Banavar JR, Maritan A (2006) Proc Natl Acad Sci USA 103(45):16623–16633

    Article  CAS  Google Scholar 

  32. Baldwin RL (2007) J Mol Biol 371:283–301

    Article  CAS  Google Scholar 

  33. Chou PY, Fasman GD (1974) Biochemistry 13(2):211–222

    Article  CAS  Google Scholar 

  34. Robson B (1974) Biochem J 141(3):853–867

    CAS  Google Scholar 

  35. Kabsch W, Sander C (1983) Biopolymers 22(12):2577–2637

    Article  CAS  Google Scholar 

  36. Rost B (2001) J Struc Biol 134:204–218

    Article  CAS  Google Scholar 

  37. Kloczkowski A, Ting KL, Jernigan RL, Garnier J (2002) Proteins 49:154–166

    Article  CAS  Google Scholar 

  38. Samuels ML, Witmer JA (2003) Statistics for the life sciences, 3rd edn. Pearson, New Jersey

    Google Scholar 

  39. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28(1):235–242

    Article  CAS  Google Scholar 

  40. Hobohm U, Sander C (1994) Protein Sci 3:522–524

    Article  CAS  Google Scholar 

  41. Gibrat JF, Garnier J, Robson B (1987) J Mol Biol 198:425–443

    Article  CAS  Google Scholar 

  42. Bastolla U, Moya A, Viguera E, van Ham RCHJ (2004) J Mol Biol 343:1451–1466

    Article  CAS  Google Scholar 

  43. Levitt M, Greer J (1977) J Mol Biol 114:181–239

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported under projects, No 142037 and No 144030 by the Ministry of Science of the Republic of Serbia. M.B.H. acknowledges the support of the National Science Foundation, USA (CHE-0518074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snežana D. Zarić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malkov, S.N., Živković, M.V., Beljanski, M.V. et al. A reexamination of the propensities of amino acids towards a particular secondary structure: classification of amino acids based on their chemical structure. J Mol Model 14, 769–775 (2008). https://doi.org/10.1007/s00894-008-0313-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0313-0

Keywords

Navigation