Skip to main content

Advertisement

Log in

Hypothesis of an Energetic Function for Myelin

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Nervous system is a great oxygen consumer, but the site of oxygen absorption has remained elusive. Four proteomic studies have shown that the respiratory complexes I to V may be expressed in isolated myelin. Myelin is an outgrowth of glial cells, surrounding many axons in multiple spires both in peripheral and central nervous system. Recent quantitative analyses strongly support the daring hypothesis that myelin is functional in aerobic ATP production, to supply the neuron with chemical energy. A vision of myelin sheath as a structure devoted to the oxygen absorbance for glucose combustion in nervous system thank to its enormous surface, would be also supported by an impressive series of characteristics and properties of myelin that do not presently find an explanation, all of which are herein examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Silver, I., & Erecinska, M. (1998). Oxygen and ion concentrations in normoxic and hypoxic brain cells. Advances in Experimental Medicine and Biology, 454, 7–16.

    PubMed  CAS  Google Scholar 

  2. Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow and Metabolism, 21, 1133–1145.

    PubMed  CAS  Google Scholar 

  3. Kann, O., & Kovacs, R. (2007). Mitochondria and neuronal activity. American Journal of Physiology: Cell Physiology, 292, C641–C657.

    Article  PubMed  CAS  Google Scholar 

  4. Ames, A., 3rd. (2000). CNS energy metabolism as related to function. Brain Research: Brain Research Reviews, 34, 42–68.

    Article  CAS  Google Scholar 

  5. Mitchell, P. (1961). Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature, 191, 144–148.

    Article  PubMed  CAS  Google Scholar 

  6. Veltri, K. L., Espiritu, M., & Singh, G. (1990). Distinct genomic copy number in mitochondria of different mammalian organs. Journal of Cellular Physiology, 143, 160–164.

    Article  PubMed  CAS  Google Scholar 

  7. Edgar, J. M., McCulloch, M. C., Thomson, C. E., & Griffiths, I. R. (2008). Distribution of mitochondria along small-diameter myelinated central nervous system axons. Journal of Neuroscience Research, 86, 2250–2257.

    Article  PubMed  CAS  Google Scholar 

  8. Mela, L., & Seitz, S. (1979). Isolation of mitochondria with emphasis on heart mitochondria from small amounts of tissue. In S. P. Colowick & N. O. Kaplan (Eds.), Methods in enzymology (pp. 39–46). New York: Academic Press.

    Google Scholar 

  9. Cordeau-Lossouarn, L., Vayssiere, J. L., Larcher, J. C., Gros, F., & Croizat, B. (1991). Mitochondrial maturation during neuronal differentiation in vivo and in vitro. Biology of the Cell, 71, 57–65.

    Article  PubMed  CAS  Google Scholar 

  10. Griffiths, I., Klugmann, M., Anderson, T., Yool, D., Thomson, C., Schwab, M. H., et al. (1998). Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science, 280, 1610–1613.

    Article  PubMed  CAS  Google Scholar 

  11. Ferreira, A. A., Nazario, J. C., Pereira, M. J., Azevedo, N. L., & Barradas, P. C. (2004). Effects of experimental hypothyroidism on myelin sheath structural organization. Journal of Neurocytology, 33, 225–231.

    Article  PubMed  CAS  Google Scholar 

  12. Sidell, B. D. (1998). Intracellular oxygen diffusion: The roles of myoglobin and lipid at cold body temperature. Journal of Experimental Biology, 201, 1119–1128.

    PubMed  CAS  Google Scholar 

  13. Ferguson, B., Matyszak, M. K., Esiri, M. M., & Perry, V. H. (1997). Axonal damage in acute multiple sclerosis lesions. Brain, 120(Pt 3), 393–399.

    Article  PubMed  Google Scholar 

  14. Trapp, B. D., & Nave, K. A. (2008). Multiple sclerosis: An immune or neurodegenerative disorder? Annual Review of Neuroscience, 31, 247–269.

    Article  PubMed  CAS  Google Scholar 

  15. Ravera, S., Panfoli, I., Calzia, D., Aluigi, M. G., Bianchini, P., Diaspro, A., et al. (2009). Evidence for aerobic ATP synthesis in isolated myelin vesicles. International Journal of Biochemistry and Cell Biology, 41, 1581–1591.

    Article  PubMed  CAS  Google Scholar 

  16. Ravera, S., Calzia, D., Bianchini, P., Diaspro, A., & Panfoli, I. (2007). Confocal laser scanning microscopy of retinal rod outer segment intact disks: New labeling technique. Journal of Biomedical Optics, 12, 050501.

    Article  PubMed  Google Scholar 

  17. Bianchini, P., Calzia, D., Ravera, S., Candiano, G., Bachi, A., Morelli, A., et al. (2008). Live imaging of mammalian retina: Rod outer segments are stained by conventional mitochondrial dyes. Journal of Biomedical Optics, 13, 054017.

    Article  PubMed  Google Scholar 

  18. Champagne, E., Martinez, L. O., Collet, X., & Barbaras, R. (2006). Ecto-F1Fo ATP synthase/F1 ATPase: Metabolic and immunological functions. Current Opinion in Lipidology, 17, 279–284.

    Article  PubMed  CAS  Google Scholar 

  19. Panfoli, I., Ravera, S., Bruschi, M., Candiano, G., & Morelli, A. (2011). Proteomics unravels the exportability of the mitochondrial respiratory chains. Expert Review Proteomics, 8, in press.

  20. Panfoli, I., Musante, L., Bachi, A., Ravera, S., Calzia, D., Cattaneo, A., et al. (2008). Proteomic analysis of the retinal rod outer segment disks. Journal of Proteome Research, 7, 2654–2669.

    Article  PubMed  CAS  Google Scholar 

  21. Panfoli, I., Calzia, D., Bianchini, P., Ravera, S., Diaspro, A., Candiano, G., et al. (2009). Evidence for aerobic metabolism in retinal rod outer segment disks. International Journal of Biochemistry and Cell Biology, 41, 2555–2565.

    Article  PubMed  CAS  Google Scholar 

  22. Panfoli, I., Calzia, D., Ravera, S., Bianchini, P., & Diaspro, A. (2010). Immunochemical or fluorescent labeling of vesicular subcellular fractions for microscopy imaging. Microscopy Research and Technique, 73, 1086–1090.

    Article  PubMed  Google Scholar 

  23. Ravera, S., Panfoli, I., Aluigi, M. G., Calzia, D. & Morelli, A. (2010). Characterization of myelin sheath F(o)F(1)-ATP synthase and its regulation by IF (1). Cell Biochemistry and Biophysics, 59, 63–70.

    Article  Google Scholar 

  24. Taylor, C. M., Marta, C. B., Claycomb, R. J., Han, D. K., Rasband, M. N., Coetzee, T., et al. (2004). Proteomic mapping provides powerful insights into functional myelin biology. Proceedings of the National Academy of Sciences of the United States of America, 101, 4643–4648.

    Article  PubMed  CAS  Google Scholar 

  25. Vanrobaeys, F., Van Coster, R., Dhondt, G., Devreese, B., & Van Beeumen, J. (2005). Profiling of myelin proteins by 2D-gel electrophoresis and multidimensional liquid chromatography coupled to MALDI TOF-TOF mass spectrometry. Journal of Proteome Research, 4, 2283–2293.

    Article  PubMed  CAS  Google Scholar 

  26. Werner, H. B., Kuhlmann, K., Shen, S., Uecker, M., Schardt, A., Dimova, K., et al. (2007). Proteolipid protein is required for transport of sirtuin 2 into CNS myelin. Journal of Neuroscience, 27, 7717–7730.

    Article  PubMed  CAS  Google Scholar 

  27. Ishii, A., Dutta, R., Wark, G. M., Hwang, S. I., Han, D. K., Trapp, B. D., et al. (2009). Human myelin proteome and comparative analysis with mouse myelin. Proceedings of the National Academy of Sciences of the United States of America, 106, 14605–14610.

    Article  PubMed  CAS  Google Scholar 

  28. Yamaguchi, Y., Miyagi, Y., & Baba, H. (2008). Two-dimensional electrophoresis with cationic detergents: A powerful tool for the proteomic analysis of myelin proteins. Part 2: Analytical aspects. Journal of Neuroscience Research, 86, 766–775.

    Article  PubMed  CAS  Google Scholar 

  29. Zatta, P., & Frank, A. (2007). Copper deficiency and neurological disorders in man and animals. Brain Research Reviews, 54, 19–33.

    Article  PubMed  CAS  Google Scholar 

  30. Liu, P. C., Chen, Y. W., Centeno, J. A., Quezado, M., Lem, K., & Kaler, S. G. (2005). Downregulation of myelination, energy, and translational genes in Menkes disease brain. Molecular Genetics and Metabolism, 85, 291–300.

    Article  PubMed  CAS  Google Scholar 

  31. Zimmerman, A. W., Matthieu, J. M., Quarles, R. H., Brady, R. O., & Hsu, J. M. (1976). Hypomyelination in copper-deficient rats. Prenatal and postnatal copper replacement. Archives of Neurology, 33, 111–119.

    PubMed  CAS  Google Scholar 

  32. Diaz, R. S., & Monreal, J. (1994). Unusual low proton permeability of liposomes prepared from the endogenous myelin lipids. Journal of Neurochemistry, 62, 2022–2029.

    Article  PubMed  CAS  Google Scholar 

  33. Heape, A., Juguelin, H., Fabre, M., Boiron, F., & Cassagne, C. (1986). A quantitative developmental study of the peripheral nerve lipid composition during myelinogenesis in normal and trembler mice. Brain Research, 390, 181–189.

    Article  PubMed  CAS  Google Scholar 

  34. Hoch, F. L. (1992). Cardiolipins and biomembrane function. Biochimica et Biophysica Acta, 1113, 71–133.

    PubMed  CAS  Google Scholar 

  35. Haines, T. H., & Dencher, N. A. (2002). Cardiolipin: A proton trap for oxidative phosphorylation. FEBS Letters, 528, 35–39.

    Article  PubMed  CAS  Google Scholar 

  36. Roussel, V., Yi, F., Jauberteau, M. O., Couderq, C., Lacombe, C., Michelet, V., et al. (2000). Prevalence and clinical significance of anti-phospholipid antibodies in multiple sclerosis: A study of 89 patients. Journal of Autoimmunity, 14, 259–265.

    Article  PubMed  CAS  Google Scholar 

  37. Ghandour, M. S., Langley, O. K., Zhu, X. L., Waheed, A., & Sly, W. S. (1992). Carbonic anhydrase IV on brain capillary endothelial cells: A marker associated with the blood–brain barrier. Proceedings of the National Academy of Sciences of the United States of America, 89, 6823–6827.

    Article  PubMed  CAS  Google Scholar 

  38. Cammer, W. (1984). Carbonic anhydrase in oligodendrocytes and myelin in the central nervous system. Annals of the New York Academy of Sciences, 429, 494–497.

    Article  PubMed  CAS  Google Scholar 

  39. Cammer, W., Zhang, H., & Tansey, F. A. (1995). Effects of carbonic anhydrase II (CAII) deficiency on CNS structure and function in the myelin-deficient CAII-deficient double mutant mouse. Journal of Neuroscience Research, 40, 451–457.

    Article  PubMed  CAS  Google Scholar 

  40. Falk, M. J., Kayser, E. B., Morgan, P. G., & Sedensky, M. M. (2006). Mitochondrial complex I function modulates volatile anesthetic sensitivity in C. elegans. Current Biology, 16, 1641–1645.

    Article  PubMed  CAS  Google Scholar 

  41. Davis, K. L., Stewart, D. G., Friedman, J. I., Buchsbaum, M., Harvey, P. D., Hof, P. R., et al. (2003). White matter changes in schizophrenia: Evidence for myelin-related dysfunction. Archives of General Psychiatry, 60, 443–456.

    Article  PubMed  Google Scholar 

  42. Prabakaran, S., Swatton, J. E., Ryan, M. M., Huffaker, S. J., Huang, J. T., Griffin, J. L., et al. (2004). Mitochondrial dysfunction in schizophrenia: Evidence for compromised brain metabolism and oxidative stress. Molecular Psychiatry, 9, 684–697. 643.

    Article  PubMed  CAS  Google Scholar 

  43. Hargittai, P. T., & Lieberman, E. M. (1991). Axon-glia interactions in the crayfish: Glial cell oxygen consumption is tightly coupled to axon metabolism. Glia, 4, 417–423.

    Article  PubMed  CAS  Google Scholar 

  44. Azzarelli, B., Meade, P., & Muller, J. (1980). Hypoxic lesions in areas of primary myelination. A distinct pattern in cerebral palsy. Childs Brain, 7, 132–145.

    PubMed  CAS  Google Scholar 

  45. Waxman, S. G., Black, J. A., Stys, P. K., & Ransom, B. R. (1992). Ultrastructural concomitants of anoxic injury and early post-anoxic recovery in rat optic nerve. Brain Research, 574, 105–119.

    Article  PubMed  CAS  Google Scholar 

  46. Hassan, K., Gross, B., Simri, W., Rubinchik, I., Cohen, H., Jacobi, J., et al. (2004). The presence of erythropoietin receptors in the human peripheral nervous system. Clinical Nephrology, 61, 127–129.

    PubMed  CAS  Google Scholar 

  47. Sugawa, M., Sakurai, Y., Ishikawa-Ieda, Y., Suzuki, H., & Asou, H. (2002). Effects of erythropoietin on glial cell development; oligodendrocyte maturation and astrocyte proliferation. Neuroscience Research, 44, 391–403.

    Article  PubMed  CAS  Google Scholar 

  48. Haque, A., Nishikawa, M., Qian, W., Mashimo, M., Hirose, M., Nishiguchi, S., et al. (2006). Lack of mitochondrial DNA enhances growth of hepatocellular carcinoma in vitro and in vivo. Hepatology Research, 36, 209–216.

    Article  PubMed  CAS  Google Scholar 

  49. Bishop, T., & Brand, M. D. (2000). Processes contributing to metabolic depression in hepatopancreas cells from the snail Helix aspersa. Journal of Experimental Biology, 203, 3603–3612.

    PubMed  CAS  Google Scholar 

  50. Saez, J. C., Berthoud, V. M., Branes, M. C., Martinez, A. D., & Beyer, E. C. (2003). Plasma membrane channels formed by connexins: Their regulation and functions. Physiological Reviews, 83, 1359–1400.

    PubMed  CAS  Google Scholar 

  51. Balice-Gordon, R. J., Bone, L. J., & Scherer, S. S. (1998). Functional gap junctions in the Schwann cell myelin sheath. Journal of Cell Biology, 142, 1095–1104.

    Article  PubMed  CAS  Google Scholar 

  52. Nagy, J. I., Ionescu, A. V., Lynn, B. D., & Rash, J. E. (2003). Connexin29 and Connexin32 at oligodendrocyte and astrocyte gap junctions and in myelin of the mouse central nervous system. The Journal of Comparative Neurology, 464, 356–370.

    Article  PubMed  CAS  Google Scholar 

  53. Rash, J. E. (2010). Molecular disruptions of the panglial syncytium block potassium siphoning and axonal saltatory conduction: Pertinence to neuromyelitis optica and other demyelinating diseases of the central nervous system. Neuroscience, 168, 982–1008.

    Article  PubMed  CAS  Google Scholar 

  54. Yamazaki, Y., Hozumi, Y., Kaneko, K., Fujii, S., Goto, K., & Kato, H. (2010). Oligodendrocytes: Facilitating axonal conduction by more than myelination. Neuroscientist, 16, 11–18.

    Article  PubMed  Google Scholar 

  55. Alvarez-Maubecin, V., Garcia-Hernandez, F., Williams, J. T., & Van Bockstaele, E. J. (2000). Functional coupling between neurons and glia. Journal of Neuroscience, 20, 4091–4098.

    PubMed  CAS  Google Scholar 

  56. Suadicani, S. O., Cherkas, P. S., Zuckerman, J., Smith, D. N., Spray, D. C., & Hanani, M. (2009). Bidirectional calcium signaling between satellite glial cells and neurons in cultured mouse trigeminal ganglia. Neuron Glia Biology, 6, 43–51.

    Article  PubMed  Google Scholar 

  57. Nadarajah, B., Jones, A. M., Evans, W. H., & Parnavelas, J. G. (1997). Differential expression of connexins during neocortical development and neuronal circuit formation. Journal of Neuroscience, 17, 3096–3111.

    PubMed  CAS  Google Scholar 

  58. Goldberg, G. S., Moreno, A. P., & Lampe, P. D. (2002). Gap junctions between cells expressing connexin 43 or 32 show inverse permselectivity to adenosine and ATP. The Journal of Biological Chemistry, 277, 36725–36730.

    Article  PubMed  CAS  Google Scholar 

  59. Sandri, C., Van Buren, J. M., & Akert, K. (1977). Membrane morphology of the vertebrate nervous system. A study with freeze-etch technique. Progress in Brain Research, 46, 1–384.

    Article  PubMed  CAS  Google Scholar 

  60. Neuberg, D. H., Carenini, S., Schachner, M., Martini, R., & Suter, U. (1998). Accelerated demyelination of peripheral nerves in mice deficient in connexin 32 and protein zero. Journal of Neuroscience Research, 53, 542–550.

    Article  PubMed  CAS  Google Scholar 

  61. Gabriel, G., Thomas, P. K., King, R. H., Stolinski, C., & Breathnach, A. S. (1986). Freeze-fracture observations on human peripheral nerve. Journal of Anatomy, 146, 153–166.

    PubMed  CAS  Google Scholar 

  62. Da Silva, P., & Miller, R. (1975). Membrane particles on fracture faces of frozen myelin. Proceedings of the National Academy of Sciences of the United States of America, 72, 4046–4050.

    Article  PubMed  CAS  Google Scholar 

  63. Black, J. A., Foster, R. E., & Waxman, S. G. (1982). Rat optic nerve: Freeze-fracture studies during development of myelinated axons. Brain Research, 250, 1–20.

    Article  PubMed  CAS  Google Scholar 

  64. Stolinski, C., Breathnach, A. S., Thomas, P. K., Gabriel, G., & King, R. H. (1985). Distribution of particle aggregates in the internodal axolemma and adaxonal Schwann cell membrane of rodent peripheral nerve. Journal of the Neurological Sciences, 67, 213–222.

    Article  PubMed  CAS  Google Scholar 

  65. Lerner, R. A., Siuzdak, G., Prospero-Garcia, O., Henriksen, S. J., Boger, D. L., & Cravatt, B. F. (1994). Cerebrodiene: A brain lipid isolated from sleep-deprived cats. Proceedings of the National Academy of Sciences of the United States of America, 91, 9505–9508.

    Article  PubMed  CAS  Google Scholar 

  66. Guan, X., Cravatt, B. F., Ehring, G. R., Hall, J. E., Boger, D. L., Lerner, R. A., et al. (1997). The sleep-inducing lipid oleamide deconvolutes gap junction communication and calcium wave transmission in glial cells. Journal of Cell Biology, 139, 1785–1792.

    Google Scholar 

  67. Juszczak, G. R., & Swiergiel, A. H. (2009). Properties of gap junction blockers and their behavioural, cognitive and electrophysiological effects: Animal and human studies. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 33, 181–198.

    Google Scholar 

  68. Boger, D. L., Patterson, J. E., Guan, X., Cravatt, B. F., Lerner, R. A., & Gilula, N. B. (1998). Chemical requirements for inhibition of gap junction communication by the biologically active lipid oleamide. Proceedings of the National Academy of Sciences of the United States of America, 95, 4810–4815.

    Article  PubMed  CAS  Google Scholar 

  69. Morelli, A., Ravera, S., & Panfoli, I. (2011). Myelin sheath: A new possible role in sleep mechanism. Sleep Medicine, 12, 199.

  70. Kursula, P. (2001). The current status of structural studies on proteins of the myelin sheath (Review). International Journal of Molecular Medicine, 8, 475–479.

    PubMed  CAS  Google Scholar 

  71. Hu, Y., Doudevski, I., Wood, D., Moscarello, M., Husted, C., Genain, C., et al. (2004). Synergistic interactions of lipids and myelin basic protein. Proceedings of the National Academy of Sciences of the United States of America, 101, 13466–13471.

    Article  PubMed  CAS  Google Scholar 

  72. Chi, S. L., & Pizzo, S. V. (2006). Cell surface F1Fo ATP synthase: A new paradigm? Annals of Medicine, 38, 429–438.

    Article  PubMed  CAS  Google Scholar 

  73. Spees, J. L., Olson, S. D., Whitney, M. J., & Prockop, D. J. (2006). Mitochondrial transfer between cells can rescue aerobic respiration. Proceedings of the National Academy of Sciences of the United States of America, 103, 1283–1288.

    Article  PubMed  CAS  Google Scholar 

  74. Soltys, B. J., & Gupta, R. S. (1999). Mitochondrial-matrix proteins at unexpected locations: Are they exported? Trends in Biochemical Sciences, 24, 174–177.

    Article  PubMed  CAS  Google Scholar 

  75. Ludwin, S. K., & Bakker, D. A. (1988). Can oligodendrocytes attached to myelin proliferate? Journal of Neuroscience, 8, 1239–1244.

    PubMed  CAS  Google Scholar 

  76. Hirano, A. (1968). A confirmation of the oligodendroglial origin of myelin in the adult rat. Journal of Cell Biology, 38, 637–640.

    Article  PubMed  CAS  Google Scholar 

  77. Geren, B. B., & Schmitt, F. O. (1954). The structure of the Schwann cell and its relation to the axon in certain invertebrate nerve fibers. Proceedings of the National Academy of Sciences of the United States of America, 40, 863–870.

    Article  PubMed  CAS  Google Scholar 

  78. Zeviani, M., & Di Donato, S. (2004). Mitochondrial disorders. Brain, 127, 2153–2172.

    Article  PubMed  Google Scholar 

  79. Schon, E. A., & Manfredi, G. (2003). Neuronal degeneration and mitochondrial dysfunction. Journal of Clinical Investigation, 111, 303–312.

    PubMed  CAS  Google Scholar 

  80. Orth, M., & Schapira, A. H. (2001). Mitochondria and degenerative disorders. American Journal of Medical Genetics, 106, 27–36.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Prof. Carlo Tacchetti, University of Genova, Italy for performing TEM analyses, to Prof. Angelo Schenone, University of Genova, Italy, for his generous gift of mouse monoclonal Ab against MBP, and to Prof. Mario Pepe, for helpful elaboration of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Morelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morelli, A., Ravera, S. & Panfoli, I. Hypothesis of an Energetic Function for Myelin. Cell Biochem Biophys 61, 179–187 (2011). https://doi.org/10.1007/s12013-011-9174-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9174-8

Keywords

Navigation