Skip to main content
Log in

Support of Nerve Conduction by Respiring Myelin Sheath: Role of Connexons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Recently, we have demonstrated that myelin conducts an extramitochondrial oxidative phosphorylation, hypothesizing a novel supportive role for myelin in favor of the axon. We have also hypothesized that the ATP produced in myelin could be transferred thought gap junctions. In this work, by biochemical, immunohistochemical, and electrophysiological techniques, the existence of a connection among myelin to the axon was evaluated, to understand how ATP could be transferred from sheath to the axoplasm. Data confirm a functional expression of oxidative phosphorylation in isolated myelin. Moreover, WB and immunohistochemistry on optic nerve slices show that connexins 32 and 43 are present in myelin and colocalize with myelin basic protein. Interestingly, addition of carbenoxolone or oleamide, two gap junction blockers, causes a decrease in oxidative metabolism in purified myelin, but not in mitochondria. Similar effects were observed on conduction speed in hippocampal Schaffer collateral, in the presence of oleamide. Confocal analysis of optic nerve slices showed that lucifer yellow (that only passes through aqueous pores) signal was found in both the sheath layers and the axoplasma. In the presence of oleamide, but not with oleic acid, signal significantly decreased in the sheath and was lost inside the axon. This suggests the existence of a link among myelin and axons. These results, while supporting the idea that ATP aerobically synthesized in myelin sheath could be transferred to the axoplasm through gap junctions, shed new light on the function of the sheath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACSF:

Artificial cerebrospinal fluid

ADP:

Adenosine diphosphate

ANT:

Adenosine nucleotide translocase

ATP:

Adenosine triphosphate

EDTA:

Ethylenediaminetetraacetic acid

EGTA:

Ethylene glycol tetraacetic acid

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

IM:

Isolated myelin

MBP:

Myelin basic protein

NADH:

Nicotinamide adenine dinucleotide reduced form

OXPHOS:

Oxidative phosphorylation

PBS:

Phosphate buffer saline

PV:

Presynaptic volley

R.O.D.:

Relative optical density

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

TIM:

Transport inner membrane

WB:

Western blot

References

  1. Waxman SG (1977) Conduction in myelinated, unmyelinated, and demyelinated fibers. Arch Neurol 34:585–589

    Article  CAS  PubMed  Google Scholar 

  2. Morelli A, Ravera S, Panfoli I (2011) Hypothesis of an energetic function for myelin. Cell Biochem Biophys 61:179–187

    Article  CAS  PubMed  Google Scholar 

  3. Nave KA (2010) Myelination and the trophic support of long axons. Nat Rev Neurosci 11:275–283

    Article  CAS  PubMed  Google Scholar 

  4. Ravera S, Panfoli I, Calzia D et al (2009) Evidence for aerobic ATP synthesis in isolated myelin vesicles. Int J Biochem Cell Biol 41:1581–1591

    Article  CAS  PubMed  Google Scholar 

  5. Ravera S, Panfoli I, Aluigi MG et al (2011) Characterization of Myelin Sheath F(o)F(1)-ATP synthase and its regulation by IF(1). Cell Biochem Biophys 59:63–70

    Article  CAS  PubMed  Google Scholar 

  6. Ravera S, Bartolucci M, Calzia D et al (2013) Tricarboxylic acid cycle-sustained oxidative phosphorylation in isolated myelin vesicles. Biochimie 95:1991–1998

    Article  CAS  PubMed  Google Scholar 

  7. Ravera S, Nobbio L, Visigalli D et al (2013) Oxydative phosphorylation in sciatic nerve myelin and its impairment in a model of dysmyelinating peripheral neuropathy. J Neurochem 126:82–92. doi:10.1111/jnc.12253

    Article  CAS  PubMed  Google Scholar 

  8. Ravera S, Bartolucci M, Ramoino P, Calzia D, Traverso C, Panfoli I (2014) Oxydative Metabolism in Optic Nerve Myelin: New Perspectives in Hereditary Optic Neuropathies. Clin J Ophthalmol 1(1):003

  9. Adriano E, Perasso L, Panfoli I et al (2011) A novel hypothesis about mechanisms affecting conduction velocity of central myelinated fibers. Neurochem Res 36:1732–1739

    Article  CAS  PubMed  Google Scholar 

  10. Goldberg GS, Moreno AP, Lampe PD (2002) Gap junctions between cells expressing connexin 43 or 32 show inverse permselectivity to adenosine and ATP. J Biol Chem 277:36725–36730

    Article  CAS  PubMed  Google Scholar 

  11. Guan X, Cravatt BF, Ehring GR et al (1997) The sleep-inducing lipid oleamide deconvolutes gap junction communication and calcium wave transmission in glial cells. J Cell Biol 139:1785–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elgueta R, Tobar JA, Shoji KF et al (2009) Gap junctions at the dendritic cell-T cell interface are key elements for antigen-dependent T cell activation. J Immunol 183:277–284. doi:10.4049/jimmunol.0801854

    Article  CAS  PubMed  Google Scholar 

  13. Zhang C-L, Wilson JA, Williams J, Chiu SY (2006) Action potentials induce uniform calcium influx in mammalian myelinated optic nerves. J Neurophysiol 96:695–709. doi:10.1152/jn.00083.2006

    Article  CAS  PubMed  Google Scholar 

  14. Rash JE (2010) Molecular disruptions of the panglial syncytium block potassium siphoning and axonal saltatory conduction: pertinence to neuromyelitis optica and other demyelinating diseases of the central nervous system. Neuroscience 168:982–1008. doi:10.1016/j.neuroscience.2009.10.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Singer M, Salpeter MM (1966) The transport of 3H-l-histidine through the Schwann and myelin sheath into the axon, including a reevaluation of myelin function. J Morphol 120:281–315. doi:10.1002/jmor.1051200305

    Article  CAS  PubMed  Google Scholar 

  16. Bruni A, Luciani S, Contessa AR, Azzone GF (1964) Effects of atractyloside and oligomycin on energy-transfer reactions. Biochim Biophys Acta 82:630–632

    Article  CAS  PubMed  Google Scholar 

  17. Vega C, Martiel JL, Drouhault D et al (2003) Uptake of locally applied deoxyglucose, glucose and lactate by axons and Schwann cells of rat vagus nerve. J Physiol 546:551–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Endong L, Shijie J, Sonobe Y et al (2011) The gap-junction inhibitor carbenoxolone suppresses the differentiation of Th17 cells through inhibition of IL-23 expression in antigen presenting cells. J Neuroimmunol 240–241:58–64. doi:10.1016/j.jneuroim.2011.09.012

    Article  PubMed  Google Scholar 

  19. Herrero-Gonzalez S, Valle-Casuso JC, Sanchez-Alvarez R et al (2009) Connexin43 is involved in the effect of endothelin-1 on astrocyte proliferation and glucose uptake. Glia 57:222–233

    Article  PubMed  Google Scholar 

  20. Norton WT, Poduslo SE (1973) Myelination in rat brain: method of myelin isolation. J Neurochem 21:749–757

    Article  CAS  PubMed  Google Scholar 

  21. Ravera S, Calzia D, Panfoli I et al (2007) Simultaneous detection of molecular weight and activity of adenylate kinases after electrophoretic separation. Electrophoresis 28:291–300

    Article  CAS  PubMed  Google Scholar 

  22. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  23. Ravera S, Bartolucci M, Barbarito G et al (2013) Electrophoretic separation of purified myelin: a method to improve the protein pattern resolving. Prep Biochem Biotechnol 43:342–349. doi:10.1080/10826068.2012.737398

    Article  CAS  PubMed  Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  25. Heyman NS, Burt JM (2008) Hindered diffusion through an aqueous pore describes invariant dye selectivity of Cx43 junctions. Biophys J 94:840–854. doi:10.1529/biophysj.107.115634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Perasso L, Lunardi GL, Risso F et al (2008) Protective effects of some creatine derivatives in brain tissue anoxia. Neurochem Res 33:765–775

    Article  CAS  PubMed  Google Scholar 

  27. Rebaudo R, Melani R, Carita F et al (2000) Increase of cerebral phosphocreatine in normal rats after intracerebroventricular administration of creatine. Neurochem Res 25:1493–1495

    Article  CAS  PubMed  Google Scholar 

  28. Balestrino M, Aitken PG, Somjen GG (1986) The effects of moderate changes of extracellular K+ and Ca2+ on synaptic and neural function in the CA1 region of the hippocampal slice. Brain Res 377:229–239

    Article  CAS  PubMed  Google Scholar 

  29. Meier S, Brauer AU, Heimrich B et al (2004) Myelination in the hippocampus during development and following lesion. Cell Mol Life Sci 61:1082–1094

    Article  CAS  PubMed  Google Scholar 

  30. Lemasters JJ, Sowers AE (1979) Phosphate dependence and atractyloside inhibition of mitochondrial oxidative phosphorylation. The ADP-ATP carrier is rate-limiting. J Biol Chem 254:1248–1251

    CAS  PubMed  Google Scholar 

  31. Nagy JI, Ionescu AV, Lynn BD, Rash JE (2003) Connexin29 and connexin32 at oligodendrocyte and astrocyte gap junctions and in myelin of the mouse central nervous system. J Comp Neurol 464:356–370.

  32. Perasso L, Adriano E, Ruggeri P et al (2009) In vivo neuroprotection by a creatine-derived compound: phosphocreatine-Mg-complex acetate. Brain Res 1285:158–163

    Article  CAS  PubMed  Google Scholar 

  33. Perasso L, Spallarossa P, Gandolfo C et al (2011) Therapeutic use of creatine in brain or heart ischemia: available data and future perspectives. Med Res Rev 33:336–363

    Article  PubMed  Google Scholar 

  34. Zapara TA, Simonova OG, Zharkikh AA et al (2004) Seasonal differences and protection by creatine or arginine pretreatment in ischemia of mammalian and molluscan neurons in vitro. Brain Res 1015:41–49

    Article  CAS  PubMed  Google Scholar 

  35. Balestrino M, Rebaudo R, Lunardi G (1999) Exogenous creatine delays anoxic depolarization and protects from hypoxic damage: dose-effect relationship. Brain Res 816:124–130

    Article  CAS  PubMed  Google Scholar 

  36. Whittingham TS, Lipton P (1981) Cerebral synaptic transmission during anoxia is protected by creatine. J Neurochem 37:1618–1621

    Article  CAS  PubMed  Google Scholar 

  37. Kass IS, Lipton P (1982) Mechanisms involved in irreversible anoxic damage to the in vitro rat hippocampal slice. J Physiol 332:459–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Harris JJ, Attwell D (2013) Is myelin a mitochondrion? J Cereb Blood Flow Metab 33:33–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morelli AM, Ravera S, Calzia D, Panfoli I (2013) Hypothesis of lipid-phase-continuity proton transfer for aerobic ATP synthesis. J Cereb Blood Flow Metab 33:1838–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cherepanov DA, Junge W, Mulkidjanian AY (2004) Proton transfer dynamics at the membrane/water interface: dependence on the fixed and mobile pH buffers, on the size and form of membrane particles, and on the interfacial potential barrier. Biophys J 86:665–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mulkidjanian AY (2006) Proton in the well and through the desolvation barrier. Biochim Biophys Acta 1757:415–427

    Article  CAS  PubMed  Google Scholar 

  42. Kell DB (1979) On the functional proton current pathway of electron transport phosphorylation. An electrodic view. Biochim Biophys Acta 549:55–99

    Article  CAS  PubMed  Google Scholar 

  43. Nave KA, Trapp BD (2008) Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 31:535–561

    Article  CAS  PubMed  Google Scholar 

  44. Margineanu DG, Klitgaard H (2001) Can gap-junction blockade preferentially inhibit neuronal hypersynchrony vs. excitability? Neuropharmacology 41:377–383

    Article  CAS  PubMed  Google Scholar 

  45. Schenone A, Nobbio L, Monti Bragadin M et al (2011) Inherited neuropathies. Curr Treat Options Neurol 13:160–179

    Article  PubMed  Google Scholar 

  46. Parenti R, Cicirata F, Zappalà A et al (2010) Dynamic expression of Cx47 in mouse brain development and in the cuprizone model of myelin plasticity. Glia 58:1594–1609. doi:10.1002/glia.21032

    PubMed  Google Scholar 

  47. Lee Y, Morrison BM, Li Y et al (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487:443–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Funfschilling U, Supplie LM, Mahad D et al (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–521

    PubMed  PubMed Central  Google Scholar 

  49. Hall CN, Klein-Flugge MC, Howarth C, Attwell D (2012) Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J Neurosci 32:8940–8951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Veltri KL, Espiritu M, Singh G (1990) Distinct genomic copy number in mitochondria of different mammalian organs. J Cell Physiol 143:160–164

    Article  CAS  PubMed  Google Scholar 

  51. Erecinska M, Silver IA (1989) ATP and brain function. J Cereb Blood Flow Metab 9:2–19

    Article  CAS  PubMed  Google Scholar 

  52. Kann O, Kovacs R (2007) Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292:C641–C657

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant from the “Compagnia di San Paolo”-Neuroscience Program 2008, for the research project entitled: “Energetic metabolism in myelinated axon: a new trophic role of myelin sheath,” and from the “Fondazione Giuseppe Levi–Accademia Nazionale dei Lincei” for the research project entitled: “Produzione extramitocondriale di ATP in mielina: localizzazione dei complessi della catena respiratoria e possible ruolo nella degenerazione assonale in Sclerosi Multipla.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Ravera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravera, S., Bartolucci, M., Adriano, E. et al. Support of Nerve Conduction by Respiring Myelin Sheath: Role of Connexons. Mol Neurobiol 53, 2468–2479 (2016). https://doi.org/10.1007/s12035-015-9216-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9216-0

Keywords

Navigation