Skip to main content

Advertisement

Log in

Insights into the structure of the LC13 TCR/HLA-B8-EBV peptide complex with molecular dynamics simulations

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

One key step in the immune response against infected or tumor cells is the recognition of the T-cell receptor (TCR) by class I major histocompatibility complexes. The complex between the HLA-B8 molecule and the immunodominant peptide with sequence FLRGRAYGL, derived from the Epstein-Barr virus, with the LC13 TCR has been determined by X-ray diffraction. The complex has been used as a starting point in a molecular dynamics study in order to investigate the dynamics of the complex association and to explore the specific interactions of the complex formation. The analyzed structures provided evidence that the peptide adopts an open type β-turn conformation close to C-terminal part, which dominates peptide/TCR interactions. Conformational energy landscape analysis indicated the presence of two conformational clusters in the peptide’s structure, underlying the backbone flexibility of the peptide despite being surrounded by two receptors. The peptide/MHC/TCR interface was found to hold significant number of solvent molecules, more specifically the peptide has been found to have approximately seventeen hydrogen bonds with water molecules. The molecular dynamics simulation indicated the disruption of some MHC/TCR contacts, mainly with the CDR1α loop. However, several other interactions emerged that resulted in a stable association during the 20 ns trajectory, as revealed by the buried surface area analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walters, P. (Eds.). (2002). Molecular biology of the cell (4th ed.). New York: Garland Science.

  2. Kaas, Q., & Lefranc, M. P. (2005). T cell receptor/peptide/MHC molecular characterization and standardized pMHC contact sites in IMGT/3D structure-DB. In Silico Biology, 5, 505–528.

    PubMed  CAS  Google Scholar 

  3. Marrack, P., Scott-Browne, J. P., Dai, S., Gapin, L., & Kappler, J. W. (2008). Evolutionarily conserved amino acids that control TCR-MHC interaction. Annual Reviews in Immunology, 26, 171–203.

    Article  CAS  Google Scholar 

  4. Armstrong, K. M., Insaidoo, F. K., & Baker, B. M. (2008). Thermodynamics of T-cell receptor-peptide/MHC interactions: progress and opportunities. Journal of Molecular Recognition, 21, 275–287.

    Article  PubMed  CAS  Google Scholar 

  5. Stone, J. D., Chervin, A. S., & Kranz, D. M. (2009). T-cell receptor binding affinities and kinetics: Impact on T-cell activity and specificity. Immunology, 126, 165–176.

    Article  PubMed  CAS  Google Scholar 

  6. Savage, P. A., Boniface, J. J., & Davis, M. M. (1999). A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity, 10, 485–492.

    Article  PubMed  CAS  Google Scholar 

  7. Valitutti, S., & Lanzavecchia, A. (1997). Serial triggering of TCRs: A basis for the sensitivity and specificity of antigen recognition. Immunology Today, 18, 299–304.

    Article  PubMed  CAS  Google Scholar 

  8. Krogsgaard, M., Prado, N., Adams, E. J., He, X., Chow, D. C., Wilson, D. B., et al. (2003). Evidence that structural rearrangements and/or flexibility during TCR binding can contribute to T cell activation. Molecular Cell, 12, 1367–1378.

    Article  PubMed  CAS  Google Scholar 

  9. Borbulevych, O. Y., Piepenbrink, K. H., Gloor, B. E., Scott, D. R., Sommese, R. F., Cole, D. K., et al. (2009). T cell receptor cross-reactivity directed by antigen-dependent tuning of peptide-MHC molecular flexibility. Immunity, 31, 885–896.

    Article  PubMed  CAS  Google Scholar 

  10. Mazza, C., Auphan-Anezin, N., Gregoire, C., Guimezanes, A., Kellenberger, C., Roussel, A., et al. (2007). How much can a T-cell antigen receptor adapt to structurally distinct antigenic peptides? The EMBO Journal, 26, 1972–1983.

    Article  PubMed  CAS  Google Scholar 

  11. Hansson, T., Oostenbrink, C., & van Gunsteren, W. F. (2002). Molecular dynamics simulations. Current Opinion in Structural Biology, 12, 190–196.

    Article  PubMed  CAS  Google Scholar 

  12. Karplus, M. (2003). Molecular dynamics of biological macromolecules: A brief history and perspective. Biopolymers, 68, 350–358.

    Article  PubMed  CAS  Google Scholar 

  13. van Gunsteren, W. F., & Dolenc, J. (2008). Biomolecular simulation: historical picture and future perspectives. Biochemical Society Transactions, 36, 11–15.

    Article  PubMed  Google Scholar 

  14. Aksimentiev, A., Brunner, R., Cohen, J., Comer, J., Cruz-Chu, E., Hardy, D., et al. (2008). Computer modeling in biotechnology: A partner in development. Methods in Molecular Biology, 474, 181–234.

    Article  PubMed  CAS  Google Scholar 

  15. Mobley, D. L., & Dill, K. A. (2009). Binding of small-molecule ligands to proteins: “what you see” is not always “what you get”. Structure, 17, 489–499.

    Article  PubMed  CAS  Google Scholar 

  16. van Gunsteren, W. F., Dolenc, J., & Mark, A. E. (2008). Molecular simulation as an aid to experimentalists. Current Opinion in Structural Biology, 18, 149–153.

    Article  PubMed  Google Scholar 

  17. Mallik, B., & Morikis, D. (2006). Applications of Molecular Dynamics Simulations in immunology: A useful computational method in aiding vaccine design. Current Proteomics, 3, 259–270.

    Article  CAS  Google Scholar 

  18. Michielin, O., & Karplus, M. (2002). Binding free energy differences in a TCR-peptide-MHC complex induced by a peptide mutation: a simulation analysis. Journal of Molecular Biology, 324, 547–569.

    Article  PubMed  CAS  Google Scholar 

  19. Morikis, D., & Lambris, J. D. (2004). Physical methods for structure, dynamics and binding in immunological research. Trends in Immunology, 25, 700–707.

    Article  PubMed  CAS  Google Scholar 

  20. Stavrakoudis, A. (2009). A disulfide linked model of the complement protein C8γ complexed with C8α indel peptide. Journal of Molecular Modeling, 15, 165–171.

    Article  PubMed  CAS  Google Scholar 

  21. Stavrakoudis, A. (2010). Conformational flexibility in designing peptides for immunology: The molecular dynamics approach. Current Computer-Aided Drug Design, 6, 207–222.

    Article  PubMed  CAS  Google Scholar 

  22. Wan, S., Flower, D. R., & Coveney, P. V. (2008). Toward an atomistic understanding of the immune synapse: large-scale molecular dynamics simulation of a membrane-embedded TCR-pMHC-CD4 complex. Molecular Immunology, 45, 1221–1230.

    Article  PubMed  CAS  Google Scholar 

  23. Flower, D. R., Phadwal, K., Macdonald, I. K., Coveney, P., Davies, M. N., & Wan, S. (2010). T-cell epitope prediction and immune complex simulation using molecular dynamics: State of the art and persisting challenges. Immunome Research, 6(Suppl 2), S4. doi:10.1186/1745-7580-6-S2-S4.

    Article  PubMed  Google Scholar 

  24. Sadiq, S. K., Mazzeo, M. D., Zasada, S. J., Manos, S., Stoica, I., Gale, C. V., et al. (2008). Patient-specific simulation as a basis for clinical decision-making. Philosophical Transactions of the Royal Society A, 366, 3199–3219.

    Article  Google Scholar 

  25. Cuendet, M. A., & Michielin, O. (2008). Protein-protein interaction investigated by steered molecular dynamics: The TCR-pMHC complex. Biophysical Journal, 95, 3575–3590.

    Article  PubMed  CAS  Google Scholar 

  26. Wan, S., Coveney, P. V., & Flower, D. R. (2005). Peptide recognition by the T cell receptor: Comparison of binding free energies from thermodynamic integration, Poisson–Boltzmann and linear interaction energy approximations. Philosophical Transactions of the Royal Society A, 363, 2037–2053.

    Article  CAS  Google Scholar 

  27. Zoete, V., & Michielin, O. (2007). comparison between computational alanine scanning and per-residue binding free energy decomposition for protein-protein association using MM-GBSA: Application to the TCR-p-MHC complex. Proteins: Structure, Function, and Bioinformatics, 67, 1026–1047.

    Article  CAS  Google Scholar 

  28. Zoete, V., Irving, M. B., & Michielin, O. (2009). MM-GBSA binding free energy decomposition and T cell receptor engineering. Journal of Molecular Recognition, 23, 142–152.

    Article  Google Scholar 

  29. Kjer-Nielsen, L., Clements, C. S., Purcell, A. W., Brooks, A. G., Whisstock, J. C., Burrows, S. R., et al. (2003). A structural basis for the selection of dominant alphabeta T cell receptors in antiviral immunity. Immunity, 18, 53–64.

    Article  PubMed  CAS  Google Scholar 

  30. Koch, O., & Klebe, G. (2009). Turns revisited: A uniform and comprehensive classification of normal, open, and reverse turn families minimizing unassigned random chain portions. Proteins: Structure, Function, and Bioinformatics, 74, 353–357.

    Article  CAS  Google Scholar 

  31. Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., et al. (2002). The protein data bank. Acta Crystallographica Section D, 58, 899–907.

    Google Scholar 

  32. Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38.

    Article  PubMed  CAS  Google Scholar 

  33. Feller, S. E., & MacKerell, A. D., Jr. (2000). An improved empirical potential energy function for molecular simulations of phospholipids. The Journal of Physical Chemistry B, 104, 7510–7515.

    Article  CAS  Google Scholar 

  34. Word, J. M., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (1999). Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. Journal of Molecular Biology, 285, 1735–1747.

    Article  PubMed  CAS  Google Scholar 

  35. Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105, 9954–9960.

    Article  CAS  Google Scholar 

  36. Weber, W., Hunenberger, P. H., & McCammon, J. A. (2000). Molecular dynamics simulations of a polyalanine octapeptide under Ewald boundary conditions: influence of artificial periodicity on peptide conformation. The Journal of Physical Chemistry B, 104, 3668–3675.

    Article  CAS  Google Scholar 

  37. Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. Journal of Chemical Physics, 98, 10089–11092.

    Article  CAS  Google Scholar 

  38. Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23, 327–341.

    Article  CAS  Google Scholar 

  39. Feller, S. E., Zhang, Y., Pastor, R. W., & Brooks, B. R. (1995). Constant pressure molecular dynamics simulation: The Langevin piston method. The Journal of Physical Chemistry B, 103, 4613–4621.

    Article  CAS  Google Scholar 

  40. Tsoulos, I. G., & Stavrakoudis, A. (2011). Eucb: A C++ program for molecular dynamics trajectory analysis. Computer Physics Communications, 182, 834–841.

    Article  CAS  Google Scholar 

  41. Döker, R., Maurer, T., Kremer, W., Neidig, K., & Kalbitzer, H. R. (1999). Determination of mean and standard deviation of dihedral angles. Biochemical and Biophysical Research Communications, 257, 348–350.

    Article  PubMed  Google Scholar 

  42. Yamartino, R. J. (1984). A comparison of several “single-pass” estimators of the standard deviation of wind direction. Journal of Climate and Applied Meteorology, 23, 1362–1366.

    Article  Google Scholar 

  43. Hutchinson, E. G., & Thornton, J. M. (1994). A revised set of potentials for beta-turn formation in proteins. Protein Science, 3, 2207–22016.

    Article  PubMed  CAS  Google Scholar 

  44. Wilmot, C. M., & Thornton, J. M. (1988). Analysis and prediction of the different types of β-turn in proteins. Journal of Molecular Biology, 203, 221–232.

    Article  PubMed  CAS  Google Scholar 

  45. Glykos, N. M. (2006). Carma: A molecular dynamics analysis program. Journal of Computational Chemistry, 27, 1765–1768.

    Article  PubMed  CAS  Google Scholar 

  46. Hubbard, S. (1996). Naccess V2.1.1—atomic solvent accessible area calculations. http://www.bioinf.manchester.ac.uk/naccess/.

  47. Schlitter, J. (1993). Estimation of absolute and relative entropies of macromolecules using the covariance matrix. Chemical Physics Letters, 215, 617–621.

    Article  CAS  Google Scholar 

  48. Andricioaei, I., & Karplus, M. (2001). On the calculation of entropy from covariance matrices of the atomic fluctuations. The Journal of Chemical Physics, 115, 6289.

    Article  CAS  Google Scholar 

  49. Buck, M., Bouguet-Bonnet, S., Pastor, R. W., & MacKerell, A. D., Jr. (2006). Importance of the CMAP correction to the CHARMM22 protein force field: Dynamics of hen lysozyme. Biophysical Journal, 90, 36–38.

    Article  Google Scholar 

  50. Stavrakoudis, A. (2008). Molecular dynamics simulations of an apoliprotein derived peptide. Chemical Physics Letters, 461, 294–299.

    Article  CAS  Google Scholar 

  51. Mu, Y., Nguyen, P. H., & Stock, G. (2005). Energy landscape of a small peptide revealed by dihedral angle principal component analysis. Proteins: Structure, Function, and Bioinformatics, 58, 45–52.

    Article  CAS  Google Scholar 

  52. Fadouloglou, V. E., Stavrakoudis, A., Bouriotis, V., Kokkinidis, M., & Glykos, N. M. (2009). Molecular Dynamics simulations of BcZBP, a deacetylase from bacillus cereus: active site loops determine substrate accessibility and specificity. The Journal of Chemical Theory and Computation, 5, 3299–3311.

    Article  CAS  Google Scholar 

  53. Hoare, H. L., Sullivan, L. C., Clements, C. S., Ely, L. K., Beddoe, T., Henderson, K., et al. (2008). Subtle changes in peptide conformation profoundly affect recognition of the non-classical MHC class I molecule HLA-E by the CD94–NKG2 natural killer cell receptors. Journal of Molecular Biology, 377, 1297–1303.

    Article  PubMed  CAS  Google Scholar 

  54. Frishman, D., & Argos, P. (1995). Knowledge-based protein secondary structure assignment. Proteins: Structure, Function and Genetics, 23, 566–579.

    Article  CAS  Google Scholar 

  55. Stewart-Jones, G. B., Gillespie, G., Overton, I. M., Kaul, R., Roche, P., McMichael, A. J., et al. (2005). Structures of three HIV-1 HLA-B*5703-peptide complexes and identification of related HLAs potentially associated with long-term nonprogression. Journal of Immunology, 175, 2459–2468.

    CAS  Google Scholar 

  56. Archbold, J. K., Macdonald, W. A., Gras, S., Ely, L. K., Miles, J. J., Bell, M. J., et al. (2009). Natural micropolymorphism in human leukocyte antigens provides a basis for genetic control of antigen recognition. Journal of Experimental Medicine, 206, 209–219.

    Article  PubMed  CAS  Google Scholar 

  57. Tatsis, V. A., Tsoulos, I. G., & Stavrakoudis, A. (2009). Molecular dynamics simulations of the TSSPSAD Peptide Antigen in free and bound with CAMPATH-1H Fab antibody states: the importance of the β-turn conformation. International Journal of Peptide Research and Therapeutics, 15, 1–9.

    Article  CAS  Google Scholar 

  58. Glykos, N. (2007). On the application of molecular-dynamics simulations to validate thermal parameters and to optimize TLS-group selection for macromolecular refinement. Acta Crystallographica Section D, D63, 705–713.

    CAS  Google Scholar 

  59. Meirovitch, H., & Hendrickson, T. F. (1997). Backbone entropy of loops as a measure of their flexibility: application to a ras protein simulated by molecular dynamics. Proteins: Structure, Function, and Bioinformatics, 29, 127–140.

    Article  CAS  Google Scholar 

  60. Armstrong, K. M., Piepenbrink, K. H., & Baker, B. M. (2008). Conformational changes and flexibility in T-cell receptor recognition of peptide-MHC complexes. Biochemical Journal, 415, 183–196.

    Article  PubMed  CAS  Google Scholar 

  61. Kjer-Nielsen, L., Clements, C. S., Brooks, A. G., Purcell, A. W., Fontes, M., McCluskey, J., et al. (2002). The structure of HLA-B8 complexed to an immunodominant viral determinant: Peptide-induced conformational changes and a mode of MHC class I dimerization. The Journal of Immunology, 169, 5153–5160.

    PubMed  Google Scholar 

  62. Ishizuka, J., Stewart-Jones, G. B. E., van der Merwe, A., Bell, J. I., McMichael, A. J., & Jones, E. Y. (2008). The structural dynamics and energetics of an immunodominant T cell receptor are programmed by its Vβ domain. Immunity, 28, 171–182.

    Article  PubMed  CAS  Google Scholar 

  63. Marqusee, S., & Baldwin, R. L. (1987). Helix stabilization by Glu-…Lys + salt bridges in short peptides of de novo design. Proceedings of the National Academy of Sciences of the United States of America, 84, 8898–8902.

    Article  PubMed  CAS  Google Scholar 

  64. Petrone, P. M., & Garcia, A. E. (2004). MHC-peptide binding is assisted by bound water molecules. Journal of Molecular Biology, 338, 419–435.

    Article  PubMed  CAS  Google Scholar 

  65. Rashin, A. (1984). Buried surface area conformational entropy, and protein stability. Biopolymers, 23, 1605–1620.

    Article  PubMed  CAS  Google Scholar 

  66. Wong, S., Amaro, R. E., & McCammon, J. A. (2009). MM-PBSA captures key role of intercalating water molecules at a protein-protein interface. The Journal of Chemical Theory and Computation, 5, 422–429.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Parallel execution of NAMD was performed at the Research Center for Scientific Simulations (RCSS) of the University of Ioannina. The open source community (Linux, NAMD, GNU, etc.) is gratefully acknowledged for public release of all the necessary computer software needed for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanassios Stavrakoudis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stavrakoudis, A. Insights into the structure of the LC13 TCR/HLA-B8-EBV peptide complex with molecular dynamics simulations. Cell Biochem Biophys 60, 283–295 (2011). https://doi.org/10.1007/s12013-011-9151-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9151-2

Keywords

Navigation