Skip to main content
Log in

On Some Aspects of the Thermodynamic of Membrane Recycling Mediated by Fluid Phase Endocytosis: Evaluation of Published Data and Perspectives

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The theoretical and experimental description of fluid phase endocytosis (FPE) requires an asymmetry in phospholipid number between the two leaflets of the cell membrane, which provides the biomechanical torque needed to generate membrane budding. Although the motor force behind FPE is defined, its kinetic has yet to be determined. Based on a body of evidences suggesting that the mean surface tension is unlikely to be involved in endocytosis we decided to determine whether the cytosolic hydrostatic pressure could be involved, by considering a constant energy exchanged between the cytosol and the cell membrane. The theory is compared to existing experimental data obtained from FPE kinetic studies in living cells where altered phospholipid asymmetry or changes in the extracellular osmotic pressure have been investigated. The model demonstrates that FPE is dependent on the influx and efflux of vesicular volumes (i.e. vesicular volumes recycling) rather than the membrane tension of cells. We conclude that: (i) a relationship exists between membrane lipid number asymmetry and resting cytosolic pressure and (ii) the validity of Laplace’s law is limited to cells incubated in a definite hypotonic regime. Finally, we discuss how the model could help clarifying elusive observations obtained from different fields and including: (a) the non-canonical shuttling of aquaporin in cells, (b) the relationship between high blood pressure and inflammation and (c) the mechanosensitivity of the sodium/proton exchanger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alexander, A. (1998). Endocytosis and intracellular sorting of receptor tyrosine kinases. Frontiers of Bioscience, 3, d729–d738.

    CAS  Google Scholar 

  2. Gesbert, F., Sauvonnet, N., & Dautry-Varsat, A. (2004). Clathrin-independent endocytosis and signalling of interleukin 2 receptors IL-2R endocytosis and signalling. Current Topics in Microbiology and Immunology, 286, 119–148.

    PubMed  CAS  Google Scholar 

  3. Garvey, W. T. (1994). Glucose transporter proteins and insulin sensitivity in humans. Brazilian Journal of Medical and Biological Research, 27, 933–939.

    PubMed  CAS  Google Scholar 

  4. Rauch, C., Brunet, A. C., Deleule, J., & Farge, E. (2002). C2C12 myoblast/osteoblast transdifferentiation steps enhanced by epigenetic inhibition of BMP2 endocytosis. American Journal of Physiology. Cell Physiology, 283, C235–C243.

    PubMed  CAS  Google Scholar 

  5. Zi, X., Singh, R. P., & Agarwal, R. (2000). Impairment of erbB1 receptor and fluid-phase endocytosis and associated mitogenic signaling by inositol hexaphosphate in human prostate carcinoma DU145 cells. Carcinogenesis, 21, 2225–2235.

    Article  PubMed  CAS  Google Scholar 

  6. Yu, Y., Chu, P. Y., Bowser, D. N., Keating, D. J., Dubach, D., Harper, I., et al. (2008). Mice deficient for the chromosome 21 ortholog Itsn1 exhibit vesicle trafficking abnormalities. Human Molecular Genetics, 21, 3281–3290.

    Article  CAS  Google Scholar 

  7. Lanzetti, L., & Di Fiore, P. P. (2008). Endocytosis and cancer: An ‘insider’ network with dangerous liaisons. Traffic, 12, 2011–2021.

    Article  CAS  Google Scholar 

  8. Rauch, C. (2009). Toward a mechanical control of drug delivery. On the relationship between Lipinski’s 2nd rule and cytosolic pH changes in doxorubicin resistance levels in cancer cells: A comparison to published data. European Biophysical Journal, 7, 829–846.

    Article  CAS  Google Scholar 

  9. Rauch, C. (2009). On the relationship between drug’s size, cell membrane mechanical properties and high levels of multi drug resistance: A comparison to published data. European Biophysics Journal, 38, 537–546.

    Article  PubMed  CAS  Google Scholar 

  10. Rauch, C., & Pluen, A. (2007). Multi drug resistance-dependent “vacuum cleaner” functionality potentially driven by the interactions between endocytosis, drug size and Pgp-like transporters surface density. European Biophysics Journal, 36, 121–131.

    Article  PubMed  CAS  Google Scholar 

  11. Shen, K., DeLano, F. A., Zweifach, B. W., & Schmid-Schonbein, G. W. (1995). Circulating leukocyte counts, activation, and degranulation in Dahl hypertensive rats. Circulation Research, 76, 276–283.

    PubMed  CAS  Google Scholar 

  12. Ohmori, M., Kitoh, Y., Kawaguchi, A., Harada, K., Sugimoto, K., & Fujimura, A. (2001). Enhanced neutrophil superoxide anion production and its modification by beraprost sodium in spontaneously hypertensive rats. American Journal of Hypertension, 14, 722–728.

    Article  PubMed  CAS  Google Scholar 

  13. Nossal, R., & Zimmerberg, J. (2002). Endocytosis: Curvature to the ENTH degree. Current Biology, 12, R770–R772.

    Article  PubMed  CAS  Google Scholar 

  14. Itoh, T., & De Camilli, P. (2006). BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. Biochimica et Biophysica Acta, 1761, 897–912.

    PubMed  CAS  Google Scholar 

  15. Farge, E. (1995). Increased vesicle endocytosis due to an increase in the plasma membrane phosphatidylserine concentration. Biophysical Journal, 69, 2501–2506.

    Article  PubMed  CAS  Google Scholar 

  16. Farge, E., Ojcius, D. M., Subtil, A., & Dautry-Varsat, A. (1999). Enhancement of endocytosis due to aminophospholipid transport across the plasma membrane of living cells. The American Journal of Physiology, 276, C725–C733.

    PubMed  CAS  Google Scholar 

  17. Rauch, C., & Farge, E. (2000). Endocytosis switch controlled by transmembrane osmotic pressure and phospholipid number asymmetry. Biophysical Journal, 78, 3036–3047.

    Article  PubMed  CAS  Google Scholar 

  18. Seigneuret, M., & Devaux, P. F. (1984). ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: Relation to shape changes. Proceedings of National Academy of Sciences of the United States of America, 81, 3751–3755.

    Article  CAS  Google Scholar 

  19. Benmerah, A., & Lamaze, C. (2007). Clathrin-coated pits: Vive la difference? Traffic (Copenhagen, Denmark), 8, 970–982.

    Article  CAS  Google Scholar 

  20. Baba, T., Damke, H., Hinshaw, J. E., Ikeda, K., Schmid, S. L., & Warnock, D. E. (1995). Role of dynamin in clathrin-coated vesicle formation. Cold Spring Harbor Symposia on Quantitative Biology, 60, 235–242.

    PubMed  CAS  Google Scholar 

  21. Damke, H., Baba, T., van der Bliek, A. M., & Schmid, S. L. (1995). Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. Journal of Cell Biology, 131, 69–80.

    Article  PubMed  CAS  Google Scholar 

  22. Cupers, P., Veithen, A., Kiss, A., Baudhuin, P., & Courtoy, P. J. (1994). Clathrin polymerization is not required for bulk-phase endocytosis in rat fetal fibroblasts. Journal of Cell Biology, 127, 725–735.

    Article  PubMed  CAS  Google Scholar 

  23. Dai, J., & Sheetz, M. P. (1999). Membrane tether formation from blebbing cells. Biophysical Journal, 77, 3363–3370.

    Article  PubMed  CAS  Google Scholar 

  24. Dai, J., Sheetz, M. P., Wan, X., & Morris, C. E. (1998). Membrane tension in swelling and shrinking molluscan neurons. Journal of Neuroscience, 18, 6681–6692.

    PubMed  CAS  Google Scholar 

  25. Dai, J., Ting-Beall, H. P., & Sheetz, M. P. (1997). The secretion-coupled endocytosis correlates with membrane tension changes in RBL 2H3 cells. Journal of General Physiology, 110, 1–10.

    Article  PubMed  CAS  Google Scholar 

  26. Raucher, D., & Sheetz, M. P. (1999). Characteristics of a membrane reservoir buffering membrane tension. Biophysical Journal, 77, 1992–2002.

    Article  PubMed  CAS  Google Scholar 

  27. Raucher, D., & Sheetz, M. P. (1999). Membrane expansion increases endocytosis rate during mitosis. The Journal of cell biology, 144, 497–506.

    Article  PubMed  CAS  Google Scholar 

  28. Hochmuth, F. M., Shao, J. Y., Dai, J., & Sheetz, M. P. (1996). Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophysical Journal, 70, 358–369.

    Article  PubMed  CAS  Google Scholar 

  29. Baba, T., Rauch, C., Xue, M., Terada, N., Fujii, Y., Ueda, H., et al. (2001). Clathrin-dependent and clathrin-independent endocytosis are differentially sensitive to insertion of poly (ethylene glycol)-derivatized cholesterol in the plasma membrane. Traffic, 2, 501–512.

    Article  PubMed  CAS  Google Scholar 

  30. Sens, P. (2004). Dynamics of nonequilibrium membrane bud formation. Physical Review Letters, 93, 108103.

    Article  PubMed  CAS  Google Scholar 

  31. Seifert, U., Berndl, K., & Lipowsky, R. (1991). Shape transformations of vesicles: Phase diagram for spontaneous-curvature and bilayer-coupling models. Physical Review A, 44, 1182–1202.

    Article  PubMed  CAS  Google Scholar 

  32. Devaux, P. F. (2000). Is lipid translocation involved during endo- and exocytosis? Biochimie, 82, 497–509.

    Article  PubMed  CAS  Google Scholar 

  33. Pomorski, T., & Menon, A. K. (2006). Lipid flippases and their biological functions. Cellular and Molecular Life Sciences, 63, 2908–2921.

    Article  PubMed  CAS  Google Scholar 

  34. Devaux, P. F., Zachowski, A., Morrot, G., Cribier, S., Fellmann, P., Geldwerth, D., et al. (1990). Control of the transmembrane phospholipid distribution in eukaryotic cells by aminophospholipid translocase. Biotechnology and Applied Biochemistry, 12, 517–522.

    PubMed  CAS  Google Scholar 

  35. Farge, E., & Devaux, P. F. (1992). Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids. Biophysical Journal, 61, 347–357.

    Article  PubMed  CAS  Google Scholar 

  36. Miao, L., Seifert, U., Wortis, M., & Dobereiner, H. G. (1994). Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity. Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 49, 5389–5407.

    CAS  Google Scholar 

  37. Cribier, S., Sainte-Marie, J., & Devaux, P. F. (1993). Quantitative comparison between aminophospholipid translocase activity in human erythrocytes and in K562 cells. Biochimica et Biophysica Acta, 1148, 85–90.

    Article  PubMed  CAS  Google Scholar 

  38. Bloom, M., Evans, E., & Mouritsen, O. G. (1991). Physical properties of the fluid lipid-bilayer component of cell membranes: A perspective. Quarterly Reviews of Biophysics, 24, 293–397.

    Article  PubMed  CAS  Google Scholar 

  39. Gurtovenko, A. A., & Vattulainen, I. (2009). Calculation of the electrostatic potential of lipid bilayers from molecular dynamics simulations: Methodological issues. Journal of Chemical Physics, 130, 215107.

    Article  PubMed  CAS  Google Scholar 

  40. Strey, H., Peterson, M., & Sackmann, E. (1995). Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition. Biophysical Journal, 69, 478–488.

    Article  PubMed  CAS  Google Scholar 

  41. Defazio, G., Ribatti, D., Nico, B., Ricchiuti, F., De Salvia, R., Roncali, L., et al. (1997). Endocytosis of horseradish peroxidase by brain microvascular and umbilical vein endothelial cells in culture: An ultrastructural and morphometric study. Brain Research Bulletin, 43, 467–472.

    Article  PubMed  CAS  Google Scholar 

  42. Fadok, V. A., de Cathelineau, A., Daleke, D. L., Henson, P. M., & Bratton, D. L. (2001). Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. The Journal of biological chemistry, 276, 1071–1077.

    Article  PubMed  CAS  Google Scholar 

  43. Verkman, A. S. (2002). Renal concentrating and diluting function in deficiency of specific aquaporin genes. Experimental Nephrology, 10, 235–240.

    Article  PubMed  CAS  Google Scholar 

  44. Verkman, A. S., & Mitra, A. K. (2000). Structure and function of aquaporin water channels. American Journal of Physiology. Renal Physiology, 278, F13–F28.

    PubMed  CAS  Google Scholar 

  45. Verkman, A. S. (2002). Aquaporin water channels and endothelial cell function. Journal of Anatomy, 200, 617–627.

    Article  PubMed  CAS  Google Scholar 

  46. Brown, D., Katsura, T., Kawashima, M., Verkman, A. S., & Sabolic, I. (1995). Cellular distribution of the aquaporins: A family of water channel proteins. Histochemistry and Cell Biology, 104, 1–9.

    Article  PubMed  CAS  Google Scholar 

  47. Sasaki, S., Kuwahara, M., Yamashita, Y., & Marumo, F. (2000). Structure and function of AQP2. Nephrology, Dialysis, Transplantation, 15(Suppl 6), 21–22.

    Article  PubMed  CAS  Google Scholar 

  48. Sasaki, S., Fushimi, K., Saito, H., Saito, F., Uchida, S., Ishibashi, K., et al. (1994). Cloning, characterization, and chromosomal mapping of human aquaporin of collecting duct. Journal of Clinical Investigation, 93, 1250–1256.

    Article  PubMed  CAS  Google Scholar 

  49. Tamma, G., Procino, G., Strafino, A., Bononi, E., Meyer, G., Paulmichl, M., et al. (2007). Hypotonicity induces aquaporin-2 internalization and cytosol-to-membrane translocation of ICln in renal cells. Endocrinology, 148, 1118–1130.

    Article  PubMed  CAS  Google Scholar 

  50. Chen, N. X., Geist, D. J., Genetos, D. C., Pavalko, F. M., & Duncan, R. L. (2003). Fluid shear-induced NFkappaB translocation in osteoblasts is mediated by intracellular calcium release. Bone, 33, 399–410.

    Article  PubMed  CAS  Google Scholar 

  51. Oudit, G. Y., Sun, H., Kerfant, B. G., Crackower, M. A., Penninger, J. M., & Backx, P. H. (2004). The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. Journal of Molecular and Cellular Cardiology, 37, 449–471.

    Article  PubMed  CAS  Google Scholar 

  52. Iqbal, J., & Zaidi, M. (2005). Molecular regulation of mechanotransduction. Biochemical and Biophysical Research Communications, 328, 751–755.

    Article  PubMed  CAS  Google Scholar 

  53. Garcia, C. S., Prota, L. F., Morales, M. M., Romero, P. V., Zin, W. A., & Rocco, P. R. (2006). Understanding the mechanisms of lung mechanical stress. Brazilian Journal of Medical and Biological Research, 39, 697–706.

    PubMed  CAS  Google Scholar 

  54. Nys, M., Preiser, J. C., Deby-Dupont, G., Habraken, Y., Mathy-Hartert, M., Damas, P., et al. (2005). Nitric oxide-related products and myeloperoxidase in bronchoalveolar lavage fluids from patients with ALI activate NF-kappa B in alveolar cells and monocytes. Vascular Pharmacology, 43, 425–433.

    Article  PubMed  CAS  Google Scholar 

  55. Mocsai, A., Jakus, Z., Vantus, T., Berton, G., Lowell, C. A., & Ligeti, E. (2000). Kinase pathways in chemoattractant-induced degranulation of neutrophils: The role of p38 mitogen-activated protein kinase activated by Src family kinases. Journal of Immunology, 164, 4321–4331.

    CAS  Google Scholar 

  56. Tuluc, F., Garcia, A., Bredetean, O., Meshki, J., & Kunapuli, S. P. (2004). Primary granule release from human neutrophils is potentiated by soluble fibrinogen through a mechanism depending on multiple intracellular signaling pathways. American Journal of Physiology. Cell Physiology, 287, C1264–C1272.

    Article  PubMed  CAS  Google Scholar 

  57. Kristal, B., Shurtz-Swirski, R., Chezar, J., Manaster, J., Levy, R., Shapiro, G., et al. (1998). Participation of peripheral polymorphonuclear leukocytes in the oxidative stress and inflammation in patients with essential hypertension. American Journal of Hypertension, 11, 921–928.

    Article  PubMed  CAS  Google Scholar 

  58. Mehta, J., Dinerman, J., Mehta, P., Saldeen, T. G., Lawson, D., Donnelly, W. H., et al. (1989). Neutrophil function in ischemic heart disease. Circulation, 79, 549–556.

    PubMed  CAS  Google Scholar 

  59. Dinerman, J. L., Mehta, J. L., Saldeen, T. G., Emerson, S., Wallin, R., Davda, R., et al. (1990). Increased neutrophil elastase release in unstable angina pectoris and acute myocardial infarction. Journal of the American College of Cardiology, 15, 1559–1563.

    Article  PubMed  CAS  Google Scholar 

  60. Biasucci, L. M., D’Onofrio, G., Liuzzo, G., Zini, G., Monaco, C., Caligiuri, G., et al. (1996). Intracellular neutrophil myeloperoxidase is reduced in unstable angina and acute myocardial infarction, but its reduction is not related to ischemia. Journal of the American College of Cardiology, 27, 611–616.

    Article  PubMed  CAS  Google Scholar 

  61. Naruko, T., Ueda, M., Haze, K., van der Wal, A. C., van der Loos, C. M., Itoh, A., et al. (2002). Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation, 106, 2894–2900.

    Article  PubMed  Google Scholar 

  62. Smith, P. D. (1999). Neutrophil activation and mediators of inflammation in chronic venous insufficiency. Journal of Vascular Research, 36(Suppl 1), 24–36.

    Article  PubMed  Google Scholar 

  63. Lehoux, S., Castier, Y., & Tedgui, A. (2006). Molecular mechanisms of the vascular responses to haemodynamic forces. Journal of Internal Medicine, 259, 381–392.

    Article  PubMed  CAS  Google Scholar 

  64. Myers, K. A., Rattner, J. B., Shrive, Hart, D. A., N. G., & Hart, D. A. (2007). Hydrostatic pressure sensation in cells: Integration into the tensegrity model. Biochemistry and cell biology = Biochimie et biologie cellulaire, 85, 543–551.

    Article  PubMed  CAS  Google Scholar 

  65. Mizuno, S. (2005). A novel method for assessing effects of hydrostatic fluid pressure on intracellular calcium: A study with bovine articular chondrocytes. American Journal of Physiology, 288, C329–C337.

    Article  PubMed  CAS  Google Scholar 

  66. Tarnok, A., & Ulrich, H. (2001). Characterization of pressure-induced calcium response in neuronal cell lines. Cytometry, 43, 175–181.

    Article  PubMed  CAS  Google Scholar 

  67. Wang, E., Truschel, S., & Apodaca, G. (2003). Analysis of hydrostatic pressure-induced changes in umbrella cell surface area. Methods (San Diego, CA), 30, 207–217.

    CAS  Google Scholar 

  68. Rice, W. G., Kinkade, J. M., Jr., & Parmley, R. T. (1986). High resolution of heterogeneity among human neutrophil granules: Physical, biochemical, and ultrastructural properties of isolated fractions. Blood, 68, 541–555.

    PubMed  CAS  Google Scholar 

  69. Apodaca, G. (2002). Modulation of membrane traffic by mechanical stimuli. American Journal of Physiology, 282, F179–F190.

    PubMed  Google Scholar 

  70. Shrode, L. D., Tapper, H., & Grinstein, S. (1997). Role of intracellular pH in proliferation, transformation, and apoptosis. Journal of Bioenergetics and Biomembranes, 29, 393–399.

    Article  PubMed  CAS  Google Scholar 

  71. Orlowski, J., & Grinstein, S. (2004). Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflügers Archiv: European Journal of Physiology, 447, 549–565.

    Article  PubMed  CAS  Google Scholar 

  72. Lacroix, J., Poet, M., Maehrel, C., & Counillon, L. (2004). A mechanism for the activation of the Na/H exchanger NHE-1 by cytoplasmic acidification and mitogens. EMBO Reports, 5, 91–96.

    Article  PubMed  CAS  Google Scholar 

  73. Lacroix, J., Poet, M., Huc, L., Morello, V., Djerbi, N., Ragno, M., et al. (2008). Kinetic analysis of the regulation of the Na+/H+ exchanger NHE-1 by osmotic shocks. Biochemistry, 47, 13674–13685.

    Article  PubMed  CAS  Google Scholar 

  74. Tekpli, X., Huc, L., Lacroix, J., Rissel, M., Poet, M., Noel, J., et al. (2008). Regulation of Na+/H+ exchanger 1 allosteric balance by its localization in cholesterol- and caveolin-rich membrane microdomains. Journal of Cellular Physiology, 216, 207–220.

    Article  PubMed  CAS  Google Scholar 

  75. Cantor, R. S. (1999). The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. Chemistry and Physics of Lipids, 101, 45–56.

    Article  PubMed  CAS  Google Scholar 

  76. Markin, V. S., & Sachs, F. (2004). Thermodynamics of mechanosensitivity. Physical Biology, 1, 110–124.

    Article  PubMed  CAS  Google Scholar 

  77. Daniels, B. R., Masi, B. C., & Wirtz, D. (2006). Probing single-cell micromechanics in vivo: The microrheology of C. elegans developing embryos. Biophysical Journal, 90, 4712–4719.

    Article  PubMed  CAS  Google Scholar 

  78. Wilhelm, C., Gazeau, F., & Bacri, J. C. (2003). Rotational magnetic endosome microrheology: Viscoelastic architecture inside living cells. Physical Review, 67, 061908.

    PubMed  CAS  Google Scholar 

  79. Sun, J. Y., Wu, X. S., & Wu, L. G. (2002). Single and multiple vesicle fusion induce different rates of endocytosis at a central synapse. Nature, 417, 555–559.

    Article  PubMed  CAS  Google Scholar 

  80. Saffman, P. G., & Delbruck, M. (1975). Brownian motion in biological membranes. Proceedings of the National Academy of Sciences of the United States of America, 72, 3111–3113.

    Article  PubMed  CAS  Google Scholar 

  81. Shkulipa, S. A., den Otter, W. K., & Briels, W. J. (2005). Surface viscosity, diffusion, and intermonolayer friction: Simulating sheared amphiphilic bilayers. Biophysical Journal, 89, 823–829.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Medical Research Council (RA3805) and the University of Nottingham (NRF4305). We are grateful to Alice Dautry-Varsat and Emmanuel Farge for allowing us the reproduction of their original figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Rauch.

Appendices

Appendix 1

Recapitulation of Membrane Budding Linked to Phospholipid Number Asymmetry at the Vesicular Scale

In this model, and as stated earlier, the mean surface tension will be neglected given that there is no need for a vesicle to pull adjacent membrane to be formed if membrane recycling (i.e. endocytosis and exocytosis) is considered. As demonstrated previously [17], the energy of a membrane patch budding of radius R V, of thickness h, and of neutral surface area S can be described by the sum of two terms. The first term describes the force driving membrane budding, which is associated with the endogenous difference in surface tensions between the leaflets of the plasma membrane, and linked to the phospholipid number asymmetry:

$$ \delta \Upphi_{\Updelta \sigma } = {\frac{{h\Updelta \sigma_{0} }}{{2R_{\text{V}} }}}\delta S, $$
(22)

where Δσ0 = −2KδN 0/N 0 is the difference in surface tensions, K the elastic modulus of leaflets, δN 0 the number of phospholipids in excess in the inner leaflet (compared to the outer one) and N 0 the average phospholipid number in each leaflet.

The second term is the bending energy, which corresponds to the resistance to membrane curvature. However, as the local biomechanical moment related to the membrane tension as a magnitude smaller than the bending modulus (\( \sigma_{0} h^{2} /k_{\text{c}} \sim 0.1 \), h ∼ 5 nm) and accordingly, the surface tension can be ignored in the expression of the bending energy:

$$ \delta \Upphi_{\text{c}} = 2k_{\text{c}} {\frac{\delta S}{{R_{\text{V}}^{{^{2} }} }}}, $$
(23)

where k c is the membrane bending modulus. As a result, the competition between these two energies (Eqs. 22, 23), provides an optimal budding radius:

$$ \left( {R_{\text{V}} } \right)_{0} = - {\frac{{8k_{\text{c}} }}{{h\Updelta \sigma_{0} }}}\sim \left( {{\frac{{\delta N_{0} }}{{N_{0} }}}} \right)^{ - 1} . $$
(24)

Equation 24 demonstrates that the vesicle radius is inversely proportional to the phospholipid number asymmetry. Finally, inserting Eq. 24 into the sum of Eqs. 23 and 22 allows the classical determination of the energy released by the membrane after completion of the formation of a vesicle:

$$ \left( {\Upphi_{\text{V}} } \right)_{0} = \left. {\Upphi_{{\Updelta \sigma_{0} }} } \right|_{{R_{\text{V}} }} + \left. {\Upphi_{\text{c}} } \right|_{{R_{\text{V}} }} = - 8\pi k_{\text{c}} . $$
(25)

Equation 25 is independent of the vesicle’s size. In conclusion, this model assumes that the membrane will release membrane vesicles to cancel the difference in surface tensions stored at the cell membrane level.

Appendix 2

Second-Order Determination of the Effect of the Difference in Pressures on the Vesicles Radius

Using the assumptions described in the legend of Fig. 1a including Eq. 6b, the membrane bending (Eq. 23) and difference in surface tension (Eq. 22) energies; the expression relating any changes in the vesicle radius to the difference in pressures applied, is given by the following optimization when a vesicle is created:

$$ \delta_{{R_{\text{V}} }} \Upphi_{\text{V}} = S_{\text{V}} \delta_{{R_{\text{V}} }} \left[ {2k_{\text{c}} /R_{\text{V}}^{2} + h\Updelta \sigma_{0} /2R_{\text{V}} + \Updelta PR_{\text{V}} /3} \right] = 0. $$
(26)

In Eq. 26, \( \Updelta P = P_{\text{ex}} - P_{\text{cell}}^{ 0} . \) It follows that any changes in the vesicle radius and the difference of pressure applied are related by the following equation:

$$ \Updelta P/3 - 4k_{\text{c}} /R_{\text{V}}^{3} - h\Updelta \sigma_{0} /2R_{\text{V}}^{2} = 0. $$
(27)

Using Eq. 24 and noting that \( P_{\text{cell}}^{ 0} = P_{\text{ex}}^{ 0} \) for the initial isotonic pressure, Eq. 27 can be re-expressed as:

$$ \Updelta \bar{P}\bar{R}_{\text{V}}^{3} + 2\bar{R}_{\text{V}} - 2 = 0, $$
(28)

where \( \bar{R}_{\text{V}} = R_{\text{V}} /(R_{\text{V}} )_{0} \) is the ratio between the vesicle radius altered by the difference in osmotic pressure and the vesicle radius in isotonic condition, and \( \Updelta \bar{P} = \Updelta P/P_{\text{cell}}^{0} \). In addition, using second derivative in R V of Eq. 26 in conjunction with Eq. 28, it follows that the regime of membrane vesiculation in hypotonic medium is permitted (i.e. \( \delta_{{R_{\text{V}} }}^{2} \Upphi_{\text{V}} > 0 \)) so long that:

$$ - \Updelta \bar{P} = (P_{\text{cell}}^{0} - P_{\text{ex}} )/P_{\text{cell}}^{0} \le (2/3)^{3} . $$
(29)

Finally, to determine how the vesicle radius is affected when cells are incubated in hypotonic medium, a second-order development in ΔP of R V has been determined. Replacing \( \bar{R}_{\text{V}} = 1 + a\Updelta \bar{P} + b\Updelta \bar{P}^{2} \) into Eq. 28 and equating each pre-factor of \( \Updelta \bar{P} \) and ΔP 2 to be equal to zero lead to:

$$ \bar{R}_{\text{V}} = R_{\text{V}} /(\bar{R}_{\text{V}} )_{0} = 1 - (P_{\text{ex}} /P_{\text{cell}}^{0} - 1)/2 + 3(P_{\text{ex}} /P_{\text{cell}}^{0} - 1)^{2} /4. $$
(30)

Appendix 3

Further Justifications for the Use of Classical Hydrodynamic in the Case of Membrane Vesiculation

Using \( \text{Re} = R_{\text{V}}^{2} /t_{\text{V}} \nu , \) where R V ∼ 50 nm [17], t V ∼ 5 × 10−2 s [79] and ν ∼ 10−6 m2/s the kinematic viscosity of the cytoplasm, approximated to that of water in the first instance, one finds \( \text{Re} \sim 10^{ - 12} < < 1. \)

In addition, the spatial and temporal scales involved during vesiculation imply that visco-elastic laws do not apply. Indeed, the visco-elastic properties of the cytosol have been investigated in living cells using endosomes (~600-nm diameter) enclosing nanomagnetic probes under a rotational magnetic field [78]. From these results, it has been demonstrated that at this scale (i.e. ~100 nm diameter), the cytosol has a fluid-like behaviour if the characteristic time scale of a given biological event, such as membrane vesiculation, is ≥10−2 s. Thus, the use of classical hydrodynamic laws at low Re is justified for the study of FPE as t V ∼ 5 × 10−2 s.

This latter point is further justified as, in this regime of membrane vesiculation, the viscosity contrast between the cytosol and the membrane is low and, therefore, the membrane viscosity does not impact on FPE. This can be demonstrated as follows. The viscosity contrast modelled by Saffman and Delbruck [80] allows one to determine which viscosity parameter, i.e. water (μ w) or membrane (μ m), viscosity limits lipids movement. For example, considering a single lipid assumed to have a cylinder like shape (i.e. cross-section radius, a, and length, h) the viscosity contrast is given by: m/ w. At the lipid scale, as μm ∼ 1 − 10 P [81] and μw ∼ 1 cP it follows \( h\mu_{\text{m}} /a\mu_{\text{w}} > > 1, \) and the intramembrane viscosity effects lipids movement. Considering now the vesicular scale, the viscosity contrast becomes: \( h\mu_{\text{m}} /R_{\text{V}} \xi , \) where, R V, is the size of the vesicle and, ξ, the viscosity encountered by the patch of membrane budding. As ξ ∼ 10 P [78] and R V ∼ 50 nm (i.e. R V/h ∼ 10), it follows \( h\mu_{\text{m}} /R_{\text{V}} \xi < < 1. \) Therefore, the membrane budding is not dependent on the membrane viscosity but on the cytosolic viscosity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rauch, C., Pluen, A., Foster, N. et al. On Some Aspects of the Thermodynamic of Membrane Recycling Mediated by Fluid Phase Endocytosis: Evaluation of Published Data and Perspectives. Cell Biochem Biophys 56, 73–90 (2010). https://doi.org/10.1007/s12013-009-9072-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-009-9072-5

Keywords

Navigation