Skip to main content
Log in

Novel α-KTx Sites in the BK Channel and Comparative Sequence Analysis Reveal Distinguishing Features of the BK and KV Channel Outer Pore

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The α-KTx peptide toxins inhibit different types of potassium channels by occluding the outer channel pore composed of four identical α subunits. The large-conductance, calcium-activated (BK or Slo1) and voltage-dependent (KV) potassium channels differ in their specificity for the different α-KTx subfamilies. While many different α-KTx subfamilies of different sizes inhibit KV1 channels with high affinity, only one subfamily, α-KTx 1.x, inhibits BK channels with high affinity. Two solvent-exposed regions of the outer pore that influence α-KTx binding, the turret and loop, display high sequence variability among different potassium channels and may contribute to differences in α-KTx specificity. While these α-KTx domains have been studied in KV1 channels, little is known about the corresponding BK α-KTx domains. To define α-KTx sites in the BK outer pore, we examined the effect of 19 outer pore mutations on specific binding of 125I-labeled iberiotoxion (IbTX or α-KTx 1.3) and on their cell-surface expression. Similar to α-KTx sites in the Shaker KV1 loop, site-directed mutations in the BK loop disrupted specific IbTX binding. In contrast, mutations in the BK turret region revealed three novel α-KTx sites, Q267, N268, and L272, which are distinct from α-KTx sites in the KV1 turret. The BK turret region shows no sequence identity with KV1 and MthK turrets of known 3D structure. To define the BK turret, we used secondary structure prediction methods that incorporated information from sequence alignment of 30 different Slo1 and Slo3 turret sequences from 5 of the 7 major animal phyla representing 27 different species. Results of this analysis suggest that the BK turret contains 18 amino acids and is defined by a cluster of strictly conserved polar residues at the N-terminal side of the turret. Thus, the BK turret is predicted to have six more amino acids than the KV1 turret. Results of this work suggest that BK and KV1 outer pores have a similar α-KTx domain in the loop preceding the inner helix, but that the BK turret comprises a unique α-KTx interaction surface that likely contributes to the exclusive selectivity of BK channels for α-KTx1.x toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

α-KTx:

Peptide toxin potassium channel inhibitor

BK:

Large-conductance calcium-activated potassium channel

KV:

Voltage-dependent potassium channel

AgTX:

Agitoxin or α-KTx 3.2

ChTX or α-KTX 1.1:

Charybdotoxin

IbTX:

Iberiotoxin or α-KTx 1.3

[125I]-IbTX:

IbTX-D19Y/Y36F

labeled with 125I at 19Y

References

  1. Ashcroft, F. M. (2000). Ion channels and disease (p. 417). San Diego: Academic Press.

    Google Scholar 

  2. Ashcroft, F. M. (2006). From molecule to malady. Nature, 440(7083), 440–447.

    Article  PubMed  CAS  Google Scholar 

  3. Beeton, C., & Chandy, K. G. (2005). Potassium channels, memory T cells, and multiple sclerosis. Neuroscientist, 11(6), 550–562.

    Article  PubMed  CAS  Google Scholar 

  4. Brainard, A. M., Miller, A. J., Martens, J. R., & England, S. K. (2005). Maxi-K channels localize to caveolae in human myometrium: A role for an actin-channel-caveolin complex in the regulation of myometrial smooth muscle K+ current. American Journal of Physiology Cell Physiology, 289(1), C49–C57.

    Article  PubMed  CAS  Google Scholar 

  5. Brenner, R., Perez, G. J., Bonev, A. D., Eckman, D. M., Kosek, J. C., Wiler, S. W., et al. (2000). Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature, 407(6806), 870–876.

    Article  PubMed  CAS  Google Scholar 

  6. Du, W., Bautista, J. F., Yang, H., Diez-Sampedro, A., You, S. A., Wang, L., et al. (2005). Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nature Genetics, 37(7), 733–738.

    Article  PubMed  CAS  Google Scholar 

  7. Hu, L., Pennington, M., Jiang, Q., Whartenby, K. A., & Calabresi, P. A. (2007). Characterization of the functional properties of the voltage-gated potassium channel Kv1.3 in human CD4+T lymphocytes. Journal of Immunology, 179(7), 4563–4570.

    CAS  Google Scholar 

  8. Huang, B., Qin, D., & El-Sherif, N. (2001). Spatial alterations of Kv channels expression and K(+) currents in post-MI remodeled rat heart. Cardiovascular Research, 52(2), 246–254.

    Article  PubMed  CAS  Google Scholar 

  9. Lee, S. C., Levy, D. I., & Deutsch, C. (1992). Diverse K+ channels in primary human T lymphocytes. Journal of General Physiology, 99(5), 771–793.

    Article  PubMed  CAS  Google Scholar 

  10. Pyott, S. J., Meredith, A. L., Fodor, A. A., Vazquez, A. E., Yamoah, E. N., & Aldrich, R. W. (2007). Cochlear function in mice lacking the BK channel alpha, beta1, or beta4 subunits. Journal of Biological Chemistry, 282(5), 3312–3324.

    Article  PubMed  CAS  Google Scholar 

  11. Garcia, M. L., & Kaczorowski, G. J. (2005). Potassium channels as targets for therapeutic intervention. Science’s STKE, 302, 46.

    Google Scholar 

  12. Giangiacomo, K. M., Ceralde, Y., & Mullmann, T. J. (2004). Molecular basis of alpha-KTx specificity. Toxicon, 43(8), 877–886.

    Article  PubMed  CAS  Google Scholar 

  13. Gu, N., Vervaeke, K., & Storm, J. F. (2007). BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. Journal of Physiology, 580(Pt.3), 859–882.

    Article  PubMed  CAS  Google Scholar 

  14. Hafidi, A., Beurg, M., & Dulon, D. (2005). Localization and developmental expression of BK channels in mammalian cochlear hair cells. Neuroscience, 130(2), 475–484.

    Article  PubMed  CAS  Google Scholar 

  15. Haghdoost-Yazdi, H., Janahmadi, M., & Behzadi, G. (2008). Iberiotoxin-sensitive large conductance Ca(2+)-dependent K(+) (BK) channels regulate the spike configuration in the burst firing of cerebellar Purkinje neurons. Brain Research, 1212, 1–8.

    Article  PubMed  CAS  Google Scholar 

  16. Leonard, R. J., Garcia, M. L., Slaughter, R. S., & Reuben, J. P. (1992). Selective blockers of voltage-gated K+ channels depolarize human T lymphocytes: Mechanism of the antiproliferative effect of charybdotoxin. Proceedings of the National Academy of Science of United States of America, 89(21), 10094–10098.

    Article  CAS  Google Scholar 

  17. Shmygol, A., Noble, K., & Wray, S. (2007). Depletion of membrane cholesterol eliminates the Ca2+-activated component of outward potassium current and decreases membrane capacitance in rat uterine myocytes. Journal of Physiology, 581(Pt 2), 445–456.

    Article  PubMed  CAS  Google Scholar 

  18. Rodriguez de la Vega, R. C., & Possani, L. D. (2004). Current views on scorpion toxins specific for K+ channels. Toxicon, 43(8), 865–875.

    Article  PubMed  CAS  Google Scholar 

  19. Bontems, F., Gilquin, B., Roumestand, C., Menez, A., & Toma, F. (1992). Analysis of side-chain organization on a refined model of charybdotoxin: Structural and functional implications. Biochemistry, 31(34), 7756–7764.

    Article  PubMed  CAS  Google Scholar 

  20. Dauplais, M., Gilquin, B., Possani, L. D., Gurrola-Briones, G., Roumestand, C., & Menez, A. (1995). Determination of the three-dimensional solution structure of noxiustoxin: Analysis of structural differences with related short-chain scorpion toxins. Biochemistry, 34(51), 16563–16573.

    Article  PubMed  CAS  Google Scholar 

  21. Gairi, M., Romi, R., Fernandez, I., Rochat, H., Martin-Eauclaire, M. F., Van Rietschoten, J., et al. (1997). 3D structure of kaliotoxin: Is residue 34 a key for channel selectivity? Journal of Peptide Science, 3(4), 314–319.

    Article  PubMed  CAS  Google Scholar 

  22. Johnson, B. A., Stevens, S. P., & Williamson, J. M. (1994). Determination of the three-dimensional structure of margatoxin by 1H, 13C, 15N triple-resonance nuclear magnetic resonance spectroscopy. Biochemistry, 33(50), 15061–15070.

    Article  PubMed  CAS  Google Scholar 

  23. Johnson, B. A., & Sugg, E. E. (1992). Determination of the three-dimensional structure of iberiotoxin in solution by 1H nuclear magnetic resonance spectroscopy. Biochemistry, 31(35), 8151–8159.

    Article  PubMed  CAS  Google Scholar 

  24. Krezel, A. M., Kasibhatla, C., Hidalgo, P., MacKinnon, R., & Wagner, G. (1995). Solution structure of the potassium channel inhibitor agitoxin 2: Caliper for probing channel geometry. Protein Science, 4(8), 1478–1489.

    PubMed  CAS  Google Scholar 

  25. Giangiacomo, K. M., Becker, J., Garsky, C., Felix, J. P., Priest, B. T., Schmalhofer, W., et al. (2007). Revealing the molecular determinants of neurotoxin specificity for calcium-activated versus voltage-dependent potassium channels. Biochemistry, 46(18), 5358–5364.

    Article  PubMed  CAS  Google Scholar 

  26. Giangiacomo, K. M., Gabriel, J., Fremont, V., & Mullmann, T. J. (1999). Probing the structure and function of potassium channels with α-K toxin blockers. Perspectives in Drug Discovery and Design, 15/16, 167–186.

    Article  CAS  Google Scholar 

  27. Ferrat, G., Bernard, C., Fremont, V., Mullmann, T. J., Giangiacomo, K. M., & Darbon, H. (2001). Structural basis for α-K toxin specificity for K+ channels revealed through the solution 1H NMR structures of two noxiustoxin-iberiotoxin chimeras. Biochemistry, 40, 10998.

    Article  PubMed  CAS  Google Scholar 

  28. Mullmann, T. J., Spence, K. T., Schroeder, N. E., Fremont, V. F., Christian, E. P., & Giangiacomo, K. M. (2001). Insights into α-K toxin specificity for K+ channels revealed through mutations in noxiustoxin. Biochemistry, 40, 10987–10997.

    Article  PubMed  CAS  Google Scholar 

  29. Giangiacomo, K. M., Garcia, M. L., & McManus, O. B. (1992). Mechanism of iberiotoxin block of the large-conductance calcium-activated potassium channel from bovine aortic smooth muscle. Biochemistry, 31(29), 6719–6727.

    Article  PubMed  CAS  Google Scholar 

  30. Goldstein, S. A., & Miller, C. (1993). Mechanism of charybdotoxin block of a voltage-gated K+ channel. Biophysical Journal, 65(4), 1613–1619.

    Article  PubMed  CAS  Google Scholar 

  31. MacKinnon, R., & Miller, C. (1988). Mechanism of charybdotoxin block of the high-conductance, Ca2+-activated K+ channel. Journal of General Physiology, 91(3), 335–349.

    Article  PubMed  CAS  Google Scholar 

  32. Doyle, D. A., Cabral, J. M., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., et al. (1998). The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science, 280, 69–77.

    Article  PubMed  CAS  Google Scholar 

  33. Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B. T., & MacKinnon, R. (2002). Crystal structure and mechanism of a calcium-gated potassium channel. Nature, 417(6888), 515–522.

    Article  PubMed  CAS  Google Scholar 

  34. Long, S. B., Tao, X., Campbell, E. B., & MacKinnon, R. (2007). Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature, 450(7168), 376–382.

    Article  PubMed  CAS  Google Scholar 

  35. Hidalgo, P., & MacKinnon, R. (1995). Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor. Science, 268(5208), 307–310.

    Article  PubMed  CAS  Google Scholar 

  36. MacKinnon, R., Heginbotham, L., & Abramson, T. (1990). Mapping the receptor site for charybdotoxin, a pore-blocking potassium channel inhibitor. Neuron, 5(6), 767–771.

    Article  PubMed  CAS  Google Scholar 

  37. Ranganathan, R., Lewis, J. H., & MacKinnon, R. (1996). Spatial localization of the K+ channel selectivity filter by mutant cycle-based structure analysis. Neuron, 16(1), 131–139.

    Article  PubMed  CAS  Google Scholar 

  38. Goldstein, S. A., & Miller, C. (1992). A point mutation in a Shaker K+channel changes its charybdotoxin binding site from low to high affinity. Biophysical Journal, 62(1), 5–7.

    PubMed  CAS  Google Scholar 

  39. Li, B., & Gallin, W. J. (2004). VKCDB: Voltage-gated potassium channel database. BMC Bioinformatics, 5, 3.

    Article  PubMed  Google Scholar 

  40. Hanner, M., Vianna-Jorge, R., Kamassah, A., Schmalhofer, W. A., Knaus, H. G., Kaczorowski, G. J., et al. (1998). The beta subunit of the high conductance calcium-activated potassium channel. Identification of residues involved in charybdotoxin binding. Journal of Biological Chemistry, 273(26), 16289–16296.

    Article  PubMed  CAS  Google Scholar 

  41. Heinzel, S. S., Krysan, P. J., Calos, M. P., & DuBridge, R. B. (1988). Use of simian virus 40 replication to amplify Epstein-Barr virus shuttle vectors in human cells. Journal of Virology, 62(10), 3738–3746.

    PubMed  CAS  Google Scholar 

  42. Koschak, A., Koch, R. O., Liu, J., Kaczorowski, G. J., Reinhart, P. H., Garcia, M. L., et al. (1997). [125I]Iberiotoxin-D19Y/Y36F, the first selective, high specific activity radioligand for high-conductance calcium-activated potassium channels. Biochemistry, 36(7), 1943–1952.

    Article  PubMed  CAS  Google Scholar 

  43. Schroeder, N., Mullmann, T. J., Schmalhofer, W. A., Gao, Y. D., Garcia, M. L., & Giangiacomo, K. M. (2002). Glycine 30 in iberiotoxin is a critical determinant of its specificity for maxi-K versus K(V) channels. FEBS Letters, 527(1–3), 298–302.

    Article  PubMed  CAS  Google Scholar 

  44. Giangiacomo, K. M., Fremont, V., Mullmann, T. J., Hanner, M., Cox, R. H., & Garcia, M. L. (2000). Interaction of charybdotoxin S10A with single maxi-K channels: Kinetics of blockade depend on the presence of the beta 1 subunit. Biochemistry, 39(20), 6115–6122.

    Article  PubMed  CAS  Google Scholar 

  45. Rost, B. (1996). PHD: Predicting one-dimensional protein structure by profile-based neural networks. Methods in Enzymology, 266, 525–539.

    Article  PubMed  CAS  Google Scholar 

  46. Rost, B., Yachdav, G., & Liu, J. (2004). Predict protein server. Nucleic Acids Research, 32(Web Server issue), W321–W326.

    Article  PubMed  CAS  Google Scholar 

  47. MacKinnon, R. (1991). Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature, 350(6315), 232–235.

    Article  PubMed  CAS  Google Scholar 

  48. Deutsch, C. (2002). Potassium channel ontogeny. Annual Review of Physiology, 64, 19–46.

    Article  PubMed  CAS  Google Scholar 

  49. Lai, H. C., & Jan, L. Y. (2006). The distribution and targeting of neuronal voltage-gated ion channels. Nature Reviews Neuroscience, 7(7), 548–562.

    Article  PubMed  CAS  Google Scholar 

  50. Schmalhofer, W. A., Sanchez, M., Dai, G., Dewan, A., Secades, L., Hanner, M., et al. (2005). Role of the C-terminus of the high-conductance calcium-activated potassium channel in channel structure and function. Biochemistry, 44(30), 10135–10144.

    Article  PubMed  CAS  Google Scholar 

  51. Naranjo, D., & Miller, C. (1996). A strongly interacting pair of residues on the contact surface of charybdotoxin and a Shaker K+ channel. Neuron, 16(1), 123–130.

    Article  PubMed  CAS  Google Scholar 

  52. Heginbotham, L., & MacKinnon, R. (1992). The aromatic binding site for tetraethylammonium ion on potassium channels. Neuron, 8(3), 483–491.

    Article  PubMed  CAS  Google Scholar 

  53. Niu, X., & Magleby, K. L. (2002). Stepwise contribution of each subunit to the cooperative activation of BK channels by Ca2+. Proceedings of the National Academy of Science of United States of America, 99(17), 11441–11446.

    Article  CAS  Google Scholar 

  54. Myers, M. P., & Stampe, P. (2000). A point mutation in the maxi-K clone dSlo forms a high affinity site for charybdotoxin. Neuropharmacology, 39(1), 11–20.

    Article  PubMed  CAS  Google Scholar 

  55. Cha, A., & Bezanilla, F. (1998). Structural implications of fluorescence quenching in the Shaker K+ channel. Journal of General Physiology, 112(4), 391–408.

    Article  PubMed  CAS  Google Scholar 

  56. Schreiber, M., Wei, A., Yuan, A., Gaut, J., Saito, M., & Salkoff, L. (1998). Slo3, a novel pH-sensitive K+ channel from mammalian spermatocytes. Journal of Biological Chemistry, 273(6), 3509–3516.

    Article  PubMed  CAS  Google Scholar 

  57. Zhang, X., Zeng, X., & Lingle, C. J. (2006). Slo3 K+ channels: Voltage and pH dependence of macroscopic currents. Journal of General Physiology, 128(3), 317–336.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen M. Giangiacomo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giangiacomo, K.M., Becker, J., Garsky, C. et al. Novel α-KTx Sites in the BK Channel and Comparative Sequence Analysis Reveal Distinguishing Features of the BK and KV Channel Outer Pore. Cell Biochem Biophys 52, 47–58 (2008). https://doi.org/10.1007/s12013-008-9026-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-008-9026-3

Keywords

Navigation