Skip to main content

Molecular Description of Scorpion Toxin Interaction with Voltage-Gated Sodium Channels

  • Reference work entry
  • First Online:
Scorpion Venoms

Abstract

Scorpion alpha and beta toxins interact with voltage-gated sodium channels (Navs) at two pharmacologically distinct sites. Alpha toxins bind at receptor site 3 and inhibit channel inactivation, whereas beta toxins bind at receptor site 4 and shift the voltage-dependent activation toward more hyperpolarizing potentials. The two toxin classes are subdivided to distinct pharmacological groups according to their binding preferences and competition for receptor sites at Nav subtypes. To elucidate the surface of interaction of the two toxin classes with Navs and clarify the molecular basis of varying toxin preferences, an efficient expression system was established. Mutagenesis accompanied by toxicity, binding, and electrophysiological assays, in parallel to determination of the three-dimensional structure using NMR and X-ray crystallography, uncovered the bioactive surfaces of toxin representatives of all pharmacological groups. Exchange of external loops between channels that exhibit marked differences in sensitivity to various toxins accompanied by point mutagenesis highlighted channel determinants that play a role in toxin selectivity. These data were used in further mapping of the brain channel rNav1.2a receptor sites for the beta-toxin Css4 (from Centruroides suffusus suffusus) and the alpha-toxin Lqh2 (from Leiurus quinquestriatus hebraeus). On the basis of channel mutations that affected Css4 activity, the known structure of the toxin and its bioactive surface, and using the structure of a potassium channel as template, a structural model of Css4 interaction with the gating module of domain II was constructed. This initial model was the first step in the identification of part of receptor site 4. In parallel, a swapping and a mutagenesis approach employing the rNav1.2a mammalian and DmNav1 insect Navs and the toxin Lqh2 as a probe were used to search for receptor site 3. The channel mapping along with toxin dissociation assays and double-mutant cycle analyses using toxin and channel mutants identified the gating module of domain IV as the site of interaction with the toxin core domain, thus describing the docking orientation of an alpha toxin at the channel surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Asamoah OK, Wuskell JP, Loew LM, Bezanilla F. A fluorometric approach to local electric field measurements in a voltage-gated ion channel. Neuron. 2003;37:85–97.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Curto EV, Beckman M, Brown GB, Zhong J, Krishna NR. Expression of functional scorpion neurotoxin Lqq-V in E. coli. Peptides. 2006;27:49–54.

    Article  CAS  PubMed  Google Scholar 

  • Barhanin J, Giglio JR, Léopold P, Schmid A, Sampaio SV, Lazdunski M. Tityus serrulatus venom contains two classes of toxins. J Biol Chem. 1982;257:12553–8.

    CAS  PubMed  Google Scholar 

  • Ben Khalifa R, Stankiewicz M, Lapied B, Turkov M, Zilberberg N, Gurevitz M, Pelhate M. Refined electrophysiological analysis suggests that a depressant toxin is a sodium channel opener rather than a blocker. Life Sci. 1997;61:819–30.

    Article  CAS  Google Scholar 

  • Bezanilla F. The voltage sensor in voltage-dependent ion channels. Physiol Rev. 2000;80:555–92.

    CAS  PubMed  Google Scholar 

  • Bosmans F, Rash L, Zhu S, Diochot S, Lazdunski M, Escoubas P, Tytgat J. Four novel tarantula toxins as selective modulators of voltage-gated sodium channel subtypes. Mol Pharmacol. 2006;69:419–29.

    Article  CAS  PubMed  Google Scholar 

  • Campos FV, Chanda B, Beirão PS, Bezannila F. Alpha-scorpion toxin impairs a conformational change that leads to fast inactivation of muscle sodium channels. J Gen Physiol. 2008;132:251–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Catterall WA. Cellular and molecular biology of voltage-gated sodium channels. Physiol Rev. 1992;72:S15–48.

    CAS  PubMed  Google Scholar 

  • Catterall WA, Cestèle S, Yarov-Yarovoy V, Yu FH, Konoki K, Scheuer T. Voltage-gated ion channels and gating modifier toxins. Toxicon. 2007;49:124–41.

    Article  CAS  PubMed  Google Scholar 

  • Cestèle S, Qu Y, Rogers JC, Rochat H, Catterall WA. Voltage sensor-trapping: enhanced activation of sodium channels by β-scorpion toxin bound to the S3-S4 loop in domain II. Neuron. 1998;21:919–31.

    Article  PubMed  Google Scholar 

  • Cestèle S, Scheuer T, Mantegazza M, Rochat H, Catterall WA. Neutralization of gating charges in domain II of the sodium channel a subunit enhances voltage-sensor trapping by a β-scorpion toxin. J Gen Physiol. 2001;118:291–301.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cestèle S, Yarov-Yarovoy V, Qu Y, Sampieri F, Scheuer T, Catterall WA. Structure and function of the voltage sensor of sodium channels probed by a β-scorpion toxin. J Biol Chem. 2006;281:21332–44.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chanda B, Asamoah OK, Bezanilla F. Coupling interactions between voltage sensors of the sodium channel as revealed by site-specific measurements. J Gen Physiol. 2004;123:217–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen L, Karbat I, Gilles N, Froy O, Angelovici R, Gordon D, Gurevitz M. Dissection of the functional surface of an anti-insect excitatory toxin illuminates a putative ‘hot spot’ common to all scorpion β-toxins affecting Na channels. J Biol Chem. 2004;279:8206–11.

    Article  CAS  PubMed  Google Scholar 

  • Cohen L, Karbat I, Gilles N, Ilan N, Gordon D, Gurevitz M. Common features in the functional surface of scorpion β-toxins and elements that confer specificity for insect and mammalian voltage-gated Na-channels. J Biol Chem. 2005;280:5045–53.

    Article  CAS  PubMed  Google Scholar 

  • Cohen L, Lipstein N, Gordon D. Allosteric interactions between scorpion toxin receptor sites on voltage-gated Na channels imply a novel role for weakly active components in arthropod venom. FASEB J. 2006;20:E1360–7.

    Google Scholar 

  • Cohen L, Ilan N, Gur M, Stühmer S, Gordon D, Gurevitz M. Design of a specific activator for skeletal muscle sodium channels uncovers channel architecture. J Biol Chem. 2007;282:29424–30.

    Article  CAS  PubMed  Google Scholar 

  • Cohen L, Lipstein N, Karbat I, Ilan N, Gilles N, Kahn R, Gordon D, Gurevitz M. Miniaturization of scorpion beta-toxins uncovers a putative ancestral surface of interaction with voltage-gated Na-channels. J Biol Chem. 2008;283:15169–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cory JS. Assessing the risks of releasing genetically modified virus insecticides: progress to date. Crop Prot. 2000;19:779–85.

    Article  Google Scholar 

  • Froy O, Gurevitz M. Membrane potential modulators: a thread of scarlet from plants to humans. FASEB J. 1998;12:1793–6.

    CAS  PubMed  Google Scholar 

  • Froy O, Gurevitz M. New insight on scorpion divergence inferred from comparative analysis of toxin structure, pharmacology and distribution. Toxicon. 2003;42:549–55.

    Article  CAS  PubMed  Google Scholar 

  • Froy O, Zilberberg N, Gordon D, Turkov M, Gilles N, Stankiewicz M, Pelhate M, Loret E, Oren DA, Shaanan B, Gurevitz M. The putative bioactive surface of insect-selective scorpion excitatory neurotoxins. J Biol Chem. 1999;274:5769–76.

    Article  CAS  PubMed  Google Scholar 

  • Gilles N, Krimm I, Bouet F, Froy O, Gurevitz M, Lancelin J-M, Gordon D. Structural implications on the interaction of scorpion α-like toxins with the sodium channel receptor site inferred from toxin iodination and pH-dependent binding. J Neurochem. 2000;75:1735–45.

    Article  CAS  PubMed  Google Scholar 

  • Gordon D. Sodium channels as targets for neurotoxins: mode of action and interaction of neurotoxins with receptor sites on sodium channels. In: Lazarowici P, Gutman Y, editors. Toxins and signal transduction. Amsterdam: Harwood Press; 1997. p. 119–49.

    Google Scholar 

  • Gordon D, Gurevitz M. The selectivity of scorpion α-toxins for sodium channel subtypes is determined by subtle variations at the interacting surface. Toxicon. 2003;41:125–8.

    Article  CAS  PubMed  Google Scholar 

  • Gordon D, Martin-Eauclaire MF, Cestele S, Kopeyan C, Carlier E, Ben Khalifa R, Pelhate M, Rochat H. Scorpion toxins affecting sodium current inactivation bind to distinct homologous receptor sites on rat brain and insect sodium channels. J Biol Chem. 1996;271:8034–45.

    Article  CAS  PubMed  Google Scholar 

  • Gordon D, Ilan N, Zilberberg N, Gilles N, Urbach D, Cohen L, Karbat I, Froy O, Gaathon A, Kallen RG, Benveniste M, Gurevitz M. An ‘Old World’ scorpion β-toxin that recognizes both insect and mammalian sodium channels: a possible link towards diversification of β-toxins. Eur J Biochem. 2003;270:2663–70.

    Article  CAS  PubMed  Google Scholar 

  • Gordon D, Karbat I, Ilan N, Cohen L, Kahn R, Gilles N, Dong K, Stuhmer W, Tytgat J, Gurevitz M. The differential preference of scorpion alpha-toxins for insect or mammalian sodium channels: implications for improved insect control. Toxicon. 2007;49:452–72.

    Article  CAS  PubMed  Google Scholar 

  • Gur M, Kahn R, Regev-Bar-Ilan N, Wang J, Catterall WA, Gordon D, Gurevitz M. Elucidation of the molecular basis of selective recognition uncovers the interaction site for the core-domain of scorpion alpha-toxins on sodium channels. J Biol Chem. 2011;286:35209–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gurevitz M. Mapping the scorpion toxin receptor sites at voltage-gated sodium channels. Toxicon. 2012;60:502–11.

    Article  CAS  PubMed  Google Scholar 

  • Gurevitz M, Zilberberg N. Advances in molecular genetics of scorpion neurotoxins. J Toxicol Toxin Rev. 1994;13:65–100.

    Article  CAS  Google Scholar 

  • Gurevitz M, Karbat I, Cohen L, Ilan N, Kahn R, Turkov M, Stankiewicz M, Stühmer W, Dong K, Gordon D. The insecticidal potential of scorpion β-toxins. Toxicon. 2007;49:473–89.

    Article  CAS  PubMed  Google Scholar 

  • Heinemann SH, Leipold E. Conotoxins of the O-superfamily affecting voltage-gated sodium channels. Cell Mol Life Sci. 2007;64:1329–40.

    Article  CAS  PubMed  Google Scholar 

  • Herrmann R, Moskowitz H, Zlotkin E, Hammock B. Positive cooperativity among insecticidal scorpion neurotoxins. Toxicon. 1995;33:1099–102.

    Article  CAS  PubMed  Google Scholar 

  • Horn R, Ding S, Gruber HJ. Immobilizing the moving parts of voltage-gated ion channels. J Gen Physiol. 2000;116:461–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jover E, Couraud F, Rochat H. Two types of scorpion neurotoxins characterized by their binding to two separate receptor sites on rat brain synaptosomes. Biochem Biophys Res Commun. 1980;95:1607–14.

    Article  CAS  PubMed  Google Scholar 

  • Kahn R, Karbat I, Ilan N, Cohen L, Gordon D, Gurevitz M. Molecular requirements for specific recognition of brain voltage-gated sodium channels by scorpion alpha-toxins. J Biol Chem. 2009;284:20684–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karbat I, Frolow F, Froy O, Gilles N, Cohen L, Turkov M, Gordon D, Gurevitz M. Molecular basis of the high insecticidal potency of scorpion α-toxins. J Biol Chem. 2004a;279:31679–86.

    Article  CAS  PubMed  Google Scholar 

  • Karbat I, Cohen L, Gilles N, Gordon D, Gurevitz M. Conversion of a scorpion toxin agonist into an antagonist highlights an acidic residue involved in voltage sensor trapping during activation of neuronal Na+ channels. FASEB J. 2004b;18:683–9.

    Article  PubMed  Google Scholar 

  • Karbat I, Turkov M, Cohen L, Kahn R, Gordon D, Gurevitz M, Frolow F. X-ray structure and mutagenesis of the scorpion depressant toxin LqhIT2 reveals key determinants crucial for activity and anti-insect selectivity. J Mol Biol. 2006;366:586–601.

    Article  PubMed  Google Scholar 

  • Karbat I, Kahn R, Cohen L, Ilan N, Gilles N, Corzo G, Froy O, Gur M, Albrecht G, Heinemann SH, Gordon D, Gurevitz M. The unique pharmacology of the scorpion α-like toxin Lqh3 is associated with its flexible C-tail. FEBS J. 2007;274:1918–31.

    Article  CAS  PubMed  Google Scholar 

  • Karbat I, Ilan N, Zhang JZ, Cohen L, Kahn R, Benveniste M, Scheuer T, Catterall WA, Gordon D, Gurevitz M. Partial agonist and antagonist activities of a mutant scorpion β-toxin on sodium channels. J Biol Chem. 2010;285:30531–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • King GF, Escoubas P, Nicholson GM. Peptide toxins that selectively target insect Na(V) and Ca(V). Channels (Austin). 2008;2:100–16.

    Article  Google Scholar 

  • Lacroix JJ, Pless SA, Maragliano L, Campos FV, Galpin JD, Ahern CA, Roux B, Bezanilla F. Intermediate state trapping of a voltage sensor. J Gen Physiol. 2012;140:635–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leipold E, Lu S, Gordon D, Hansel A, Heinemann SH. Combinatorial interaction of scorpion toxins Lqh2, Lqh3 and LqhαIT with sodium channel receptor sites-3. Mol Pharmacol. 2004;65:865–91.

    Article  Google Scholar 

  • Leipold E, Hansel A, Borges A, Heinemann SH. Subtype specificity of scorpion β-toxin Tz1 interaction with voltage-gated sodium channels is determined by the pore loop of domain-3. Mol Pharmacol. 2006;70:340–7.

    CAS  PubMed  Google Scholar 

  • Long SB, Campbell EB, MacKinnon R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science. 2005;309:897–903.

    Article  CAS  PubMed  Google Scholar 

  • Marcotte P, Chen L-Q, Kallen RG, Chahine M. Effects of Tityus serrulatus scorpion toxin γ on voltage-gated Na+ channels. Circ Res. 1997;80:363–9.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Eauclaire MF, Couraud F. Scorpion neurotoxins: effects and mechanisms. In: Chang LW, Dyer RS, editors. Handbook of neurotoxicology. New York: Marcel Dekker; 1995. p. 683–716.

    Google Scholar 

  • McIntosh M, Cruz LJ, Hunkapiller MW, Gray WR, Olivera BM. Isolation and structure of a peptide toxin from the marine snail Conus magus. Arch Biochem Biophys. 1982;218:329–34.

    Article  CAS  PubMed  Google Scholar 

  • Middleton RE, Warren VA, Kraus RL, Hwang JC, Liu CJ, Dai G, Brochu RM, Kohler MG, Gao YD, Garsky VM, Bogusky MJ, Mehl JT, Cohen CJ, Smith MM. Two tarantula peptides inhibit activation of multiple sodium channels. Biochemistry. 2002;41:14734–47.

    Article  CAS  PubMed  Google Scholar 

  • Miljanich GP. Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr Med Chem. 2004;11:3029–40.

    Article  CAS  PubMed  Google Scholar 

  • Moran Y, Gordon D, Gurevitz M. Sea anemone toxins affecting voltage-gated sodium channels – molecular and evolutionary features. Toxicon. 2009;54:1089–101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oren DA, Froy O, Amit E, Kleinberger-Doron N, Gurevitz M, Shaanan B. An excitatory scorpion toxin with a distinctive feature: an additional a-helix at the C-terminus and its implications for interaction with insect sodium channels. Structure. 1998;6:1095–103.

    Article  CAS  PubMed  Google Scholar 

  • Payandeh J, Scheuer T, Zheng N, Catterall WA. The crystal structure of a voltage-gated sodium channel. Nature. 2011;475:353–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pennington MW, Beeton C, Galea CA, Smith BJ, Chi V, Monaghan KP, Garcia A, Rangaraju S, Giuffrida A, Plank D, Crossley G, Nugent D, Khaytin I, Lefievre Y, Peshenko I, Dixon C, Chauhan S, Orzel A, Inoue T, Hu X, Moore RV, Norton RS, Chandy KG. Engineering a stable and selective peptide blocker of the Kv1.3 channel in T lymphocytes. Mol Pharmacol. 2009;75:762–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Possani LD, Becerril B, Delepierre M, Tytgat J. Scorpion toxins specific for Na+-channels. Eur J Biochem. 1999;264:287–300.

    Article  CAS  PubMed  Google Scholar 

  • Rash LD, Hodgson WC. Pharmacology and biochemistry of spider venoms. Toxicon. 2002;40:225–54.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez de la Vega RC, Possani L. Novel paradigms on scorpion toxins that affect the activating mechanism of sodium channels. Toxicon. 2007;49:171–80.

    Article  CAS  Google Scholar 

  • Rogers JC, Qu Y, Tanada TN, Scheuer T, Catterall WA. Molecular determinants of high affinity binding of α-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the sodium channel α subunit. J Biol Chem. 1996;271:15950–62.

    Article  CAS  PubMed  Google Scholar 

  • Ruta V, Chen J, MacKinnon R. Calibrated measurement of gating-charge arginine displacement in the KvAP voltage-dependent K+ channel. Cell. 2005;123:463–75.

    Article  CAS  PubMed  Google Scholar 

  • Ryan DP, Ptacek LJ. Episodic neurological channelopathies. Neuron. 2010;68:282–92.

    Article  CAS  PubMed  Google Scholar 

  • Shao F, Yu-Mei Xiong Y-M, Zhu R-H, Ling M-H, Chi C-W, Wang D-C. Expression and purification of the BmK M1 neurotoxin from the scorpion Buthus martensii Karsch. Protein Expr Purif. 1999;17:358–65.

    Article  CAS  PubMed  Google Scholar 

  • Smith JJ, Cummins RT, Alphy S, Blumenthal MK. Molecular interactions of the gating modifier toxin, ProTx II, with Nav1.5: implied existence of a novel toxin binding site coupled to activation. J Biol Chem. 2007;282:12687–97.

    Article  CAS  PubMed  Google Scholar 

  • Song W, Du Y, Liu Z, Luo N, Turkov M, Gordon D, Gurevitz M, Goldin AL, Dong K. Mutations in the voltage sensor in domain III enhance the sensitivity of an insect sodium channel to a scorpion β-toxin. J Biol Chem. 2011;286:15781–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strugatsky D, Zilberberg N, Stankiewicz M, Ilan N, Turkov M, Cohen L, Pelhate M, Gilles N, Gordon D, Gurevitz M. Genetic polymorphism and expression of a highly potent scorpion depressant toxin enables refinement of the effects on insect Na-channels and illuminates the key role of Asn-58. Biochemistry. 2005;44:9179–87.

    Article  CAS  PubMed  Google Scholar 

  • Trung N, Fitches E, Gatehouse JA. A fusion protein containing a lepidopteran-specific toxin from the South Indian red scorpion (Mesobuthus tamulus) and snowdrop lectin shows oral toxicity to target insects. BMC Biotechnol. 2006;6:18–30.

    Article  PubMed Central  Google Scholar 

  • Tsushima RG, Borges A, Backx PH. Inactivated state dependence of sodium channel modulation by β-scorpion toxin. Eur J Physiol. 1999;437:661–8.

    Article  CAS  Google Scholar 

  • Turkov M, Rashi S, Zilberberg N, Gordon D, Ben Khalifa R, Stankiewicz M, Pelhate M, Gurevitz M. In vitro folding and functional analysis of an anti-insect selective scorpion depressant neurotoxin produced in E coli. Protein Expr Purif. 1997;9:123–31.

    Article  Google Scholar 

  • Villalba-Galea CA, Sandtner W, Dimitrov D, Mutoh H, Knöpfel T, Bezanilla F. Charge movement of a voltage-sensitive fluorescent protein. Biophys J. 2009;96:L19–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Chen Z, Du J, Sun Y, Lian A. Novel insect resistance in Brassica napus developed by transformation of chitinase and scorpion toxin genes. Plant Cell Rep. 2005;24:549–55.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yarov-Yarovoy V, Kahn R, Gordon D, Gurevitz M, Scheuer T, Catterall WA. Mapping the receptor site for α-scorpion toxins on a Na+ channel voltage sensor. Proc Natl Acad Sci U S A. 2011;108:15426–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weinberger H, Moran Y, Gordon D, Turkov M, Kahn R, Gurevitz M. Positions under positive selection – key for selectivity and potency of scorpion α-toxins. Mol Biol Evol. 2010;27:1025–34.

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Bingham JP, Zhu W, Moczydlowski E, Liang S, Cummins TR. Tarantula huwentoxin-IV inhibits neuronal sodium channels by binding to receptor site 4 and trapping the domain II voltage sensor in the closed configuration. J Biol Chem. 2008;283:27300–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang YC, Kuo CC. The position of the fourth segment of domain 4 determines status of the inactivation gate in Na+ channels. J Neurosci. 2003;23:4922–039.

    CAS  PubMed  Google Scholar 

  • Ye X, Bosmans F, Li C, Zhang Y, Wang D-C, Tytgat J. Structural basis for the voltage-gated Na channel selectivity of the scorpion a-like toxin BmK M1. J Mol Biol. 2005;353:788–803.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Ren W, DeCaen P, Yan C, Tao X, Tang L, Jin W, Hasegawa K, Kumasaka T, He J, Jia W, Clapham DE, Yan N. Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature. 2012;486:130–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zilberberg N, Froy O, Loret E, Cestèle S, Arad D, Gordon D, Gurevitz M. Identification of structural elements of a scorpion α-neurotoxin important for receptor site recognition. J Biol Chem. 1997;272:14810–6.

    Article  CAS  PubMed  Google Scholar 

  • Zlotkin E. The insect voltage-gated sodium channel as target of insecticides. Annu Rev Entomol. 1999;44:429–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gurevitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Gurevitz, M. et al. (2015). Molecular Description of Scorpion Toxin Interaction with Voltage-Gated Sodium Channels. In: Gopalakrishnakone, P., Possani, L., F. Schwartz, E., Rodríguez de la Vega, R. (eds) Scorpion Venoms. Toxinology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6404-0_10

Download citation

Publish with us

Policies and ethics