Skip to main content
Log in

From Biochemistry to Physiology: The Calorimetry Connection

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

This article provides guidelines for selecting optimal calorimetric instrumentation for applications in biochemistry and biophysics. Applications include determining thermodynamics of interactions in non-covalently bonded structures, and determining function through measurements of enzyme kinetics and metabolic rates. Specific examples illustrating current capabilities and methods in biological calorimetry are provided. Commercially available calorimeters are categorized by application and by instrument characteristics (isothermal or temperature-scanning, reaction vessel volume, heat rate detection limit, fixed or removable reaction vessels, etc.). Advantages and limitations of commercially available calorimeters are listed for each application in biochemistry, biophysics, and physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hansen, L. D., & Russell, D. J. (2006). Which calorimeter is best? A guide for choosing the best calorimeter for a given task. Thermochimica Acta, 450, 71–72.

    Article  CAS  Google Scholar 

  2. Privalov, P. L. (1997). Thermodynamics of protein folding. The Journal of Chemical Thermodynamics, 29, 447–474.

    Article  CAS  Google Scholar 

  3. Randzio, S. L. (2003) Comments on “Volumetric studies of aqueous polymer solutions using pressure perturbation calorimetry...” [Macromolecules 34 (2001) 4130]. Thermochimica Acta, 398, 75–80.

    Article  CAS  Google Scholar 

  4. Boehm, K., Rösgen, J., & Hinz, H.-J. (2006). Pressure-modulated differential scanning calorimetry. An approach to the continuous, simultaneous determination of heat capacities and expansion coefficients. Analytical Chemistry, 78, 984–990.

    Article  PubMed  CAS  Google Scholar 

  5. Rösgen, J., & Hinz, H.-J. (2006). Pressure-modulated differential scanning calorimetry. Theoretical background. Analytical Chemistry, 78, 991–996.

    Article  PubMed  CAS  Google Scholar 

  6. Lin, L.-N., Brandts, J. F., Brandts, J. M., & Plotnikov, V. (2002). Determination of the volumetric properties of proteins and other solutes using pressure perturbation calorimetry. Analytical Biochemistry, 302, 144–160.

    Article  PubMed  CAS  Google Scholar 

  7. Randzio, S. L. (1996). Scanning transitiometry. Chemical Society Reviews, 25, 383–392.

    Article  CAS  Google Scholar 

  8. Lee, J., & Kaletunc, G. (2002). Evaluation of the heat inactivation of Escherichia coli and Lactobacillus plantarum by differential scanning calorimetry. Applied and Environmental Microbiology, 68, 5379–5386.

    Article  PubMed  CAS  Google Scholar 

  9. Mackey, A. M., Miles, C. A., Parsons, S. E., & Seymour, D. A. (1991). Thermal denaturation of whole cells and cell components of Escherichia coli examined by differential scanning calorimetry. Journal of General Microbiology, 137, 2361–2374.

    PubMed  CAS  Google Scholar 

  10. Ivanov, I. T., Brähler, M., Georgieva, R., & Baumler, H. (2007). Role of membrane proteins in thermal damage and necrosis of red blood cells. Thermochimica Acta, 456, 7–12.

    Article  CAS  Google Scholar 

  11. Hansen, L. D., & Criddle, R. S. (1990). Determination of phase changes and metabolic rates in plant tissues as a function of temperature by heat conduction DSC. Thermochimica Acta, 160, 173–192.

    Article  CAS  Google Scholar 

  12. Criddle, R. S., Breidenbach, R. W., & Hansen, L. D. (1991). Plant calorimetry: How to quantitatively compare apples and oranges. Thermochimica Acta, 193, 67–90.

    Article  CAS  Google Scholar 

  13. Rank, D. R., Breidenbach, R. W., Fontana, A. J., Hansen, L. D., & Criddle, R. S. (1991). Time-temperature responses of tomato cells during high- and low-temperature inactivation. Planta, 185, 576–582.

    Article  Google Scholar 

  14. Hansen, L. D., Afzal, M., Breidenbach, R. W., & Criddle, R. S. (1994). High and low temperature limits to growth of tomato cells. Planta, 195, 1–9.

    Article  CAS  Google Scholar 

  15. O’Brien, R., & Haq, I. (2004). Applications of biocalorimetry: Binding, stability and enzyme kinetics. In J. E. Ladbury & M. L. Doyle (Eds.), Biocalorimetry 2: Applications of calorimetry in the biological sciences (pp. 3–33). Chichester, England: Wiley.

    Google Scholar 

  16. Jelesarov, I., & Bosshard, H. R. (1999). Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. Journal of Molecular Recognition, 12, 3–18.

    Article  PubMed  CAS  Google Scholar 

  17. Cooper, A., Nutley, M. A., & Wadood, A. (2001). Differential scanning calorimetry. In S. E. Harding & B. Z. Chowdry (Eds.), Protein–ligand interactions: Hydrodynamics and calorimetry (pp. 287–318). Oxford: Oxford University Press.

    Google Scholar 

  18. Privalov, P. L., & Dragan, A. I. (2006). Microcalorimetry of biological macromolecules. Biophysical Chemistry, 126, 16–24.

    Article  PubMed  CAS  Google Scholar 

  19. Hansen, L. D., Christensen, J. J., & Izatt, R. M. (1965). Entropy titration. A calorimetric method for the determination of ΔG (K), ΔH, and ΔS. Journal of the Chemical Society. Chemical Communications, 3, 36–37.

    Google Scholar 

  20. Christensen, J. J., Izatt, R. M., Hansen, L. D., & Partridge, J. A. (1966). Entropy titration: A calorimetric method for the determination of ΔG, ΔH and ΔS from a single thermometric titration. The Journal of Physical Chemistry, 70, 2003–2010.

    Article  CAS  Google Scholar 

  21. Eatough, D. J., Lewis, E. A., & Hansen, L. D. (1985). Solution calorimetry: Determination of ΔHR and Keq values. In K. Grime (Ed.), Analytical solution calorimetry (pp. 137–161). New York, NY: Wiley.

    Google Scholar 

  22. Ababou, A., & Ladbury, J. E. (2007). Survey of the year 2005: Literature on applications of isothermal titration calorimetry. Journal of Molecular Recognition, 20, 4–14.

    Article  PubMed  CAS  Google Scholar 

  23. Wiseman, T. S., Williston, S., Brandts, J. F., & Lin, L.-N. (1989). Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Analytical Biochemistry, 179, 131–137.

    Article  PubMed  CAS  Google Scholar 

  24. Russell, D. J., & Hansen, L. D. (2006). Calorimeters for biotechnology. Thermochimica Acta, 445, 151–159.

    Article  CAS  Google Scholar 

  25. O’Brien, R. J., Ladbury, E., & Chowdry, B. Z. (2001). Isothermal titration calorimetry of biomolecules. In S. E. Harding & B. Z. Chowdry (Eds.), Protein–ligand interactions: Hydrodynamics and calorimetry (pp. 263–286). Oxford: Oxford University Press.

    Google Scholar 

  26. Horn, J. R., Russell, D., Lewis, E. A., & Murphy, K. P. (2001). van’t Hoff and calorimetric enthalpies from isothermal titration calorimetry: Are there significant discrepancies? Biochemistry, 40, 1774–1778.

    Article  PubMed  CAS  Google Scholar 

  27. Holdgate, G. A. (2001). Making cool drugs hot: Isothermal titration calorimetry as a tool to study binding energetics. BioTechniques, 31, 164–184.

    PubMed  CAS  Google Scholar 

  28. Sigurskjold, B. W. (2000). Exact analysis of competition ligand binding by displacement isothermal titration calorimetry. Analytical Biochemistry, 277, 260–266.

    Article  PubMed  CAS  Google Scholar 

  29. Privalov, G. P., & Privalov, P. L. (2000). Problems and perspectives in microcalorimetry of biological macromolecules. Methods in Enzymology, 323, 31–62.

    Article  PubMed  CAS  Google Scholar 

  30. Woolley, E. M. (2007). A new tool for an old job: Using fixed cell scanning calorimetry to investigate dilute aqueous solutions. The Journal of Chemical Thermodynamics, 39, 1300–1317.

    Article  CAS  Google Scholar 

  31. Gomez, J., & Freire, E. (1995). Thermodynamic mapping of the inhibitor site of the aspartic protease endothiapepsin. Journal of Molecular Biology, 252, 337–350.

    Article  PubMed  CAS  Google Scholar 

  32. Baker, B. M., & Murphy, K. P. (1996). Evaluation of linked protonation effects in protein binding using isothermal titration calorimetry. Biophysical Journal, 71, 2049–2055.

    PubMed  CAS  Google Scholar 

  33. Frisch, C., Schreiber, G., Johnson, C. M., & Fersht, A. R. (1997). Thermodynamics of the interaction of Barnase and Barstar: Changes in free energy versus changes in enthalpy on mutation. The Journal of Biological Chemistry, 267, 696–706.

    CAS  Google Scholar 

  34. Baker, B. M., & Murphy, K. P. (1997). Dissecting the energetics of a protein–protein interaction: The binding of ovomucoid third domain to elastase. The Journal of Biological Chemistry, 268, 557–569.

    CAS  Google Scholar 

  35. Crnogorac, M. M., Ullmann, G. M., & Kostic, N. M. (2001). Effects of pH on protein association: Modification of the protein-linkage model and experimental verification of the modified model in the case of cytochrome c and plastocyanin. Journal of the American Chemical Society, 123, 10789–10798.

    Article  PubMed  CAS  Google Scholar 

  36. Eatough, D. J., Hansen, L. D., Izatt, R. M., & Mangelson, N. F. (1977). Determination of acidic and basic species in particulates by thermometric titration calorimetry. In Methods and Standards for Environmental Measurement, Proceedings of the Eighth IMR Symposium, 20–24 September 1976 (pp. 643–650). Gaithersburg, MD, Special Publication 464: National Bureau of Standards. See also Christensen, J. J., Hansen, L. D., & Izatt, R. M. (1976). Handbook of proton ionization heats and related thermodynamic quantities. New York: Wiley.

  37. Markova, N., & Hallen, D. (2004). The development of a continuous isothermal titration calorimetric method for equilibrium studies. Analytical Biochemistry, 331, 77–88.

    PubMed  CAS  Google Scholar 

  38. Mizoue, L. S., & Tellinghuisen, J. (2004). The role of backlash in the “first injection anomaly” in isothermal titration calorimetry. Analytical Biochemistry, 326, 125–127.

    Article  PubMed  CAS  Google Scholar 

  39. Tellinghuisen, J. (2004). Volume errors in isothermal titration calorimetry. Analytical Biochemistry, 333, 405–406.

    Article  PubMed  CAS  Google Scholar 

  40. Kroe, R. R., Regan, J., Proto, A., Peet, G. W., Roy, T., Landro, L. D., Fuschetto, N. G., Pargellis, C. A., & Ingraham, R. H. (2003). Thermal denaturation: A method to rank slow binding, high-affinity P38 αMAP kinase inhibitors. Journal of Medicinal Chemistry, 46, 4669–4675.

    Article  PubMed  CAS  Google Scholar 

  41. Holdgate, G. A., & Ward, W. H. J. (2005). Measurements of binding thermodynamics in drug discovery. Drug Discovery Today, 10, 1543–1550.

    Article  PubMed  CAS  Google Scholar 

  42. Brandts, J. F., & Lin, L.-N. (1990). Study of strong to ultratight protein interactions using differential scanning calorimetry. Biochemistry, 29, 6927–6940.

    Article  PubMed  CAS  Google Scholar 

  43. Luque, I., Leavitt, S. A., & Freire, E. (2002). The linkage between protein folding and functional cooperativity: Two sides of the same coin? Annual Review of Biophysics and Biomolecular Structure, 31, 235–256.

    Article  PubMed  CAS  Google Scholar 

  44. Todd, M. J., & Gomez, J. (2001). Enzyme kinetics determined using calorimetry: A general assay for enzyme activity? Analytical Biochemistry, 296, 179–187.

    Article  PubMed  CAS  Google Scholar 

  45. Morin, P. E., & Freire, E. (1991). Direct calorimetric analysis of the enzymatic activity of yeast cytochrome c oxidase. Biochemistry, 30, 8494–8500.

    Article  PubMed  CAS  Google Scholar 

  46. Bianconi, M. L. (2003). Calorimetric determination of thermodynamic parameters of reaction reveals different enthalpic compensations of the yeast hexokinase isozymes. The Journal of Biological Chemistry, 278, 18709–18713.

    Article  PubMed  CAS  Google Scholar 

  47. Hansen, L. D., Macfarlane, C., McKinnon, N., Smith, B. N., & Criddle, R. S. (2004). Use of calorespirometric ratios, heat per CO2 and heat per O2, to quantify metabolic paths and energetics of growing cells. Thermochimica Acta, 422, 55–61.

    Article  CAS  Google Scholar 

  48. Kemp, R. B., & Guan, Y. H. (1999). Microcalorimetric studies of animal tissues and their isolated cells. In R. B. Kemp (Ed.), Handbook of thermal analysis and calorimetry, vol. 4, from macromolecules to man (pp. 557–656). Amsterdam: Elsevier.

    Google Scholar 

  49. Criddle, R. S., Breidenbach, R. W., Rank, D. R., Hopkin, M. S., & Hansen, L. D. (1990). Simultaneous calorimetric and respirometric measurements on plant tissues. Thermochimica Acta, 172, 213–221.

    Article  CAS  Google Scholar 

  50. Criddle, R. S., Fontana, A. J., Rank, D. R., Paige, D., Hansen L. D., & Breidenbach, R. W. (1991). Simultaneous measurement of metabolic heat rate, CO2 production, and O2 consumption by microcalorimetry. Analytical Biochemistry, 194, 413–417.

    Article  PubMed  CAS  Google Scholar 

  51. Duboc, P., Marison, I., & von Stockar, U. (1999). Quantitative calorimetry and biochemical engineering. In R. B. Kemp (Ed.), Handbook of thermal analysis and calorimetry, vol. 4, from macromolecules to man (pp. 267–365). Amsterdam: Elsevier.

  52. Macfarlane, C., Adams, M. A., & Hansen, L. D. (2002). Application of an enthalpy balance model of the relation between growth and respiration to temperature acclimation of Eucalyptus globulus seedlings. Proceedings of the Royal Society of London, 269, 1499–1507.

    Article  Google Scholar 

  53. Fontana, A. J., Hansen, L. D., Breidenbach, R. W., & Criddle, R. S. (1990). Microcalorimetric measurement of aerobic cell metabolism in unstirred cell cultures. Thermochimica Acta, 172, 105–113.

    Article  CAS  Google Scholar 

  54. Maskow, T., Muller, S., Losche, A., Harms, H., & Kemp, R. (2006). Control of continuous polyhydroxybutyrate synthesis using calorimetry and flow cytometry. Biotechnology & Bioengineering, 93, 541–552.

    Article  CAS  Google Scholar 

  55. Cheney, M., Hansen, L. D., Breidenbach, R. W., Wilhelmsen, E., & Criddle, R. S. (1996). Pressure effects on metabolism in tissues from mice (Mus Muscalis) and freshwater mussel (Elliptio complanata). Comparitive Biochemistry and Physiology, 114B, 69–76.

    Article  CAS  Google Scholar 

  56. Patino, R., Janssen, M., & von Stockar, U. (2007). A study of the growth for the microalga Chlorella vulgaris by photo-bio-calorimetry and other on-line and off-line techniques. Biotechnology & Bioengineering, 96, 757–767.

    Article  CAS  Google Scholar 

  57. Mukhanov, V. S., & Kemp, R. B. (2006). Simultaneous photocalorimetric and oxygen polarographic measurements on Dunaliella maritima cells reveal a thermal discrepancy that could be due to non-photochemical quenching. Thermochimica Acta, 446, 11–19.

    Article  CAS  Google Scholar 

  58. Janssen, M., Patino, R., & von Stockar, U. (2005). Application of bench-scale biocalorimetry to photoautotrophic cultures. Thermochimica Acta, 435, 18–27.

    Article  CAS  Google Scholar 

  59. Johansson, P., & Wadso, I. (1997). A photo microcalorimetric system for studies of plant tissue. Journal of Biochemical and Biophysical Methods, 35, 103–114.

    Article  PubMed  CAS  Google Scholar 

  60. Rockland, L. B. (1960). Saturated salt solutions for static control of relative humidity between 5 and 40°C. Analytical Chemistry, 32, 1375–1376.

    Article  CAS  Google Scholar 

  61. Nyqvist, H. (1983). Saturated salt solutions for maintaining specified relative humidities. International Journal of Pharmaceutical Technology & Product Manufacturing, 4, 47–48.

    CAS  Google Scholar 

  62. Lamprecht, I., & Schmolz, E. (1999). Calorimetry of small animals. In R. B. Kemp (Ed.), Handbook of thermal analysis and calorimetry, vol. 4, from macromolecules to man (pp. 405–467). Amsterdam: Elsevier.

    Google Scholar 

  63. Hansen, L. D. (2001). Toward a standard nomenclature for calorimetry. Thermochimica Acta, 371, 19–22.

    Article  CAS  Google Scholar 

  64. Hansen, L. D., Jensen, T. E., Mayne, S., Eatough, D. J., Izatt, R. M., & Christensen, J. J. (1975). Heat-loss corrections for small, isoperibol calorimeter reaction vessels. The Journal of Chemical Thermodynamics, 7, 919–926.

    Article  CAS  Google Scholar 

  65. Battley, E. H. (1999). The thermodynamics of microbial growth. In R. B. Kemp (Ed.), Handbook of thermal analysis and calorimetry, vol. 4, from macromolecules to man (pp. 250–251). Amsterdam: Elsevier.

    Google Scholar 

Download references

Acknowledgments

LDH thanks BYU for continuing support. We thank Kevin Peine for growing the pumpkins and collecting the metabolic data on leaf tissue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald J. Russell.

Appendix

Appendix

Measurement of Heat

There are only three ways of measuring heat; these are known as temperature rise, heat conduction, and power compensation methods [63]. In the temperature rise method, the temperature change caused by a process is multiplied by the apparent heat capacity of the calorimetric system to obtain the heat effect. The reaction vessel is typically a glass Dewar that may have a time constant as low as a fraction of a second. Although this method is inherently the fastest method for heat measurement, and has been extensively applied to binding reactions in multi-reaction systems [21] and for measurement of kinetics, it is limited to short measurement time periods (< 2 h) and relatively fast reactions because of the need to correct for heat exchange with the environment. Also, because use of very small volumes complicates heat exchange corrections [64], the temperature rise method generally requires more material for experiments than the other methods. In the heat conduction method, heat rate is calculated from the measured temperature difference across a fixed thermal conductivity path, i.e., dQ/dt = kΔT. The ΔT is commonly measured as a voltage output from a Seebeck device or thermopile between the sample chamber and a metal block at a reference temperature, which is either held constant or scanned according to a preset program. In the power compensation method, the power from an electrical heater required to maintain the sample at a reference temperature is measured. Again the reference temperature may be held constant or scanned. Although power compensation is generally a faster method than heat conduction if the methods are compared at similar detection limits and sample size, this choice is probably of little consequence in selecting a calorimeter for the applications discussed in this article.

The surroundings of a calorimeter vessel can be isoperibol (literally: constant surroundings) or adiabatic (the temperature of the surroundings is controlled to be equal to the temperature of the reaction vessel). Isoperibol systems are simpler to build and maintain than adiabatic systems, and are capable of producing equally good data.

Nomenclature and Units

In this article the term “heat rate” is used for dQ/dt instead of “thermal power” because of possible confusion caused by the latter term. The heat rate should be expressed in the SI system of units, for example, in microwatts or microjoules per second, and not as microcalories per second. The calorie, 4.184 J, is not an acceptable SI unit, and many journals now require data to be reported in SI units.

Another source of confusion is use of the terms “oxycaloric equivalent”, “calorespirometric ratio”, and “Thornton’s rule” or “Thornton’s constant”. The oxycaloric equivalent is the amount of heat produced per mole of oxygen consumed by an aerobic, living system in a steady state condition, and is typically near 455 kJ per mole of O2. Thornton’s constant is derived from heats of combustion of organic compounds [65]. Since it is not truly a constant, i.e., typically this value is 455 ± 15 kJ per mole of O2, it is more properly referred to as a rule rather than a constant. The exact value depends on the substrate being oxidized and on the state of the reactants and products.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, L.D., Russell, D.J. & Choma, C.T. From Biochemistry to Physiology: The Calorimetry Connection. Cell Biochem Biophys 49, 125–140 (2007). https://doi.org/10.1007/s12013-007-0049-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-007-0049-y

Keywords

Navigation