Skip to main content

Advertisement

Log in

Investigating Radioprotective Effect of Hesperidin/Diosmin Compound Against 99mTc-MIBI-Induced Cardiotoxicity: Animal Study

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

This study was designed to indicate the cardiotoxicity due to 99mTc-MIBI injection in myocardial perfusion imaging in wistar Rats. In addition, protective effect of hesperidin/diosmin compound (HDC) against the cardiotoxicity was evaluated. Twenty five male rats were randomly divided into five groups. The rats in Group 1 (control) only received PBS. For Group 2 (HDC only) the rats treated with only HDC. The rats in Group 3 (radiation) received PBS before injection and exposure to 1 mCi 99mTc-MIBI. The rats in Group 4 (HDC + radiation) treated with HDC before exposure. For Group 5 (radiation + HDC) the rats were exposed and thereafter administered HDC. The Animals of this study were orally administered 100 mg/kg/day of the HDC for 7 days. Then, the rats were sacrificed and afterwards their heart tissues were carefully extracted for biochemical and histopathological evaluations. According to our results in the radiation group, the rate of rupture of cardiomyocyte fibers was higher than other groups, and in some fibers, the presence of lymphocytes was observed. Relative improvement was observed in radiation + HDC group compared to the radiation group and also a small number of cardiomyocyte fibers were torn and in some fibers, the presence of lymphocytes was observed, which was less than the model group. Collagen deposition significantly increased in radiation group compared to control group (P < 0.05). It can be seen that the percentage of collagen deposition decreased substantially in the group treated with HDC before or after radiation compared to radiation group (P < 0.05). The MDA activities significantly reduced (P < 0.05) in both (HDC + radiation) and (radiation + HDC) groups. SOD activity significantly increased in both (radiation + HDC) and (HDC + radiation) groups compared to that of radiation group (P < 0.05). It could be concluded that the HDC is safe and promising useful therapeutic agent in radiation induced cardiotoxicity for patients undergoing nuclear medicine procedures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Available on request.

References

  1. Yusuf, S. W., Venkatesulu, B. P., Mahadevan, L. S., & Krishnan, S. (2017). Radiation-induced cardiovascular disease: A clinical perspective. Frontiers in Cardiovascular Medicine, 4, 66. https://doi.org/10.3389/fcvm.2017.00066

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chen, J., Einstein, A. J., Fazel, R., Krumholz, H. M., Wang, Y., Ross, J. S., Ting, H. H., Shah, N. D., Nasir, K., & Nallamothu, B. K. (2010). Cumulative exposure to ionizing radiation from diagnostic and therapeutic cardiac imaging procedures: A population-based analysis. Journal of the American College of Cardiology, 56(9), 702–711. https://doi.org/10.1016/j.jacc.2010.05.014

    Article  PubMed  PubMed Central  Google Scholar 

  3. Darby, S. C., Cutter, D. J., Boerma, M., Constine, L. S., Fajardo, L. F., Kodama, K., Mabuchi, K., Marks, L. B., Mettler, F. A., & Pierce, L. J. (2010). Radiation-related heart disease: Current knowledge and future prospects. International Journal of Radiation Oncology Biology, 76(3), 656–665. https://doi.org/10.1016/j.ijrobp.2009.09.064

    Article  Google Scholar 

  4. Group EBCTC. (2005). Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: An overview of the randomised trials. The Lancet, 366(9503), 2087–2106. https://doi.org/10.1016/S0140-6736(05)67887-7

    Article  Google Scholar 

  5. Boice, J. D., Jr. (2007). An affair of the heart. Journal of the National Cancer Institute., 99(3), 186–187. https://doi.org/10.1093/jnci/djk058

    Article  PubMed  Google Scholar 

  6. Shimizu, Y., Kodama, K., Nishi, N., Kasagi, F., Suyama, A., Soda, M., Grant, E. J., Sugiyama, H., Sakata, R., & Moriwaki, H. (2010). Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950–2003. BMJ. https://doi.org/10.1136/bmj.b5349

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shimizu, Y., Kato, H., Schull, W. J., & Hoel, D. G. (1992). Studies of the mortality of A-bomb survivors. 9. Mortality, 1950–1985: Part 3. Noncancer mortality based on the revised doses (DS86). Radiation Research, 130(2), 249–266.

    Article  CAS  Google Scholar 

  8. Wang, H., Wei, J., Zheng, Q., Meng, L., Xin, Y., Yin, X., & Jiang, X. (2019). Radiation-induced heart disease: A review of classification, mechanism and prevention. International Journal of Biological Sciences, 15(10), 2128. https://doi.org/10.7150/ijbs.35460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Salata, C., Ferreira-Machado, S. C., De Andrade, C. B. V., Mencalha, A. L., Mandarim-De-Lacerda, C. A., & de Almeida, C. E. (2014). Apoptosis induction of cardiomyocytes and subsequent fibrosis after irradiation and neoadjuvant chemotherapy. International Journal of Radiation Biology, 90(4), 284–290. https://doi.org/10.3109/09553002.2014.887869

    Article  CAS  PubMed  Google Scholar 

  10. Sridharan, V., Aykin-Burns, N., Tripathi, P., Krager, K. J., Sharma, S. K., Moros, E. G., Corry, P. M., Nowak, G., Hauer-Jensen, M., & Boerma, M. (2014). Radiation-induced alterations in mitochondria of the rat heart. Radiation Research, 181(3), 324–334. https://doi.org/10.1667/RR13452.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Citrin, D., Cotrim, A. P., Hyodo, F., Baum, B. J., Krishna, M. C., & Mitchell, J. B. (2010). Radioprotectors and mitigators of radiation-induced normal tissue injury. The Oncologist, 15(4), 360. https://doi.org/10.1634/theoncologist.2009-S104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hosseinimehr, S. J. (2007). Trends in the development of radioprotective agents. Drug Discovery Today, 12(19–20), 794–805. https://doi.org/10.1016/j.drudis.2007.07.017

    Article  CAS  PubMed  Google Scholar 

  13. Khezerloo, D., Mortezazadeh, T., Farhood, B., Sheikhzadeh, P., Seyfizadeh, N., & Pezhman, L. (2019). The effect of date palm seed extract as a new potential radioprotector in gamma-irradiated mice. Journal of Cancer Research and Therapeutics, 15(3), 517–521. https://doi.org/10.4103/jcrt.JCRT_1341_16

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Q.-Y., Wang, F.-X., Jia, K.-K., & Kong, L.-D. (2018). Natural product interventions for chemotherapy and radiotherapy-induced side effects. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2018.01253

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tejada, S., Pinya, S., Martorell, M., Capó, X., Tur, J. A., Pons, A., & Sureda, A. (2018). Potential anti-inflammatory effects of hesperidin from the genus citrus. Current Medicinal Chemistry, 25(37), 4929–4945. https://doi.org/10.2174/0929867324666170718104412

    Article  CAS  PubMed  Google Scholar 

  16. Kilic, K., Sakat, M. S., Yildirim, S., Kandemir, F. M., Gozeler, M. S., Dortbudak, M. B., & Kucukler, S. (2019). The amendatory effect of hesperidin and thymol in allergic rhinitis: An ovalbumin-induced rat model. European Archives of Oto-Rhino-Laryngology, 276(2), 407–415. https://doi.org/10.1007/s00405-018-5222-y

    Article  PubMed  Google Scholar 

  17. Cho, J. (2006). Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin. Archives of Pharmacal Research, 29(8), 699–706. https://doi.org/10.1007/BF02968255

    Article  CAS  PubMed  Google Scholar 

  18. Roohbakhsh, A., Parhiz, H., Soltani, F., Rezaee, R., & Iranshahi, M. (2015). Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sciences, 124, 64–74. https://doi.org/10.1016/j.lfs.2014.12.030

    Article  CAS  PubMed  Google Scholar 

  19. Garg, A., Garg, S., Zaneveld, L., & Singla, A. (2001). Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytotherapy Research, 15(8), 655–669. https://doi.org/10.1002/ptr.1074

    Article  CAS  PubMed  Google Scholar 

  20. Rezaeyan, A., Haddadi, G. H., Hosseinzadeh, M., Moradi, M., & Najafi, M. (2016). Radioprotective effects of hesperidin on oxidative damages and histopathological changes induced by X-irradiation in rats heart tissue. Journal of Medical Physics/Association of Medical Physicists of India, 41(3), 182. https://doi.org/10.4103/0971-6203.189482

    Article  PubMed Central  Google Scholar 

  21. Srinivasan, S., & Pari, L. (2012). Ameliorative effect of diosmin, a citrus flavonoid against streptozotocin-nicotinamide generated oxidative stress induced diabetic rats. Chemico-Biological Interactions, 195(1), 43–51. https://doi.org/10.1016/j.cbi.2011.10.003

    Article  CAS  PubMed  Google Scholar 

  22. Kastrup, J., Petersen, P., Dejgård, A., Angelo, H. R., & Hilsted, J. (1987). Intravenous lidocaine infusion—a new treatment of chronic painful diabetic neuropathy? Pain, 28(1), 69–75. https://doi.org/10.1016/0304-3959(87)91061-X

    Article  PubMed  Google Scholar 

  23. Tanrikulu, Y., Şahin, M., Kismet, K., Kilicoglu, S. S., Devrim, E., Tanrikulu, C. S., Erdemli, E., Erel, S., Bayraktar, K., & Akkus, M. A. (2013). The protective effect of diosmin on hepatic ischemia reperfusion injury: an experimental study. Bosnian Journal of Basic Medical Sciences, 13(4), 218. https://doi.org/10.17305/bjbms.2013.2305

    Article  PubMed  PubMed Central  Google Scholar 

  24. Imam, F., Al-Harbi, N. O., Al-Harbi, M. M., Ansari, M. A., Zoheir, K. M., Iqbal, M., Anwer, M. K., Al Hoshani, A. R., Attia, S. M., & Ahmad, S. F. (2015). Diosmin downregulates the expression of T cell receptors, pro-inflammatory cytokines and NF-κB activation against LPS-induced acute lung injury in mice. Pharmacological Research, 102, 1–11. https://doi.org/10.1016/j.phrs.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  25. Mahgoub, S., Sallam, A. O., Sarhan, H. K., Ammar, A. A., & Soror, S. H. (2020). Role of Diosmin in protection against the oxidative stress induced damage by gamma-radiation in Wistar albino rats. Regulatory Toxicology and Pharmacology, 113, 104622. https://doi.org/10.1016/j.yrtph.2020.104622

    Article  CAS  PubMed  Google Scholar 

  26. Sezer, A., Usta, U., Kocak, Z., & Yagci, M. A. (2011). The effect of a flavonoid fractions diosmin+ hesperidin on radiation-induced acute proctitis in a rat model. Journal of Cancer Research and Therapeutics, 7(2), 152. https://doi.org/10.4103/0973-1482.8292

    Article  CAS  PubMed  Google Scholar 

  27. Abdel-Rafei, M., Amin, M., & Hasan, H. (2017). Novel effect of Daflon and low-dose γ-radiation in modulation of thioacetamide-induced hepatic encephalopathy in male albino rats. Human & Experimental Toxicology, 36(1), 62–81. https://doi.org/10.1177/0960327116637657

    Article  CAS  Google Scholar 

  28. Dreyfuss, A. D., Goia, D., Shoniyozov, K., Shewale, S. V., Velalopoulou, A., Mazzoni, S., Avgousti, H., Metzler, S. D., Bravo, P. E., & Feigenberg, S. J. (2021). A novel mouse model of radiation-induced cardiac injury reveals biological and radiological biomarkers of cardiac dysfunction with potential clinical relevance. Clinical Cancer Research, 27(8), 2266–2276. https://doi.org/10.1158/1078-0432.CCR-20-3882

    Article  CAS  PubMed  Google Scholar 

  29. Cicone, F., Viertl, D., Quintela Pousa, A. M., Denoël, T., Gnesin, S., Scopinaro, F., Vozenin, M.-C., & Prior, J. O. (2017). Cardiac radionuclide imaging in rodents: A review of methods, results, and factors at play. Frontiers in Medicine, 4, 35. https://doi.org/10.3389/fmed.2017.00035

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fooladi, M., Cheki, M., Shirazi, A., Sheikhzadeh, P., Amirrashedi, M., Ghahramani, F. and Khoobi, M. (2021). Histopathological evaluation of protective effect of telmisartan against radiation-induced bone marrow injury. Journal of Biomedical Physics and Engineering. Retrieved from https://jbpe.sums.ac.ir/article_47577.html

  31. Leary, S., Underwood, W., Anthony, R., Cartner, S., Corey, D., Grandin, T., Greenacre, C., Gwaltney-Brant, S., McCrackin, M. A., Meyer, R., Miller, D., Shearer, J., & Yanong, R. (2013). AVMA guidelines for the euthanasia of animals: 2013 edition. American Veterinary Medical Association.

    Google Scholar 

  32. Mathers, C. D., & Loncar, D. (2006). Projections of global mortality and burden of disease from 2002 to 2030. PLoS Medicine, 3(11), e442. https://doi.org/10.1371/journal.pmed.0030442

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hosseinimehr, S. J. (2009). Potential utility of radioprotective agents in the practice of nuclear medicine. Cancer Biotherapy and Radiopharmaceuticals, 24(6), 723–731. https://doi.org/10.1089/cbr.2009.0635

    Article  CAS  PubMed  Google Scholar 

  34. Taibi, N., Aka, P., Kirsch-Volders, M., Bourgeois, P., Frühling, J., & Szpireer, C. (2006). Radiobiological effect of 99mTechnetium-MIBI in human peripheral blood lymphocytes: Ex vivo study using micronucleus/FISH assay. Cancer Letters, 233(1), 68–78. https://doi.org/10.1016/j.canlet.2005.02.032

    Article  CAS  PubMed  Google Scholar 

  35. Merz, T., Tatum, J., & Hirsch, J. (1986). Technetium-99m-labeled lymphocytes: A radiotoxicity study. Journal of Nuclear Medicine, 27(1), 105–110.

    CAS  PubMed  Google Scholar 

  36. Yahyapour, R., Amini, P., Rezapoor, S., Rezaeyan, A., Farhood, B., Cheki, M., Fallah, H., & Najafi, M. (2018). Targeting of inflammation for radiation protection and mitigation. Current Molecular Pharmacology, 11(3), 203–210. https://doi.org/10.2174/1874467210666171108165641

    Article  CAS  PubMed  Google Scholar 

  37. Hosseinimehr, S., & Nemati, A. (2006). Radioprotective effects of hesperidin against gamma irradiation in mouse bone marrow cells. The British Journal of Radiology, 79(941), 415–418. https://doi.org/10.1259/bjr/40692384

    Article  CAS  PubMed  Google Scholar 

  38. Hosseinimehr, S. J., Ahmadi, A., Beiki, D., Habibi, E., & Mahmoudzadeh, A. (2009). Protective effects of hesperidin against genotoxicity induced by 99mTc-MIBI in human cultured lymphocyte cells. Nuclear Medicine and Biology, 36(7), 863–867. https://doi.org/10.1016/j.nucmedbio.2009.06.002

    Article  CAS  PubMed  Google Scholar 

  39. Di Meo, S., & Venditti, P. (2020). Evolution of the knowledge of free radicals and other oxidants. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2020/9829176

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pradeep, K., Park, S. H., & Ko, K. C. (2008). Hesperidin a flavanoglycone protects against γ-irradiation induced hepatocellular damage and oxidative stress in Sprague-Dawley rats. European Journal of Pharmacology, 587(1–3), 273–280. https://doi.org/10.1016/j.ejphar.2008.03.052

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The current study was supported under Grant Number 24420, Shahid Beheshti University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the design of the research, perform the experiment and data analysis and write the manuscript.

Corresponding author

Correspondence to Peyman Sheikhzadeh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

The animals used for the experiments were conducted with approval from the ethical committee of Shahid Beheshti University of Medical Sciences (Approval Number: IR.SBMU.RETECH.REC.1399.520).

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Handling Editor: Lorraine Chalifour.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koosha, F., Sheikhzadeh, P. Investigating Radioprotective Effect of Hesperidin/Diosmin Compound Against 99mTc-MIBI-Induced Cardiotoxicity: Animal Study. Cardiovasc Toxicol 22, 646–654 (2022). https://doi.org/10.1007/s12012-022-09744-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-022-09744-8

Keywords

Navigation