Skip to main content

Advertisement

Log in

FABP5 Deficiency Impairs Mitochondrial Function and Aggravates Pathological Cardiac Remodeling and Dysfunction

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Fatty acid-binding protein 5 (FABP5) is an important member of the FABP family and plays a vital role in the metabolism of fatty acids. However, few studies have examined the role of FABP5 in pathological cardiac remodeling and heart failure. The aim of this study was to explore the role of FABP5 in transverse aortic constriction (TAC)-induced pathological cardiac remodeling and dysfunction in mice. Quantitative RT-PCR (qRT-PCR) and western blotting (WB) analysis showed that the levels of FABP5 mRNA and protein, respectively, were upregulated in hearts of the TAC model. Ten weeks after TAC in FABP5 knockout and wild type control mice, echocardiography, histopathology, qRT-PCR, and WB demonstrated that FABP5 deficiency aggravated cardiac injury (both cardiac hypertrophy and fibrosis) and dysfunction. In addition, transmission electron microscopy, ATP detection, and WB revealed that TAC caused severe impairment to mitochondria in the hearts of FABP5-deficient mice compared with that in control mice. When FABP5 was downregulated by siRNA in primary mouse cardiac fibroblasts, FABP5 silencing increased oxidative stress, reduced mitochondrial respiration, and increased the expression of myofibroblast activation marker genes in response to treatment with transforming growth factor-β. Our findings demonstrate that FABP5 deficiency aggravates cardiac pathological remodeling and dysfunction by damaging cardiac mitochondrial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

The data supporting the findings of this study are included in the manuscript. The source data are provided in Tables 12, Figs. 16, and Online Resource 1.

References

  1. Dunlay, S. M., Roger, V. L., & Redfield, M. M. (2017). Epidemiology of heart failure with preserved ejection fraction. Nature Reviews: Cardiology, 14(10), 591–602. https://doi.org/10.1038/nrcardio.2017.65

    Article  PubMed  Google Scholar 

  2. Mollace, V., Rosano, G. M. C., Anker, S. D., Coats, A. J. S., Seferovic, P., Mollace, R., Tavernese, A., Gliozzi, M., Musolino, V., Carresi, C., Maiuolo, J., Macrì, R., Bosco, F., Chiocchi, M., Romeo, F., Metra, M., & Volterrani, M. (2021). Pathophysiological basis for nutraceutical supplementation in heart failure: A comprehensive review. Nutrients, 13(1), 257. https://doi.org/10.3390/nu13010257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schirone, L., Forte, M., Palmerio, S., Yee, D., Nocella, C., Angelini, F., Pagano, F., Schiavon, S., Bordin, A., Carrizzo, A., Vecchione, C., Valenti, V., Chimenti, I., De Falco, E., Sciarretta, S., & Frati, G. (2017). A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxidative Medicine and Cellular Longevity, 2017, 1–16. https://doi.org/10.1155/2017/3920195

    Article  CAS  Google Scholar 

  4. Burchfield, J. S., Xie, M., & Hill, J. A. (2013). Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation, 128(4), 388–400. https://doi.org/10.1161/circulationaha.113.001878

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tanai, E., & Frantz, S. (2015). Pathophysiology of heart failure. Comprehensive Physiology, 6(1), 187–214. https://doi.org/10.1002/cphy.c140055

    Article  PubMed  Google Scholar 

  6. Kehat, I., & Molkentin, J. D. (2010). Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation, 122(25), 2727–2735. https://doi.org/10.1161/circulationaha.110.942268

    Article  PubMed  Google Scholar 

  7. Bertero, E., & Maack, C. (2018). Metabolic remodelling in heart failure. Nature Reviews: Cardiology, 15(8), 457–470. https://doi.org/10.1038/s41569-018-0044-6

    Article  CAS  PubMed  Google Scholar 

  8. Doenst, T., Nguyen, T. D., & Abel, E. D. (2013). Cardiac metabolism in heart failure: implications beyond ATP production. Circulation Research, 113(6), 709–724. https://doi.org/10.1161/circresaha.113.300376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Taegtmeyer, H., Young, M. E., Lopaschuk, G. D., Abel, E. D., Brunengraber, H., Darley-Usmar, V., Des Rosiers, C., Gerszten, R., Glatz, J. F., Griffin, J. L., Gropler, R. J., Holzhuetter, H. G., Kizer, J. R., Lewandowski, E. D., Malloy, C. R., Neubauer, S., Peterson, L. R., Portman, M. A., Recchia, F. A., … Wang, T. J. (2016). Assessing cardiac metabolism: A scientific statement from the american heart association. Circulation Research, 118(10), 1659–1701. https://doi.org/10.1161/res.0000000000000097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lopaschuk, G. D., Ussher, J. R., Folmes, C. D., Jaswal, J. S., & Stanley, W. C. (2010). Myocardial fatty acid metabolism in health and disease. Physiological Reviews, 90(1), 207–258. https://doi.org/10.1152/physrev.00015.2009

    Article  CAS  PubMed  Google Scholar 

  11. Jung, J., Wang, J., Groenendyk, J., Lee, D., Michalak, M., & Agellon, L. B. (2017). Fatty acid binding protein (Fabp) 5 interacts with the calnexin cytoplasmic domain at the endoplasmic reticulum. Biochemical and Biophysical Research Communications, 493(1), 202–206. https://doi.org/10.1016/j.bbrc.2017.09.046

    Article  CAS  PubMed  Google Scholar 

  12. Nguyen, H. C., Qadura, M., & Singh, K. K. (2020). Role of the fatty acid binding proteins in cardiovascular diseases: A systematic review. Journal of Clinical Medicine, 9(11), 3390. https://doi.org/10.3390/jcm9113390

    Article  CAS  PubMed Central  Google Scholar 

  13. Thumser, A. E., Moore, J. B., & Plant, N. J. (2014). Fatty acid binding proteins: tissue-specific functions in health and disease. Current Opinion in Clinical Nutrition and Metabolic Care, 17(2), 124–129. https://doi.org/10.1097/mco.0000000000000031

    Article  CAS  PubMed  Google Scholar 

  14. Storch, J., & Corsico, B. (2008). The emerging functions and mechanisms of mammalian fatty acid-binding proteins. Annual Review of Nutrition, 28(1), 73–95. https://doi.org/10.1146/annurev.nutr.27.061406.093710

    Article  CAS  PubMed  Google Scholar 

  15. Carbonetti, G., Wilpshaar, T., Kroonen, J., Studholme, K., Converso, C., d’Oelsnitz, S., & Kaczocha, M. (2019). FABP5 coordinates lipid signaling that promotes prostate cancer metastasis. Scientific Reports, 9(1), 18944. https://doi.org/10.1038/s41598-019-55418-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lv, Q., Wang, G., Zhang, Y., Han, X., Li, H., Le, W., Zhang, M., Ma, C., Wang, P., & Ding, Q. (2019). FABP5 regulates the proliferation of clear cell renal cell carcinoma cells via the PI3K/AKT signaling pathway. International Journal of Oncology, 54(4), 1221–1232. https://doi.org/10.3892/ijo.2019.4721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pan, L., Xiao, H., Liao, R., Chen, Q., Peng, C., Zhang, Y., Mu, T., & Wu, Z. (2018). Fatty acid binding protein 5 promotes tumor angiogenesis and activates the IL6/STAT3/VEGFA pathway in hepatocellular carcinoma. Biomedicine and Pharmacotherapy, 106, 68–76. https://doi.org/10.1016/j.biopha.2018.06.040

    Article  CAS  PubMed  Google Scholar 

  18. Gally, F., Kosmider, B., Weaver, M. R., Pate, K. M., Hartshorn, K. L., & Oberley-Deegan, R. E. (2013). FABP5 deficiency enhances susceptibility to H1N1 influenza A virus-induced lung inflammation. American Journal of Physiology: Lung Cellular and Molecular Physiology, 305(1), L64-72. https://doi.org/10.1152/ajplung.00276.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rao, D. M., Phan, D. T., Choo, M. J., Owen, A. L., Perraud, A. L., & Gally, F. (2019). Mice lacking fatty acid-binding protein 5 are resistant to listeria monocytogenes. Journal of Innate Immunity, 11(6), 469–480. https://doi.org/10.1159/000496405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maeda, K., Uysal, K. T., Makowski, L., Görgün, C. Z., Atsumi, G., Parker, R. A., Brüning, J., Hertzel, A. V., Bernlohr, D. A., & Hotamisligil, G. S. (2003). Role of the fatty acid binding protein mal1 in obesity and insulin resistance. Diabetes, 52(2), 300–307. https://doi.org/10.2337/diabetes.52.2.300

    Article  CAS  PubMed  Google Scholar 

  21. Li, Y., Li, Z., Zhang, C., Li, P., Wu, Y., Wang, C., Bond Lau, W., Ma, X. L., & Du, J. (2017). Cardiac fibroblast-specific activating transcription factor 3 protects against heart failure by suppressing MAP2K3-p38 signaling. Circulation, 135(21), 2041–2057. https://doi.org/10.1161/circulationaha.116.024599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kubli, D. A., Zhang, X., Lee, Y., Hanna, R. A., Quinsay, M. N., Nguyen, C. K., Jimenez, R., Petrosyan, S., Murphy, A. N., & Gustafsson, A. B. (2013). Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. Journal of Biological Chemistry, 288(2), 915–926. https://doi.org/10.1074/jbc.M112.411363

    Article  CAS  Google Scholar 

  23. Zhang, W., St Clair, D., Butterfield, A., & Vore, M. (2016). Loss of mrp1 potentiates doxorubicin-induced cytotoxicity in neonatal mouse cardiomyocytes and cardiac fibroblasts. Toxicological Sciences, 151(1), 44–56. https://doi.org/10.1093/toxsci/kfw021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gu, X., Ma, Y., Liu, Y., & Wan, Q. (2021). Measurement of mitochondrial respiration in adherent cells by Seahorse XF96 Cell Mito Stress Test. STAR Protocols, 2(1), 100245. https://doi.org/10.1016/j.xpro.2020.100245

    Article  PubMed  Google Scholar 

  25. Li, B., Hao, J., Zeng, J., & Sauter, E. R. (2020). SnapShot: FABP functions. Cell, 182(4), 1066-1066.e1061. https://doi.org/10.1016/j.cell.2020.07.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gibb, A. A., Lazaropoulos, M. P., & Elrod, J. W. (2020). Myofibroblasts and fibrosis: mitochondrial and metabolic control of cellular differentiation. Circulation Research, 127(3), 427–447. https://doi.org/10.1161/circresaha.120.316958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Furuhashi, M., Ogura, M., Matsumoto, M., Yuda, S., Muranaka, A., Kawamukai, M., Omori, A., Tanaka, M., Moniwa, N., Ohnishi, H., Saitoh, S., Harada-Shiba, M., Shimamoto, K., & Miura, T. (2017). Serum FABP5 concentration is a potential biomarker for residual risk of atherosclerosis in relation to cholesterol efflux from macrophages. Scientific Reports, 7(1), 217. https://doi.org/10.1038/s41598-017-00177-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Furuhashi, M., Sakuma, I., Morimoto, T., Higashiura, Y., Sakai, A., Matsumoto, M., Sakuma, M., Shimabukuro, M., Nomiyama, T., Arasaki, O., Node, K., & Ueda, S. (2020). Independent and distinct associations of FABP4 and FABP5 with metabolic parameters in type 2 diabetes mellitus. Frontiers in Endocrinology, 11, 696. https://doi.org/10.3389/fendo.2020.575557

    Article  Google Scholar 

  29. Abplanalp, W. T., John, D., Cremer, S., Assmus, B., Dorsheimer, L., Hoffmann, J., Becker-Pergola, G., Rieger, M. A., Zeiher, A. M., Vasa-Nicotera, M., & Dimmeler, S. (2021). Single-cell RNA-sequencing reveals profound changes in circulating immune cells in patients with heart failure. Cardiovascular Research, 117(2), 484–494. https://doi.org/10.1093/cvr/cvaa101

    Article  PubMed  Google Scholar 

  30. van Bilsen, M., Smeets, P. J., Gilde, A. J., & van der Vusse, G. J. (2004). Metabolic remodelling of the failing heart: The cardiac burn-out syndrome? Cardiovascular Research, 61(2), 218–226. https://doi.org/10.1016/j.cardiores.2003.11.014

    Article  CAS  PubMed  Google Scholar 

  31. Rosca, M. G., Tandler, B., & Hoppel, C. L. (2013). Mitochondria in cardiac hypertrophy and heart failure. Journal of Molecular and Cellular Cardiology, 55, 31–41. https://doi.org/10.1016/j.yjmcc.2012.09.002

    Article  CAS  PubMed  Google Scholar 

  32. Lee, G. S., Pan, Y., Scanlon, M. J., Porter, C. J. H., & Nicolazzo, J. A. (2018). Fatty acid-binding protein 5 mediates the uptake of fatty acids, but not drugs, into human brain endothelial cells. Journal of Pharmaceutical Sciences, 107(4), 1185–1193. https://doi.org/10.1016/j.xphs.2017.11.024

    Article  CAS  PubMed  Google Scholar 

  33. Scharwey, M., Tatsuta, T., & Langer, T. (2013). Mitochondrial lipid transport at a glance. Journal of Cell Science, 126(Pt 23), 5317–5323. https://doi.org/10.1242/jcs.134130

    Article  CAS  PubMed  Google Scholar 

  34. Tuomainen, T., & Tavi, P. (2017). The role of cardiac energy metabolism in cardiac hypertrophy and failure. Experimental Cell Research, 360(1), 12–18. https://doi.org/10.1016/j.yexcr.2017.03.052

    Article  CAS  PubMed  Google Scholar 

  35. Hughes, C. S., ChinAleong, J. A., & Kocher, H. M. (2020). CRABP2 and FABP5 expression levels in diseased and normal pancreas. Annals of Diagnostic Pathology, 47, 151557. https://doi.org/10.1016/j.anndiagpath.2020.151557

    Article  PubMed  Google Scholar 

  36. Levi, L., Lobo, G., Doud, M. K., von Lintig, J., Seachrist, D., Tochtrop, G. P., & Noy, N. (2013). Genetic ablation of the fatty acid-binding protein FABP5 suppresses HER2-induced mammary tumorigenesis. Cancer Research, 73(15), 4770–4780. https://doi.org/10.1158/0008-5472.Can-13-0384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Koczor, C. A., Torres, R. A., Fields, E., Qin, Q., Park, J., Ludaway, T., Russ, R., & Lewis, W. (2013). Transgenic mouse model with deficient mitochondrial polymerase exhibits reduced state IV respiration and enhanced cardiac fibrosis. Laboratory Investigation, 93(2), 151–158. https://doi.org/10.1038/labinvest.2012.146

    Article  CAS  PubMed  Google Scholar 

  38. Jain, M., Rivera, S., Monclus, E. A., Synenki, L., Zirk, A., Eisenbart, J., Feghali-Bostwick, C., Mutlu, G. M., Budinger, G. R., & Chandel, N. S. (2013). Mitochondrial reactive oxygen species regulate transforming growth factor-β signaling. Journal of Biological Chemistry, 288(2), 770–777. https://doi.org/10.1074/jbc.M112.431973

    Article  CAS  Google Scholar 

  39. Field, C. S., Baixauli, F., Kyle, R. L., Puleston, D. J., Cameron, A. M., Sanin, D. E., Hippen, K. L., Loschi, M., Thangavelu, G., Corrado, M., Edwards-Hicks, J., Grzes, K. M., Pearce, E. J., Blazar, B. R., & Pearce, E. L. (2020). Mitochondrial integrity regulated by lipid metabolism is a cell-intrinsic checkpoint for Treg suppressive function. Cell Metabolism, 31(2), 422-437. https://doi.org/10.1016/j.cmet.2019.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Moshi Song (Chinese Academy of Sciences, Beijing, China) for their helpful advice.

Funding

This study was supported by grants from the National Science Foundation of China (Grant Number, 81790622), and Beijing Collaborative Innovative Research Center for Cardiovascular Diseases.

Author information

Authors and Affiliations

Authors

Contributions

S.G., C.Z., Y.L., and J.D. conceived the project, designed the experiments, and wrote the paper. S.G., G.L., Y.S., Z.W., and S.H. performed the in vivo work. S.G., F.Q., and Y.J. performed the in vitro work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Congcong Zhang or Jie Du.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Consent for Publication

All authors involved in this manuscript consent to its publication in Cardiovascular Toxicology in accordance with the journal's rules and regulations.

Ethics Approval

All animal experiments were approved by the Animal Care and Utilization Committee of Capital Medical University and performed in accordance with the guidelines of the Capital Medical University.

Additional information

Handling Editor: Y. James Kang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Li, G., Shao, Y. et al. FABP5 Deficiency Impairs Mitochondrial Function and Aggravates Pathological Cardiac Remodeling and Dysfunction. Cardiovasc Toxicol 21, 619–629 (2021). https://doi.org/10.1007/s12012-021-09653-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09653-2

Keywords

Navigation