Skip to main content
Log in

Mechanisms of the Cardiac Myocyte-Damaging Effects of Dasatinib

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The anticancer drug dasatinib (Sprycel) is a BCR-ABL1-targeted tyrosine kinase inhibitor used in treating chronic myelogenous leukemia that has been shown in clinical trials to display cardiovascular toxicities. While dasatinib potently inhibits BCR-ABL1, it is not a highly selective kinase inhibitor and may have off-target effects. A neonatal rat cardiac myocyte model was used to investigate potential mechanisms by which dasatinib damaged myocytes. The anthracycline cardioprotective drug dexrazoxane was shown to be ineffective in preventing dasatinib-induced myocyte damage. Dasatinib treatment increased doxorubicin accumulation in myocytes and doxorubicin-induced myocyte damage, likely through its ability to bind to one or more ABC-type efflux transporters. Dasatinib induced myocyte damage either after a brief treatment that mimicked the clinical situation, or more potently after continuous treatment. Dasatinib slightly induced apoptosis in myocytes as evidenced by increases in caspase-3/7 activity. Dasatinib treatment reduced pERK levels in myocytes most likely through inhibition of RAF, which dasatinib strongly inhibits. Thus, inhibition of the RAF/MEK/ERK pro-survival pathway in the heart may be, in part, a mechanism by which dasatinib induces cardiovascular toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding-cassette

CML:

Chronic myeloid leukemia

DCF:

2′,7′-Dichlorofluorescin

DF-x :

Dulbecco's modified eagle medium/Ham's F-12 Medium 1:1 where x is % (v/v) serum

ERK:

Extracellular signal-regulated kinase

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

K d :

Kinase binding dissociation constant

LDH:

Lactate dehydrogenase

PBS:

Dulbecco’s phosphate buffered saline (pH 7.4)

λEx and λEm :

Excitation and emission wavelengths, respectively

References

  1. Keating, G. M. (2017). Dasatinib: A review in chronic myeloid leukaemia and Ph+ acute lymphoblastic leukaemia. Drugs,77, 85–96.

    Article  CAS  PubMed  Google Scholar 

  2. Chaar, M., Kamta, J., & Ait-Oudhia, S. (2018). Mechanisms, monitoring, and management of tyrosine kinase inhibitors-associated cardiovascular toxicities. OncoTargets and Therapy,11, 6227–6237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Caldemeyer, L., Dugan, M., Edwards, J., & Akard, L. (2016). Long-term side effects of tyrosine kinase inhibitors in chronic myeloid leukemia. Current Hematologic Malignancy Reports,11, 71–79.

    Article  PubMed  Google Scholar 

  4. Herman, E. H., Knapton, A., Rosen, E., Thompson, K., Rosenzweig, B., Estis, J., et al. (2011). A multifaceted evaluation of imatinib-induced cardiotoxicity in the rat. Toxicologic Pathology,39, 1091–1106.

    Article  CAS  PubMed  Google Scholar 

  5. Hasinoff, B. B., Wu, X., Patel, D., Kanagasabai, R., Karmahapatra, S., & Yalowich, J. C. (2016). Mechanisms of action and reduced cardiotoxicity of pixantrone; a topoisomerase II targeting agent with cellular selectivity for the topoisomerase IIα isoform. Journal of Pharmacology and Experimental Therapeutics,356, 397–409.

    Article  CAS  PubMed  Google Scholar 

  6. Hasinoff, B. B., Patel, D., & Wu, X. (2017). The myocyte-damaging effects of the BCR-ABL1-targeted tyrosine kinase inhibitors increase with potency and decrease with specificity. Cardiovascular Toxicology,17, 297–306.

    Article  CAS  PubMed  Google Scholar 

  7. Uitdehaag, J. C., de Roos, J. A., van Doornmalen, A. M., Prinsen, M. B., de Man, J., Tanizawa, Y., et al. (2014). Comparison of the cancer gene targeting and biochemical selectivities of all targeted kinase inhibitors approved for clinical use. PLoS ONE,9, e92146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Hasinoff, B. B. (2010). The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity. Toxicology and Applied Pharmacology,244, 190–195.

    Article  CAS  PubMed  Google Scholar 

  9. Hasinoff, B. B., & Patel, D. (2010). The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro. Toxicology and Applied Pharmacology,249, 132–139.

    Article  CAS  PubMed  Google Scholar 

  10. Herman, E., Hasinoff, B. B., Steiner, R., & Lipshultz, S. E. (2014). A review of the preclinical development of dexrazoxane. Progress in Pediatric Cardiology,36, 33–38.

    Article  Google Scholar 

  11. Hasinoff, B. B., & Patel, D. (2018). Myocyte-damaging effects and binding kinetics of boronic acid and epoxyketone proteasomal-targeted drugs. Cardiovascular Toxicology,18, 557–568.

    Article  CAS  PubMed  Google Scholar 

  12. Hasinoff, B. B., Patel, D., & Wu, X. (2013). The dual-targeted HER1/HER2 tyrosine kinase inhibitor lapatinib strongly potentiates the cardiac myocyte-damaging effects of doxorubicin. Cardiovascular Toxicology,13, 33–47.

    Article  CAS  PubMed  Google Scholar 

  13. Li, F., Wang, X., Capasso, J. M., & Gerdes, A. M. (1996). Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. Journal of Molecular and Cellular Cardiology,28, 1737–1746.

    Article  CAS  PubMed  Google Scholar 

  14. Hasinoff, B. B., Patel, D., & O'Hara, K. A. (2008). Mechanisms of myocyte cytotoxicity induced by the multiple receptor tyrosine kinase inhibitor sunitinib. Molecular Pharmacology,74, 1722–1728.

    Article  CAS  PubMed  Google Scholar 

  15. Hasinoff, B. B., & Patel, D. (2010). Mechanisms of myocyte cytotoxicity induced by the multikinase inhibitor sorafenib. Cardiovascular Toxicology,10, 1–8.

    Article  CAS  PubMed  Google Scholar 

  16. Christopher, L. J., Cui, D., Wu, C., Luo, R., Manning, J. A., Bonacorsi, S. J., et al. (2008). Metabolism and disposition of dasatinib after oral administration to humans. Drug Metabolism and Disposition,36, 1357–1364.

    Article  CAS  PubMed  Google Scholar 

  17. O'Hare, T., Eide, C. A., Agarwal, A., Adrian, L. T., Zabriskie, M. S., Mackenzie, R. J., et al. (2013). Threshold levels of ABL tyrosine kinase inhibitors retained in chronic myeloid leukemia cells determine their commitment to apoptosis. Cancer Research,73, 3356–3370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Snead, J. L., O'Hare, T., Adrian, L. T., Eide, C. A., Lange, T., Druker, B. J., et al. (2009). Acute dasatinib exposure commits Bcr-Abl-dependent cells to apoptosis. Blood,114, 3459–3463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Adderley, S. R., & Fitzgerald, D. J. (1999). Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase-2. Journal of Biological Chemistry,274, 5038–5046.

    Article  CAS  PubMed  Google Scholar 

  20. Hasinoff, B. B., Patel, D., & Wu, X. (2007). The cytotoxicity of celecoxib towards cardiac myocytes is cyclooxygenase-2 independent. Cardiovascular Toxicology,7, 19–27.

    Article  CAS  PubMed  Google Scholar 

  21. Damiano, S., Montagnaro, S., Puzio, M. V., Severino, L., Pagnini, U., Barbarino, M., et al. (2018). Effects of antioxidants on apoptosis induced by dasatinib and nilotinib in K562 cells. Journal of Cellular Biochemistry,119, 4845–4854.

    Article  CAS  PubMed  Google Scholar 

  22. Phan, C., Jutant, E. M., Tu, L., Thuillet, R., Seferian, A., Montani, D., et al. (2018). Dasatinib increases endothelial permeability leading to pleural effusion. European Respiratory Journal,51, 1701096. https://doi.org/10.1183/13993003.01096-2017.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, G. Q., Gong, Y., Burczynski, F. J., & Hasinoff, B. B. (2008). Cell lysis with dimethyl sulfoxide produces stable homogeneous solutions in the dichlorofluorescin oxidative stress assay. Free Radical Research,42, 435–441.

    Article  CAS  PubMed  Google Scholar 

  24. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., et al. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell,91, 479–489.

    Article  CAS  PubMed  Google Scholar 

  25. Capano, M., & Crompton, M. (2006). Bax translocates to mitochondria of heart cells during simulated ischaemia: involvement of AMP-activated and p38 mitogen-activated protein kinases. Biochemical Journal,395, 57–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rix, U., Remsing Rix, L. L., Terker, A. S., Fernbach, N. V., Hantschel, O., Planyavsky, M., et al. (2010). A comprehensive target selectivity survey of the BCR-ABL kinase inhibitor INNO-406 by kinase profiling and chemical proteomics in chronic myeloid leukemia cells. Leukemia,24, 44–50.

    Article  CAS  PubMed  Google Scholar 

  27. Davis, M. I., Hunt, J. P., Herrgard, S., Ciceri, P., Wodicka, L. M., Pallares, G., et al. (2011). Comprehensive analysis of kinase inhibitor selectivity. Nature Biotechnology,29, 1046–1051.

    Article  CAS  PubMed  Google Scholar 

  28. Wilhelm, S. M., Carter, C., Tang, L., Wilkie, D., McNabola, A., Rong, H., et al. (2004). BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Research,64, 7099–7109.

    Article  CAS  PubMed  Google Scholar 

  29. Force, T., & Kolaja, K. L. (2011). Cardiotoxicity of kinase inhibitors: The prediction and translation of preclinical models to clinical outcomes. Nature Reviews Drug Discovery,10, 111–126.

    Article  CAS  PubMed  Google Scholar 

  30. Chen, M. H., Kerkela, R., & Force, T. (2008). Mechanisms of cardiac dysfunction associated with tyrosine kinase inhibitor cancer therapeutics. Circulation,118, 84–95.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yamaguchi, O., Watanabe, T., Nishida, K., Kashiwase, K., Higuchi, Y., Takeda, T., et al. (2004). Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis. Journal of Clinical Investigation,114, 937–943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harris, I. S., Zhang, S., Treskov, I., Kovacs, A., Weinheimer, C., & Muslin, A. J. (2004). Raf-1 kinase is required for cardiac hypertrophy and cardiomyocyte survival in response to pressure overload. Circulation,110, 718–723.

    Article  CAS  PubMed  Google Scholar 

  33. Force, T., Krause, D. S., & Van Etten, R. A. (2007). Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nature Reviews Cancer,7, 332–344.

    Article  CAS  PubMed  Google Scholar 

  34. Singh, A. P., Glennon, M. S., Umbarkar, P., Gupte, M., Galindo, C. L., Zhang, Q., et al. (2019). Ponatinib-induced cardiotoxicity: Delineating the signalling mechanisms and potential rescue strategies. Cardiovascular Research,115, 966–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aminkeng, F., Ross, C. J., Rassekh, S. R., Hwang, S., Rieder, M. J., Bhavsar, A. P., et al. (2016). Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. British Journal of Clinical Pharmacology,82, 683–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brozik, A., Hegedus, C., Erdei, Z., Hegedus, T., Ozvegy-Laczka, C., Szakacs, G., et al. (2011). Tyrosine kinase inhibitors as modulators of ATP binding cassette multidrug transporters: Substrates, chemosensitizers or inducers of acquired multidrug resistance? Expert Opinion on Drug Metabolism and Toxicology,7, 623–642.

    Article  CAS  PubMed  Google Scholar 

  37. Eadie, L. N., Hughes, T. P., & White, D. L. (2014). Interaction of the efflux transporters ABCB1 and ABCG2 with imatinib, nilotinib, and dasatinib. Clinical Pharmacology & Therapeutics,95, 294–306.

    Article  CAS  Google Scholar 

  38. Raj, S., Franco, V. I., & Lipshultz, S. E. (2014). Anthracycline-induced cardiotoxicity: A review of pathophysiology, diagnosis, and treatment. Current Treatment Options in Cardiovascular Medicine,16, 315.

    Article  PubMed  Google Scholar 

  39. Hasinoff, B. B., & Herman, E. H. (2007). Dexrazoxane: How it works in cardiac and tumor cells. Is it a prodrug or is it a drug? Cardiovascular Toxicology,7, 140–144.

    Article  CAS  PubMed  Google Scholar 

  40. Hasinoff, B. B. (2008). The use of dexrazoxane for the prevention of anthracycline extravasation injury. Expert Opinion on Investigational Drugs,17, 217–223.

    Article  CAS  PubMed  Google Scholar 

  41. Lyu, Y. L., Kerrigan, J. E., Lin, C. P., Azarova, A. M., Tsai, Y. C., Ban, Y., et al. (2007). Topoisomerase IIβ mediated DNA double-strand breaks: Implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Research,67, 8839–8846.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F., et al. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine,18, 1639–1642.

    Article  PubMed  CAS  Google Scholar 

  43. Vejpongsa, P., & Yeh, E. T. (2014). Topoisomerase 2β: A promising molecular target for primary prevention of anthracycline-induced cardiotoxicity. Clinical Pharmacology and Therapeutics,95, 45–52.

    Article  CAS  PubMed  Google Scholar 

  44. Hasinoff, B. B., Patel, D., & Wu, X. (2019). The role of topoisomerase IIβ in the mechanisms of action of the doxorubicin cardioprotective agent dexrazoxane. Cardiovascular Toxicology. https://doi.org/10.1007/s12012-019-09554-5.

    Article  Google Scholar 

  45. Morphy, R. (2010). Selectively nonselective kinase inhibition: Striking the right balance. Journal of Medicinal Chemistry,53, 1413–1437.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, J., Yang, P. L., & Gray, N. S. (2009). Targeting cancer with small molecule kinase inhibitors. Nature Reviews Cancer,9, 28–39.

    Article  PubMed  CAS  Google Scholar 

  47. Hegedus, C., Szakacs, G., Homolya, L., Orban, T. I., Telbisz, A., Jani, M., et al. (2009). Ins and outs of the ABCG2 multidrug transporter: An update on in vitro functional assays. Advanced Drug Delivery Reviews,61, 47–56.

    Article  CAS  PubMed  Google Scholar 

  48. Akimoto, H., Bruno, N. A., Slate, D. L., Billingham, M. E., Torti, S. V., & Torti, F. M. (1993). Effect of verapamil on doxorubicin cardiotoxicity: Altered muscle gene expression in cultured neonatal rat cardiomyocytes. Cancer Research,53, 4658–4664.

    CAS  PubMed  Google Scholar 

  49. Kwatra, D., Vadlapatla, R. K., Vadlapudi, A. D., Pal, D., & Mitra, A. K. (2010). Interaction of gatifloxacin with efflux transporters: A possible mechanism for drug resistance. International Journal of Pharmaceutics,395, 114–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aggerholm-Pedersen, N., Demuth, C., Safwat, A., Meldgaard, P., Kassem, M., & Sandahl Sorensen, B. (2016). Dasatinib and doxorubicin treatment of sarcoma initiating cells: A possible new treatment strategy. Stem Cells International,2016, 9601493.

    Article  PubMed  CAS  Google Scholar 

  51. Zhang, P., Li, J., Ghazwani, M., Zhao, W., Huang, Y., Zhang, X., et al. (2015). Effective co-delivery of doxorubicin and dasatinib using a PEG-Fmoc nanocarrier for combination cancer chemotherapy. Biomaterials,67, 104–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hasinoff, B. B., Patel, D., & Wu, X. (2003). The oral iron chelator ICL670A (deferasirox) does not protect myocytes against doxorubicin. Free Radical Biology & Medicine,35, 1469–1479.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Canadian Institutes of Health Research [Grant MOP13748], the Canada Research Chairs Program, and a Canada Research Chair in Drug Development to Brian Hasinoff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian B. Hasinoff.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests. The funding sources had no involvement in the study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Research Involving Human and Animal Rights

The animal protocol was approved by the University of Manitoba Animal Care Committee.

Additional information

Handling Editor: Y. James Kang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasinoff, B.B., Patel, D. Mechanisms of the Cardiac Myocyte-Damaging Effects of Dasatinib. Cardiovasc Toxicol 20, 380–389 (2020). https://doi.org/10.1007/s12012-020-09565-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-020-09565-7

Keywords

Navigation