Skip to main content

Advertisement

Log in

Myocyte-Damaging Effects and Binding Kinetics of Boronic Acid and Epoxyketone Proteasomal-Targeted Drugs

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The proteasome inhibitors bortezomib, carfilzomib, and ixazomib, which are used in the treatment of multiple myeloma have greatly improved response rates. Several other proteasome inhibitors, including delanzomib and oprozomib, are in clinical trials. Carfilzomib and oprozomib are epoxyketones that form an irreversible bond with the 20S proteasome, whereas bortezomib, ixazomib, and delanzomib are boronic acids that form slowly reversible adducts. Several of the proteasome inhibitors have been shown to exhibit specific cardiac toxicities. A primary neonatal rat myocyte model was used to study the relative myocyte-damaging effects of five proteasome inhibitors with a view to identifying potential class differences and the effect of inhibitor binding kinetics. Bortezomib was shown to induce the most myocyte damage followed by delanzomib, ixazomib, oprozomib, and carfilzomib. The sensitivity of myocytes to proteasome inhibitors, which contain high levels of chymotrypsin-like proteasomal activity, may be due to inhibition of proteasomal-dependent ongoing sarcomeric protein turnover. All inhibitors inhibited the chymotrypsin-like proteasomal activity of myocyte lysate in the low nanomolar concentration range and exhibited time-dependent inhibition kinetics characteristic of slow-binding inhibitors. Progress curve analysis of the inhibitor concentration dependence of the slow-binding kinetics was used to measure second-order “on” rate constants for binding. The second-order rate constants varied by 90-fold, with ixazomib reacting the fastest, and oprozomib the slowest. As a group, the boronic acid drugs were more damaging to myocytes than the epoxyketone drugs. Overall, inhibitor-induced myocyte damage was positively, but not significantly, correlated with their second-order rate constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DF-x :

Dulbecco’s modified Eagle medium/Ham’s F-12 medium 1:1 where x is % (v/v) serum

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

HEPES:

4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid

LDH:

Lactate dehydrogenase

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

MTS:

3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium

PBS:

Dulbecco’s phosphate-buffered saline (pH 7.4)

Suc-LLVY-AMC:

N-succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin

λ Ex and λ Em :

Excitation and emission wavelengths, respectively

References

  1. Kupperman, E., Lee, E. C., Cao, Y., Bannerman, B., Fitzgerald, M., Berger, A., et al. (2010). Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Research, 70, 1970–1980.

    Article  CAS  PubMed  Google Scholar 

  2. Demo, S. D., Kirk, C. J., Aujay, M. A., Buchholz, T. J., Dajee, M., Ho, M. N., et al. (2007). Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Research, 67, 6383–6391.

    Article  CAS  PubMed  Google Scholar 

  3. Zhou, H. J., Aujay, M. A., Bennett, M. K., Dajee, M., Demo, S. D., Fang, Y., et al. (2009). Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047). Journal of Medicinal Chemistry, 52, 3028–3038.

    Article  CAS  PubMed  Google Scholar 

  4. Huber, E. M., Heinemeyer, W., Li, X., Arendt, C. S., Hochstrasser, M., & Groll, M. (2016). A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome. Nature Communications. https://doi.org/10.1038/ncomms10900.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Groll, M., Berkers, C. R., Ploegh, H. L., & Ovaa, H. (2006). Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure, 14, 451–456.

    Article  CAS  PubMed  Google Scholar 

  6. Gavazzoni, M., Vizzardi, E., Gorga, E., Bonadei, I., Rossi, L., Belotti, A., et al. (2018). Mechanism of cardiovascular toxicity by proteasome inhibitors: New paradigm derived from clinical and pre-clinical evidence. European Journal of Pharmacology, 828, 80–88.

    Article  CAS  PubMed  Google Scholar 

  7. Lee, D. H., & Fradley, M. G. (2018). Cardiovascular complications of multiple myeloma treatment: Evaluation, management, and prevention. Current Treatment Options in Cardiovascular Medicine, 20, 19.

    Article  PubMed  Google Scholar 

  8. Li, W., Garcia, D., Cornell, R. F., Gailani, D., Laubach, J., Maglio, M. E., et al. (2017). Cardiovascular and thrombotic complications of novel multiple myeloma therapies: A review. JAMA Oncology, 3, 980–988.

    Article  PubMed  Google Scholar 

  9. Koulaouzidis, G., & Lyon, A. R. (2017). Proteasome inhibitors as a potential cause of heart failure. Heart Failure Clinics, 13, 289–295.

    Article  PubMed  Google Scholar 

  10. Schlafer, D., Shah, K. S., Panjic, E. H., & Lonial, S. (2017). Safety of proteasome inhibitors for treatment of multiple myeloma. Expert Opinion on Drug Safety, 16, 167–183.

    CAS  PubMed  Google Scholar 

  11. Cole, D. C., & Frishman, W. H. (2018). Cardiovascular complications of proteasome inhibitors used in multiple myeloma. Cardiology in Review, 26, 122–129.

    Article  PubMed  Google Scholar 

  12. Grandin, E. W., Ky, B., Cornell, R. F., Carver, J., & Lenihan, D. J. (2015). Patterns of cardiac toxicity associated with irreversible proteasome inhibition in the treatment of multiple myeloma. Journal of Cardiac Failure, 21, 138–144.

    Article  CAS  PubMed  Google Scholar 

  13. Dimopoulos, M. A., Moreau, P., Palumbo, A., Joshua, D., Pour, L., Hajek, R., et al. (2016). Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): A randomised, phase 3, open-label, multicentre study. Lancet Oncology, 17, 27–38.

    Article  CAS  PubMed  Google Scholar 

  14. Laubach, J. P., Moslehi, J. J., Francis, S. A., San Miguel, J. F., Sonneveld, P., Orlowski, R. Z., et al. (2017). A retrospective analysis of 3954 patients in phase 2/3 trials of bortezomib for the treatment of multiple myeloma: Towards providing a benchmark for the cardiac safety profile of proteasome inhibition in multiple myeloma. British Journal of Haematology, 178, 547–560.

    Article  CAS  PubMed  Google Scholar 

  15. Moreau, P., Masszi, T., Grzasko, N., Bahlis, N. J., Hansson, M., Pour, L., et al. (2016). Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. New England Journal of Medicine, 374, 1621–1634.

    Article  CAS  PubMed  Google Scholar 

  16. Sanchorawala, V., Palladini, G., Kukreti, V., Zonder, J. A., Cohen, A. D., Seldin, D. C., et al. (2017). A phase 1/2 study of the oral proteasome inhibitor ixazomib in relapsed or refractory AL amyloidosis. Blood, 130, 597–605.

    Article  CAS  PubMed  Google Scholar 

  17. Bonnet, A., & Moreau, P. (2017). Safety of ixazomib for the treatment of multiple myeloma. Expert Opinion on Drug Safety, 16, 973–980.

    Article  CAS  PubMed  Google Scholar 

  18. Jouni, H., Aubry, M. C., Lacy, M. Q., Vincent Rajkumar, S., Kumar, S. K., Frye, R. L., et al. (2017). Ixazomib cardiotoxicity: A possible class effect of proteasome inhibitors. American Journal of Hematology, 92, 220–221.

    Article  CAS  PubMed  Google Scholar 

  19. Hasinoff, B. B., Patel, D., & Wu, X. (2017). Molecular mechanisms of the cardiotoxicity of the proteasomal-targeted drugs bortezomib and carfilzomib. Cardiovascular Toxicology, 17, 237–250.

    Article  CAS  PubMed  Google Scholar 

  20. Stein, R. L. (2011). Kinetics of enzyme action: Essential principles for drug hunters. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  21. Copeland, R. A. (2013). Evaluation of enzyme inhibitors in drug discovery: A guide for medicinal chemists and pharmacologists. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  22. Hasinoff, B. B. (2018). Progress curve analysis of the kinetics of slow-binding anticancer drug inhibitors of the 20S proteasome. Archives of Biochemistry and Biophysics, 639, 52–58.

    Article  CAS  PubMed  Google Scholar 

  23. Hasinoff, B. B., Patel, D., & Wu, X. (2013). The dual-targeted HER1/HER2 tyrosine kinase inhibitor lapatinib strongly potentiates the cardiac myocyte-damaging effects of doxorubicin. Cardiovascular Toxicology, 13, 33–47.

    Article  CAS  PubMed  Google Scholar 

  24. Hasinoff, B. B., Wu, X., Patel, D., Kanagasabai, R., Karmahapatra, S., & Yalowich, J. C. (2016). Mechanisms of action and reduced cardiotoxicity of pixantrone; a topoisomerase II targeting agent with cellular selectivity for the topoisomerase IIα isoform. Journal of Pharmacology and Experimental Therapeutics, 356, 397–409.

    Article  CAS  PubMed  Google Scholar 

  25. Li, F., Wang, X., Capasso, J. M., & Gerdes, A. M. (1996). Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. Journal of Molecular and Cellular Cardiology, 28, 1737–1746.

    Article  CAS  PubMed  Google Scholar 

  26. Hasinoff, B. B., Wu, X., Yadav, A. A., Patel, D., Zhang, H., Wang, D.-S., et al. (2015). Cellular mechanisms of the cytotoxicity of the anticancer drug elesclomol and its complex with Cu(II). Biochemical Pharmacology, 93, 266–276.

    Article  CAS  PubMed  Google Scholar 

  27. Hasinoff, B. B., & Patel, D. (2017). Disulfiram is a slow-binding partial noncompetitive inhibitor of 20S proteasome activity. Archives of Biochemistry and Biophysics, 633, 23–28.

    Article  CAS  PubMed  Google Scholar 

  28. Xiong, R., Siegel, D., & Ross, D. (2013). The activation sequence of cellular protein handling systems after proteasomal inhibition in dopaminergic cells. Chemico-Biological Interactions, 204, 116–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hasinoff, B. B. (2010). The pharmacology of dexrazoxane: Iron chelating prodrug and topoisomerase II inhibitor. In K. Hellmann & W. Rhomberg (Eds.), Razoxane and dexrazoxane—Two multifunctional agents (pp. 158–167). Dordrecht: Springer.

    Google Scholar 

  30. Herman, E., Hasinoff, B. B., Steiner, R., & Lipshultz, S. E. (2014). A review of the preclinical development of dexrazoxane. Progress in Pediatric Cardiology, 36, 33–38.

    Article  Google Scholar 

  31. Hasinoff, B. B., Patel, D., & Wu, X. (2017). The myocyte-damaging effects of the BCR-ABL1-targeted tyrosine kinase inhibitors increase with potency and decrease with specificity. Cardiovascular Toxicology, 17, 297–306.

    Article  CAS  PubMed  Google Scholar 

  32. Willis, M. S., Schisler, J. C., Portbury, A. L., & Patterson, C. (2009). Build it up-Tear it down: Protein quality control in the cardiac sarcomere. Cardiovascular Research, 81, 439–448.

    Article  CAS  PubMed  Google Scholar 

  33. Taylor, R. G., Tassy, C., Briand, M., Robert, N., Briand, Y., & Ouali, A. (1995). Proteolytic activity of proteasome on myofibrillar structures. Molecular Biology Reports, 21, 71–73.

    Article  CAS  PubMed  Google Scholar 

  34. Portbury, A. L., Willis, M. S., & Patterson, C. (2011). Tearin’ up my heart: Proteolysis in the cardiac sarcomere. Journal of Biological Chemistry, 286, 9929–9934.

    Article  CAS  PubMed  Google Scholar 

  35. Eble, D. M., Spragia, M. L., Ferguson, A. G., & Samarel, A. M. (1999). Sarcomeric myosin heavy chain is degraded by the proteasome. Cell and Tissue Research, 296, 541–548.

    Article  CAS  PubMed  Google Scholar 

  36. Reece, D. E., Sullivan, D., Lonial, S., Mohrbacher, A. F., Chatta, G., Shustik, C., et al. (2011). Pharmacokinetic and pharmacodynamic study of two doses of bortezomib in patients with relapsed multiple myeloma. Cancer Chemotherapy and Pharmacology, 67, 57–67.

    Article  CAS  PubMed  Google Scholar 

  37. Salvini, M., Troia, R., Giudice, D., Pautasso, C., Boccadoro, M., & Larocca, A. (2018). Pharmacokinetic drug evaluation of ixazomib citrate for the treatment of multiple myeloma. Expert Opinion on Drug Metabolism and Toxicology, 14, 91–99.

    Article  CAS  PubMed  Google Scholar 

  38. Gallerani, E., Zucchetti, M., Brunelli, D., Marangon, E., Noberasco, C., Hess, D., et al. (2013). A first in human phase I study of the proteasome inhibitor CEP-18770 in patients with advanced solid tumours and multiple myeloma. European Journal of Cancer, 49, 290–296.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, Z., Yang, J., Kirk, C., Fang, Y., Alsina, M., Badros, A., et al. (2013). Clinical pharmacokinetics, metabolism, and drug–drug interaction of carfilzomib. Drug Metabolism and Disposition, 41, 230–237.

    Article  CAS  PubMed  Google Scholar 

  40. Infante, J. R., Mendelson, D. S., Burris III, H. A., Bendell, J. C., Tolcher, A. W., Gordon, M. S., et al. (2016). A first-in-human dose-escalation study of the oral proteasome inhibitor oprozomib in patients with advanced solid tumors. Investigational New Drugs, 34, 216–224.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This Research was supported by Grants from the Canadian Institutes of Health Research (Grant MOP13748), the Canada Research Chairs Program, and a Canada Research Chair in Drug Development to Brian Hasinoff. The authors declare no competing financial interests. The funding sources had no involvement in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian B. Hasinoff.

Additional information

Handling Editor: Lorraine Chalifour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasinoff, B.B., Patel, D. Myocyte-Damaging Effects and Binding Kinetics of Boronic Acid and Epoxyketone Proteasomal-Targeted Drugs. Cardiovasc Toxicol 18, 557–568 (2018). https://doi.org/10.1007/s12012-018-9468-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-018-9468-9

Keywords

Navigation