Skip to main content

Advertisement

Log in

Intravenous Cocaine Results in an Acute Decrease in Levels of Biomarkers of Vascular Inflammation in Humans

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Cocaine use causes significant cardiovascular morbidity from its hemodynamic effects. It is less clear whether cocaine promotes atherosclerosis. Vascular inflammation is one of the earliest steps in the pathophysiology of atherosclerosis. We hypothesized that cocaine results in an increase in inflammatory markers. Study objective was to measure the acute effects of intravenous cocaine on biomarkers of vascular inflammation. Eleven chronic cocaine users were enrolled. After a drug-free period, they received intravenous cocaine at 0.36 mg/kg dose in an in-hospital controlled environment. Serum levels of soluble CD40 ligand, monocyte chemoattractant protein-1, interleukin 6, and soluble intercellular adhesion molecule-1 were measured at baseline, 6 h, 24 h, and 6 days after cocaine challenge and at baseline for controls. After cocaine challenge, sCD40 ligand levels decreased in subjects and were significantly lower at 24 h. MCP-1 levels decreased and were significantly lower at the 6-day time point. No significant changes in IL-6 or sICAM-1 level were found. In conclusion, intravenous cocaine did not result in an increase in levels of inflammatory markers. Levels of MCP-1 and sCD40L decreased significantly. This unexpected finding suggests that chronic effects of cocaine on inflammation may be different from acute effects or that higher dosing may have differential effects as compared to lower dose used here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Substance Abuse and Mental Health Services Administration, Center for Behavioral Health Statistics and Quality (formerly the office of applied studies). (2010). The DAWN Report: Highlights of the 2009 Drug Abuse and Warning Network (DAWN) Findings on Drug Related Emergency Room Visits. Rockville, MD.

  2. Roldan, C. A., Aliabadi, D., & Crawford, M. H. (2001). Prevalence of heart disease in asymptomatic chronic cocaine users. Cradiology, 95(1), 25–30.

    Article  CAS  Google Scholar 

  3. Qureshi, A. I., et al. (2001). Cocaine use and the likelihood of nonfatal myocardial infarction and stroke: Data from the Third National Health and Nutrition Examination Survey. Circulation, 103(4), 502–506.

    Article  PubMed  CAS  Google Scholar 

  4. Mittleman, M. A., Mintzer, D., Maclure, M., Tofler, G. H., Sherwood, J. B., & Muller, J. E. (1999). Triggering of myocardial infarction by cocaine. Circulation, 99(21), 2737–2741.

    Article  PubMed  CAS  Google Scholar 

  5. Lange, R. A., & Hillis, L. D. (2001). Cardiovascular complications of cocaine use. New England Journal of Medicine, 345(5), 351–358.

    Article  PubMed  CAS  Google Scholar 

  6. Boehrer, J. D., Moliterno, D. J., Willard, J. E., Snyder, R. W., Horton, R. P., Glamann, D. B., et al. (1992). Hemodynamic effects of intranasal cocaine in humans. Journal of the American College of Cardiology, 20(1), 90–93.

    Article  PubMed  CAS  Google Scholar 

  7. Folsom, A. R., et al. (1997). Prospective study of hemostatic factors and incidence of coronary heart disease: The Atherosclerosis Risk in Communities (ARIC) Study. Circulation, 96(4), 1102–1108.

    Article  PubMed  CAS  Google Scholar 

  8. Dressler, F. A., Malekzadeh, S., & Roberts, W. C. (1990). Quantitative analysis of amounts of coronary arterial narrowing in cocaine addicts. The American Journal of Cardiology, 65(5), 303–308.

    Article  PubMed  CAS  Google Scholar 

  9. Libby, P. (2002). Inflammation in atherosclerosis. Nature, 420, 868–874.

    Article  PubMed  CAS  Google Scholar 

  10. La Bazzano, H. J. M. P., et al. (2003). Relationship between cigarette smoking and novel risk factors for cardiovascular disease in the United States. Annals of Internal Medicine, 138, 891–897.

    Article  PubMed  Google Scholar 

  11. He, J., Yang, S., & Zhang, L. (2005). Effects of cocaine on nitric oxide production in bovine coronary artery endothelial cells. Journal of Pharmacology and Experimental Therapeutics, 314(3), 980–986.

    Article  PubMed  CAS  Google Scholar 

  12. Cejtin, H. E., Parsons, M. T., & Wilson, L. (1990). Cocaine use and its effect on umbilical artery prostacyclin production. Prostaglandins, 40(3), 249–257.

    Article  PubMed  CAS  Google Scholar 

  13. Hasegawa, H., et al. (2016). Expanding diversity in molecular structures and functions of the IL-6/IL-12 heterodimeric cytokine family. Frontiers in Immunology, 7, 479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ridker, P. M., Rifai, N., Stampfer, M. J., & Hennekens, C. H. (2000). Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation, 101(15), 1767–1772.

    Article  PubMed  CAS  Google Scholar 

  15. Hwang, S. J., Ballantyne, C. M., Sharrett, A. R., Smith, L. C., Davis, C. E., Gotto, A. M., et al. (1997). Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: The Atherosclerosis Risk In Communities (ARIC) study. Circulation, 96(12), 4219–4225.

    Article  PubMed  CAS  Google Scholar 

  16. Prasad, K. S., et al. (2003). The platelet CD40L/GP IIb-IIIa axis in atherothrombotic disease. Current Opinion in Hematology, 10(5), 356–361.

    Article  PubMed  CAS  Google Scholar 

  17. Heeschen, C., et al. (2003). Soluble CD40 ligand in acute coronary syndromes. New England Journal of Medicine, 348(12), 1104–1111.

    Article  PubMed  CAS  Google Scholar 

  18. Braunersreuther, V., Mach, F., & Steffens, S. (2007). The specific role of chemokines in atherosclerosis. Thrombosis and Haemostasis, 97(5), 714–721.

    Article  PubMed  CAS  Google Scholar 

  19. Grasing, K., et al. (2010). Donepezil treatment and the subjective effects of intravenous cocaine in dependent individuals. Drug and Alcohol Dependence, 107(1), 69–75.

    Article  PubMed  CAS  Google Scholar 

  20. Boghdadi, M. S., & Henning, R. J. (1997). Cocaine: Pathophysiology and clinical toxicology. Heart and Lung, 26(6), 466–483.

    Article  PubMed  CAS  Google Scholar 

  21. Donny, E. C., Bigelow, G. E., & Walsh, S. L. (2003). Choosing to take cocaine in the human laboratory: Effects of cocaine dose, inter-choice interval, and magnitude of alternative reinforcement. Drug and Alcohol Dependence, 69(3), 289–301.

    Article  PubMed  CAS  Google Scholar 

  22. Esposito, K., & Giugliano, D. (2006). Diet and inflammation: A link to metabolic and cardiovascular diseases. European Heart Journal, 27(1), 15–20.

    Article  PubMed  Google Scholar 

  23. Esposito, K., et al. (2007). Effect of a single high-fat meal on endothelial function in patients with the metabolic syndrome: Role of tumor necrosis factor-alpha. Nutrition, Metabolism and Cardiovascular Diseases, 17(4), 274–279.

    Article  PubMed  CAS  Google Scholar 

  24. Ma, Y., et al. (2008). Association between dietary fiber and markers of systemic inflammation in the Women’s Health Initiative Observational Study. Nutrition, 24(10), 941–949.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Nappo, F., et al. (2002). Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: Role of fat and carbohydrate meals. Journal of the American College of Cardiology, 39(7), 1145–1150.

    Article  PubMed  CAS  Google Scholar 

  26. Vogel, R. A., Corretti, M. C., & Plotnick, G. D. (1997). Effect of a single high-fat meal on endothelial function in healthy subjects. American Journal of Cardiology, 79(3), 350–354.

    Article  PubMed  CAS  Google Scholar 

  27. Kasim-Karakas, S. E., et al. (2006). Responses of inflammatory markers to a low-fat, high-carbohydrate diet: Effects of energy intake. American Journal of Clinical Nutrition, 83(4), 774–779.

    Article  PubMed  CAS  Google Scholar 

  28. Keogh, J. B., et al. (2005). Flow-mediated dilatation is impaired by a high-saturated fat diet but not by a high-carbohydrate diet. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(6), 1274–1279.

    Article  PubMed  CAS  Google Scholar 

  29. He, J., Xiao, Y., & Zhang, L. (2000). Cocaine induces apoptosis in human coronary artery endothelial cells. J Cardiovasc Pharmacol, 35(4), 572–580.

    Article  PubMed  CAS  Google Scholar 

  30. Turillazzi, E., et al. (2012). Cardiovascular effects of cocaine: Cellular, ionic and molecular mechanisms. Current Medicinal Chemistry, 19(33), 5664–5676.

    Article  PubMed  CAS  Google Scholar 

  31. Meng, Q., et al. (2003). Elevated C-reactive protein levels are associated with endothelial dysfunction in chronic cocaine users. International Journal of Cardiology, 88(2–3), 191–198.

    Article  PubMed  Google Scholar 

  32. Halpern, J. H., et al. (2003). Diminished interleukin-6 response to proinflammatory challenge in men and women after intravenous cocaine administration. Journal of Clinical Endocrinology Metabolism, 88(3), 1188–1193.

    Article  PubMed  CAS  Google Scholar 

  33. Bae, S., & Zhang, L. (2005). Prenatal cocaine exposure increases apoptosis of neonatal rat heart and heart susceptibility to ischemia-reperfusion injury in 1-month-old rat. British Journal of Pharmacology, 144(7), 900–907.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Yao, H., et al. (2011). Cocaine hijacks σ1 receptor to initiate induction of activated leukocyte cell adhesion molecule: Implication for increased monocyte adhesion and migration in the CNS. Journal of Neuroscience, 31(16), 5942–5955.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gan, X., Zhang, L., Berger, O., Stins, M. F., Way, D., Taub, D., et al. (1999). Cocaine enhances brain endothelial adhesion molecules and leukocyte migration. Clinical Immunology, 91(1), 68–76.

    Article  PubMed  CAS  Google Scholar 

  36. Pradhan, L., et al. (2005). Effect of binge cocaine treatment on hindlimb vascular function. Journal of Applied Toxicology, 25(6), 479–490.

    Article  PubMed  CAS  Google Scholar 

  37. Kolodgie, F. D., et al. (1991). Increase in atherosclerosis and adventitial mast cells in cocaine abusers: An alternative mechanism of cocaine-associated coronary vasospasm and thrombosis. Journal of the American College of Cardiology, 17(7), 1553–1560.

    Article  PubMed  CAS  Google Scholar 

  38. Lai, S., et al. (2002). Effect of cocaine use on coronary calcium among black adults in Baltimore, Maryland. The American Journal of Cardiology, 90(3), 326–328.

    Article  PubMed  CAS  Google Scholar 

  39. Pletcher, M. J., et al. (2005). Cocaine and coronary calcification in young adults: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. American Heart Journal, 150(5), 921–926.

    Article  PubMed  CAS  Google Scholar 

  40. Ebersberger, U., et al. (2013). Atherosclerotic plaque burden in cocaine users with acute chest pain: Analysis by coronary computed tomography angiography. Atherosclerosis, 229(2), 443–448.

    Article  PubMed  CAS  Google Scholar 

  41. Rubin, J. B., & Borden, W. B. (2012). Coronary heart disease in young adults. Current Atherosclerosis Reports, 14(2), 140–149.

    Article  PubMed  Google Scholar 

  42. Eichorn, E. J., Peacock, E., & Grayburn, P. A. (1992). Chronic cocaine use is associated with accelerated atherosclerosis in human coronary arteries. Journal of the American College of Cardiology, 19(SUPPL), 105A.

    Google Scholar 

  43. Pereira, J., et al. (2011). Platelet activation in chronic cocaine users: Effect of short term abstinence. Platelets, 22(8), 596–601.

    Article  PubMed  CAS  Google Scholar 

  44. Saez, C. G., et al. (2011). Increased number of circulating endothelial cells and plasma markers of endothelial damage in chronic cocaine users. Thrombosis Research, 128(4), e18–e23.

    Article  PubMed  CAS  Google Scholar 

  45. Hoskins, M. H., et al. (2010). Effects of labetalol on hemodynamic parameters and soluble biomarkers of inflammation in acute coronary syndrome in patients with active cocaine use. Journal of Cardiovascular Pharmacology and Therapeutics, 15(1), 47–52.

    Article  PubMed  CAS  Google Scholar 

  46. Avila, A. H., Morgan, C. A., & Bayer, B. M. (2003). Stress-induced suppression of the immune system after withdrawal from chronic cocaine. Journal of Pharmacology and Experimental Therapeutics, 305(1), 290–297.

    Article  PubMed  CAS  Google Scholar 

  47. Bailly, S., et al. (1990). Differential regulation of IL 6, IL 1 A, IL 1 beta and TNF alpha production in LPS-stimulated human monocytes: Role of cyclic AMP. Cytokine, 2(3), 205–210.

    Article  PubMed  CAS  Google Scholar 

  48. Irwin, M. R., et al. (2007). Cocaine dependence and acute cocaine induce decreases of monocyte proinflammatory cytokine expression across the diurnal period: Autonomic mechanisms. Journal of Pharmacology and Experimental Therapeutics, 320(2), 507–515.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research seed grant from VISN 15, Department of Veterans Affairs awarded to K Gupta, and Grant 589-KG-0012 from the Medical Research Service, Department of Veterans Affairs awarded to K Grasing. NIH Grants R01-HL070101 and 3R01-HL070101-04S1 awarded to K Dileepan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Gupta.

Ethics declarations

Conflict of interest

None of the authors have any conflict of interest to disclose.

Additional information

The research was done at Kansa City VA Medical Center and University of Kansas Medical Center.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, K., Sharma, R., Singh, V. et al. Intravenous Cocaine Results in an Acute Decrease in Levels of Biomarkers of Vascular Inflammation in Humans. Cardiovasc Toxicol 18, 295–303 (2018). https://doi.org/10.1007/s12012-017-9440-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-017-9440-0

Keywords

Navigation