Skip to main content

Advertisement

Log in

Fluoride Induces Neurocytotoxicity by Disrupting Lysosomal Iron Metabolism and Membrane Permeability

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The detrimental effects of fluoride on neurotoxicity have been widely recorded, yet the detailed mechanisms underlying these effects remain unclear. This study explores lysosomal iron metabolism in fluoride-related neurotoxicity, with a focus on the Steap3/TRPML1 axis. Utilizing sodium fluoride (NaF)-treated human neuroblastoma (SH-SY5Y) and mouse hippocampal neuron (HT22) cell lines, our research demonstrates that NaF enhances the accumulation of ferrous ions (Fe2+) in these cells, disrupting lysosomal iron metabolism through the Steap3/TRPML1 axis. Notably, NaF exposure upregulated ACSL4 and downregulated GPX4, accompanied by reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity and increased malondialdehyde (MDA) levels. These changes indicate increased vulnerability to ferroptosis within neuronal cells. The iron chelator deferoxamine (DFO) mitigates this disruption. DFO binds to lysosomal Fe2+ and inhibits the Steap3/TRPML1 axis, restoring normal lysosomal iron metabolism, preventing lysosomal membrane permeabilization (LMP), and reducing neuronal cell ferroptosis. Our findings suggest that interference in lysosomal iron metabolism may mitigate fluoride-induced neurotoxicity, underscoring the critical role of the Steap3/TRPML1 axis in this pathological process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study will be available from the corresponding author upon reasonable request.

References

  1. Cao JY, Dixon SJ (2016) Mechanisms of ferroptosis. Cell Mol Life Sci 73:2195–2209. https://doi.org/10.1007/s00018-016-2194-1

    Article  CAS  PubMed  Google Scholar 

  2. Chen H, Xu C, Yu Q, Zhong C, Peng Y, Chen J, Chen G (2021) Comprehensive landscape of STEAP family functions and prognostic prediction value in glioblastoma. J Cell Physiol 236:2988–3000. https://doi.org/10.1002/jcp.30060

    Article  CAS  PubMed  Google Scholar 

  3. Chen L, Jia P, Liu Y, Wang R, Yin Z, Hu D, Ning H, Ge Y (2023) Fluoride exposure disrupts the cytoskeletal arrangement and ATP synthesis of HT-22 cell by activating the RhoA/ROCK signaling pathway. Ecotoxicol Environ Saf 254:114718. https://doi.org/10.1016/j.ecoenv.2023.114718

    Article  CAS  PubMed  Google Scholar 

  4. Chen L-L, Huang Y-J, Cui J-T, Song N, Xie J (2019) Iron Dysregulation in Parkinson’s Disease: Focused on the Autophagy-Lysosome Pathway. ACS Chem Neurosci 10:863–871. https://doi.org/10.1021/acschemneuro.8b00390

    Article  CAS  PubMed  Google Scholar 

  5. Chen Y, Yang Z, Wang S, Ma Q, Li L, Wu X, Guo Q, Tao L, Shen X (2023) Boosting ROS-Mediated Lysosomal Membrane Permeabilization for Cancer Ferroptosis Therapy. Adv Healthc Mater 12:e2202150. https://doi.org/10.1002/adhm.202202150

    Article  CAS  PubMed  Google Scholar 

  6. Chu J, Liu C-X, Song R, Li Q-L (2020) Ferrostatin-1 protects HT-22 cells from oxidative toxicity. Neural Regen Res 15:528–536. https://doi.org/10.4103/1673-5374.266060

    Article  CAS  PubMed  Google Scholar 

  7. Cui Y, Zhang Y, Zhao X, Shao L, Liu G, Sun C, Xu R, Zhang Z (2021) ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun 93:312–321. https://doi.org/10.1016/j.bbi.2021.01.003

    Article  CAS  PubMed  Google Scholar 

  8. Dang Y, He Q, Yang S, Sun H, Liu Y, Li W, Tang Y, Zheng Y, Wu T (2022) FTH1- and SAT1-Induced Astrocytic Ferroptosis Is Involved in Alzheimer’s Disease: Evidence from Single-Cell Transcriptomic Analysis. Pharmaceuticals (Basel) 15:1177. https://doi.org/10.3390/ph15101177

    Article  CAS  PubMed  Google Scholar 

  9. Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, Prokisch H, Trümbach D, Mao G, Qu F, Bayir H, Füllekrug J, Scheel CH, Wurst W, Schick JA, Kagan VE, Angeli JPF, Conrad M (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13:91–98. https://doi.org/10.1038/nchembio.2239

    Article  CAS  PubMed  Google Scholar 

  10. Dong X-P, Cheng X, Mills E, Delling M, Wang F, Kurz T, Xu H (2008) The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455:992–996. https://doi.org/10.1038/nature07311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fernández B, Olmedo P, Gil F, Fdez E, Naaldijk Y, Rivero-Ríos P, Bracher F, Grimm C, Churchill GC, Hilfiker S (2022) Iron-induced cytotoxicity mediated by endolysosomal TRPML1 channels is reverted by TFEB. Cell Death Dis 13:1047. https://doi.org/10.1038/s41419-022-05504-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goodman CV, Bashash M, Green R, Song P, Peterson KE, Schnaas L, Mercado-García A, Martínez-Medina S, Hernández-Avila M, Martinez-Mier A, Téllez-Rojo MM, Hu H, Till C (2022) Domain-specific effects of prenatal fluoride exposure on child IQ at 4, 5, and 6–12 years in the ELEMENT cohort. Environ Res 211:112993. https://doi.org/10.1016/j.envres.2022.112993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Green R, Lanphear B, Hornung R, Flora D, Martinez-Mier EA, Neufeld R, Ayotte P, Muckle G, Till C (2019) Association Between Maternal Fluoride Exposure During Pregnancy and IQ Scores in Offspring in Canada. JAMA Pediatr 173:940. https://doi.org/10.1001/jamapediatrics.2019.1729

    Article  PubMed  PubMed Central  Google Scholar 

  14. Halcrow PW, Lakpa KL, Khan N, Afghah Z, Miller N, Datta G, Chen X, Geiger JD (2022) HIV-1 gp120-Induced Endolysosome de-Acidification Leads to Efflux of Endolysosome Iron, and Increases in Mitochondrial Iron and Reactive Oxygen Species. J Neuroimmune Pharmacol 17:181–194. https://doi.org/10.1007/s11481-021-09995-2

    Article  PubMed  Google Scholar 

  15. Han X, Tang Y, Zhang Y, Zhang J, Hu Z, Xu W, Xu S, Niu Q (2022) Impaired V-ATPase leads to increased lysosomal pH, results in disrupted lysosomal degradation and autophagic flux blockage, contributes to fluoride-induced developmental neurotoxicity. Ecotoxicol Environ Saf 236:113500. https://doi.org/10.1016/j.ecoenv.2022.113500

    Article  CAS  PubMed  Google Scholar 

  16. Inkielewicz-Stepniak I, Radomski MW, Wozniak M (2012) Fisetin prevents fluoride- and dexamethasone-induced oxidative damage in osteoblast and hippocampal cells. Food Chem Toxicol 50:583–589. https://doi.org/10.1016/j.fct.2011.12.015

    Article  CAS  PubMed  Google Scholar 

  17. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22:266–282. https://doi.org/10.1038/s41580-020-00324-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jin Y, Zhou B-H, Zhao J, Ommati MM, Wang S, Wang H-W (2023) Fluoride-induced osteoporosis via interfering with the RANKL/RANK/OPG pathway in ovariectomized rats: Oophorectomy shifted skeletal fluorosis from osteosclerosis to osteoporosis. Environ Pollut 336:122407. https://doi.org/10.1016/j.envpol.2023.122407

    Article  CAS  PubMed  Google Scholar 

  19. Knutson MD (2007) Steap proteins: implications for iron and copper metabolism. Nutr Rev 65:335–340. https://doi.org/10.1111/j.1753-4887.2007.tb00311.x

    Article  PubMed  Google Scholar 

  20. Kuang F, Liu J, Li C, Kang R, Tang D (2020) Cathepsin B is a mediator of organelle-specific initiation of ferroptosis. Biochem Biophys Res Commun 533:1464–1469. https://doi.org/10.1016/j.bbrc.2020.10.035

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Chen M, Xu Y, Yu X, Xiong T, Du M, Sun J, Liu L, Tang Y, Yao P (2016) Iron-Mediated Lysosomal Membrane Permeabilization in Ethanol-Induced Hepatic Oxidative Damage and Apoptosis: Protective Effects of Quercetin. Oxid Med Cell Longev 2016:4147610. https://doi.org/10.1155/2016/4147610

    Article  CAS  PubMed  Google Scholar 

  22. Liu B, Moloney A, Meehan S, Morris K, Thomas SE, Serpell LC, Hider R, Marciniak SJ, Lomas DA, Crowther DC (2011) Iron promotes the toxicity of amyloid beta peptide by impeding its ordered aggregation. J Biol Chem 286:4248–4256. https://doi.org/10.1074/jbc.M110.158980

    Article  CAS  PubMed  Google Scholar 

  23. Lopes GO, Martins Ferreira MK, Davis L, Bittencourt LO, Bragança Aragão WA, Dionizio A, Rabelo Buzalaf MA, Crespo-Lopez ME, Maia CSF, Lima RR (2020) Effects of Fluoride Long-Term Exposure over the Cerebellum: Global Proteomic Profile, Oxidative Biochemistry, Cell Density, and Motor Behavior Evaluation. Int J Mol Sci 21:7297. https://doi.org/10.3390/ijms21197297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Malin AJ, Lesseur C, Busgang SA, Curtin P, Wright RO, Sanders AP (2019) Fluoride exposure and kidney and liver function among adolescents in the United States: NHANES, 2013–2016. Environ Int 132:105012. https://doi.org/10.1016/j.envint.2019.105012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meng F, Fleming BA, Jia X, Rousek AA, Mulvey MA, Ward DM (2022) Lysosomal iron recycling in mouse macrophages is dependent upon both LcytB and Steap3 reductases. Blood Adv 6:1692–1707. https://doi.org/10.1182/bloodadvances.2021005609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mishima E, Ito J, Wu Z, Nakamura T, Wahida A, Doll S, Tonnus W, Nepachalovich P, Eggenhofer E, Aldrovandi M, Henkelmann B, Yamada K-I, Wanninger J, Zilka O, Sato E, Feederle R, Hass D, Maida A, Mourão ASD, Linkermann A, Geissler EK, Nakagawa K, Abe T, Fedorova M, Proneth B, Pratt DA, Conrad M (2022) A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature 608:778–783. https://doi.org/10.1038/s41586-022-05022-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakamura T, Hipp C, Santos Dias Mourão A, Borggräfe J, Aldrovandi M, Henkelmann B, Wanninger J, Mishima E, Lytton E, Emler D, Proneth B, Sattler M, Conrad M (2023) Phase separation of FSP1 promotes ferroptosis. Nature 619:371–377. https://doi.org/10.1038/s41586-023-06255-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Näsman P, Granath F, Ekstrand J, Ekbom A, Sandborgh-Englund G, Fored CM (2016) Natural fluoride in drinking water and myocardial infarction: A cohort study in Sweden. Sci Total Environ 562:305–311. https://doi.org/10.1016/j.scitotenv.2016.03.161

    Article  CAS  PubMed  Google Scholar 

  29. Nizam S, Acharya T, Dutta S, Sen IS (2023) Occurrence, sources, and spatial distribution of fluoride in the Ganga alluvial aquifer, India. Environ Geochem Health 45:1975–1989. https://doi.org/10.1007/s10653-022-01319-4

    Article  CAS  PubMed  Google Scholar 

  30. Nkansah MA, Dua AB, Aryee GA, Adusei-Gyamfi J (2022) Evaluation of Scales of Tilapia Sp. and Sciaenops ocellatus as Low Cost and Green Adsorbent for fluoride Removal From Water. Front Chem 10:813533. https://doi.org/10.3389/fchem.2022.813533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ohshima T, Yamamoto H, Sakamaki Y, Saito C, Mizushima N (2022) NCOA4 drives ferritin phase separation to facilitate macroferritinophagy and microferritinophagy. J Cell Biol 221:e202203102. https://doi.org/10.1083/jcb.202203102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Podgorski J, Berg M (2022) Global analysis and prediction of fluoride in groundwater. Nat Commun 13:4232. https://doi.org/10.1038/s41467-022-31940-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Radovanović J, Antonijević B, Kolarević S, Milutinović-Smiljanić S, Mandić J, Vuković-Gačić B, Bulat Z, Ćurčić M, Kračun-Kolarević M, Sunjog K, Kostić-Vuković J, Marić JJ, Antonijević-Miljaković E, Đukić-Ćosić D, Djordjevic AB, Javorac D, Baralić K, Mandinić Z (2021) Genotoxicity of fluoride subacute exposure in rats and selenium intervention. Chemosphere 266:128978. https://doi.org/10.1016/j.chemosphere.2020.128978

    Article  CAS  PubMed  Google Scholar 

  34. Ren C, Li H-H, Zhang C-Y, Song X-C (2022) Effects of chronic fluorosis on the brain. Ecotoxicol Environ Saf 244:114021. https://doi.org/10.1016/j.ecoenv.2022.114021

    Article  CAS  PubMed  Google Scholar 

  35. Rizzollo F, More S, Vangheluwe P, Agostinis P (2021) The lysosome as a master regulator of iron metabolism. Trends Biochem Sci 46:960–975. https://doi.org/10.1016/j.tibs.2021.07.003

    Article  CAS  PubMed  Google Scholar 

  36. Russ TC, Killin LOJ, Hannah J, Batty GD, Deary IJ, Starr JM (2020) Aluminium and fluoride in drinking water in relation to later dementia risk. Br J Psychiatry 216:29–34. https://doi.org/10.1192/bjp.2018.287

    Article  PubMed  Google Scholar 

  37. Shen Y, Zhang B, Su Y, Badshah SA, Wang X, Li X, Xue Y, Xie L, Wang Z, Yang Z, Zhang G, Shang P (2020) Iron Promotes Dihydroartemisinin Cytotoxicity via ROS Production and Blockade of Autophagic Flux via Lysosomal Damage in Osteosarcoma. Front Pharmacol 11:444. https://doi.org/10.3389/fphar.2020.00444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell 171:273–285. https://doi.org/10.1016/j.cell.2017.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tang Y, Zhang J, Hu Z, Xu W, Xu P, Ma Y, Xing H, Niu Q (2023) PRKAA1 induces aberrant mitophagy in a PINK1/Parkin-dependent manner, contributing to fluoride-induced developmental neurotoxicity. Ecotoxicol Environ Saf 255:114772. https://doi.org/10.1016/j.ecoenv.2023.114772

    Article  CAS  PubMed  Google Scholar 

  40. Terman A, Kurz T (2013) Lysosomal iron, iron chelation, and cell death. Antioxid Redox Signal 18:888–898. https://doi.org/10.1089/ars.2012.4885

    Article  CAS  PubMed  Google Scholar 

  41. Tu W, Zhang Q, Liu Y, Han L, Wang Q, Chen P, Zhang S, Wang A, Zhou X (2018) Fluoride induces apoptosis via inhibiting SIRT1 activity to activate mitochondrial p53 pathway in human neuroblastoma SH-SY5Y cells. Toxicol Appl Pharmacol 347:60–69. https://doi.org/10.1016/j.taap.2018.03.030

    Article  CAS  PubMed  Google Scholar 

  42. Ursini F, Maiorino M (2020) Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med 152:175–185. https://doi.org/10.1016/j.freeradbiomed.2020.02.027

    Article  CAS  PubMed  Google Scholar 

  43. Wang D, Cao L, Zhou X, Wang G, Ma Y, Hao X, Fan H (2022) Mitigation of honokiol on fluoride-induced mitochondrial oxidative stress, mitochondrial dysfunction, and cognitive deficits through activating AMPK/PGC-1α/Sirt3. J Hazard Mater 437:129381. https://doi.org/10.1016/j.jhazmat.2022.129381

    Article  CAS  PubMed  Google Scholar 

  44. Wang D, Yin K, Zhang Y, Lu H, Hou L, Zhao H, Xing M (2023) Novel pathways of fluoride-induced hepatotoxicity: P53-dependent ferroptosis induced by the SIRT1/FOXOs pathway and Nrf2/HO-1 pathway. Comp Biochem Physiol C Toxicol Pharmacol 264:109526. https://doi.org/10.1016/j.cbpc.2022.109526

    Article  CAS  PubMed  Google Scholar 

  45. Wang F, Li Y, Tang D, Yang B, Tian T, Tian M, Meng N, Xie W, Zhang C, He Z, Zhu X, Ming D, Liu Y (2023) Exploration of the SIRT1-mediated BDNF–TrkB signaling pathway in the mechanism of brain damage and learning and memory effects of fluorosis. Front Public Health 11:1247294. https://doi.org/10.3389/fpubh.2023.1247294

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang J, Zhang Y, Guo Z, Li R, Xue X, Sun Z, Niu R (2018) Effects of perinatal fluoride exposure on the expressions of miR-124 and miR-132 in hippocampus of mouse pups. Chemosphere 197:117–122. https://doi.org/10.1016/j.chemosphere.2018.01.029

    Article  CAS  PubMed  Google Scholar 

  47. Wang Y, Tang M (2019) PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance. Environ Pollut 254:112937. https://doi.org/10.1016/j.envpol.2019.07.105

    Article  CAS  PubMed  Google Scholar 

  48. Weber RA, Yen FS, Nicholson SPV, Alwaseem H, Bayraktar EC, Alam M, Timson RC, La K, Abu-Remaileh M, Molina H, Birsoy K (2020) Maintaining Iron Homeostasis Is the Key Role of Lysosomal Acidity for Cell Proliferation. Mol Cell 77:645-655.e7. https://doi.org/10.1016/j.molcel.2020.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wei W, Pang S, Sun D (2019) The pathogenesis of endemic fluorosis: Research progress in the last 5 years. J Cell Mol Med 23:2333–2342. https://doi.org/10.1111/jcmm.14185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. World Health Organization (2022) Guidelines for drinking-water quality: Fourth edition incorporating the first and second addenda. WHO Guidelines Approved by the Guidelines Review Committee, Geneva

    Google Scholar 

  51. Xiong Q, Li X, Li W, Chen G, Xiao H, Li P, Wu C (2021) WDR45 Mutation Impairs the Autophagic Degradation of Transferrin Receptor and Promotes Ferroptosis. Front Mol Biosci 8:645831. https://doi.org/10.3389/fmolb.2021.645831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu W, Hu Z, Zhang J, Tang Y, Xing H, Xu P, Ma Y, Niu Q (2023) Cross-talk between autophagy and ferroptosis contributes to the liver injury induced by fluoride via the mtROS-dependent pathway. Ecotoxicol Environ Saf 250:114490. https://doi.org/10.1016/j.ecoenv.2022.114490

    Article  CAS  PubMed  Google Scholar 

  53. Yanatori I, Kishi F (2019) DMT1 and iron transport. Free Radic Biol Med 133:55–63. https://doi.org/10.1016/j.freeradbiomed.2018.07.020

    Article  CAS  PubMed  Google Scholar 

  54. Yi L, Hu Y, Wu Z, Li Y, Kong M, Kang Z, Zuoyuan B, Yang Z (2022) TFRC upregulation promotes ferroptosis in CVB3 infection via nucleus recruitment of Sp1. Cell Death Dis 13:592. https://doi.org/10.1038/s41419-022-05027-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yıldız MO, Çelik H, Caglayan C, Kandemir FM, Gür C, Bayav İ, Genç A, Kandemir Ö (2022) Neuromodulatory effects of hesperidin against sodium fluoride-induced neurotoxicity in rats: Involvement of neuroinflammation, endoplasmic reticulum stress, apoptosis and autophagy. Neurotoxicology 90:197–204. https://doi.org/10.1016/j.neuro.2022.04.002

    Article  CAS  PubMed  Google Scholar 

  56. Yousefi M, Ghoochani M, Hossein Mahvi A (2018) Health risk assessment to fluoride in drinking water of rural residents living in the Poldasht city, Northwest of Iran. Ecotoxicol Environ Saf 148:426–430. https://doi.org/10.1016/j.ecoenv.2017.10.057

    Article  CAS  PubMed  Google Scholar 

  57. Yu X, Xia L, Zhang S, Zhou G, Li Y, Liu H, Hou C, Zhao Q, Dong L, Cui Y, Zeng Q, Wang A, Liu L (2021) Fluoride exposure and children’s intelligence: Gene-environment interaction based on SNP-set, gene and pathway analysis, using a case-control design based on a cross-sectional study. Environ Int 155:106681. https://doi.org/10.1016/j.envint.2021.106681

    Article  CAS  PubMed  Google Scholar 

  58. Zhang J, Yu Q, Han L, Han M, Han G (2020) Effects of lysosomal iron involvement in the mechanism of mitochondrial apoptosis on postmortem muscle protein degradation. Food Chem 328:127174. https://doi.org/10.1016/j.foodchem.2020.127174

    Article  CAS  PubMed  Google Scholar 

  59. Zhang M, Wang A, Xia T, He P (2008) Effects of fluoride on DNA damage, S-phase cell-cycle arrest and the expression of NF-kappaB in primary cultured rat hippocampal neurons. Toxicol Lett 179:1–5. https://doi.org/10.1016/j.toxlet.2008.03.002

    Article  CAS  PubMed  Google Scholar 

  60. Zhang Y, Fan B-Y, Pang Y-L, Shen W-Y, Wang X, Zhao C-X, Li W-X, Liu C, Kong X-H, Ning G-Z, Feng S-Q, Yao X (2020) Neuroprotective effect of deferoxamine on erastininduced ferroptosis in primary cortical neurons. Neural Regen Res 15:1539–1545. https://doi.org/10.4103/1673-5374.274344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang Y, Han X, Tang Y, Zhang J, Hu Z, Xu W, Yao P, Niu Q (2021) Weakened interaction of ATG14 and the SNARE complex blocks autophagosome-lysosome fusion contributes to fluoride-induced developmental neurotoxicity. Ecotoxicol Environ Saf 230:113108. https://doi.org/10.1016/j.ecoenv.2021.113108

    Article  CAS  PubMed  Google Scholar 

  62. Zhao N, Huang Y, Wang Y-H, Muir RK, Chen Y-C, Wei J, Hooshdaran N, Viswanath P, Seo Y, Ruggero D, Renslo AR, Evans MJ (2021) Ferronostics: Measuring Tumoral Ferrous Iron with PET to Predict Sensitivity to Iron-Targeted Cancer Therapies. J Nucl Med 62:949–955. https://doi.org/10.2967/jnumed.120.252460

    Article  CAS  PubMed  Google Scholar 

  63. Zhao Y, Liu X, Liang C, Pei T, Guo M, Wang J, Zhang J (2022) α-Lipoic Acid Alleviated Fluoride-Induced Hepatocyte Injury via Inhibiting Ferroptosis. J Agric Food Chem 70:15962–15971. https://doi.org/10.1021/acs.jafc.2c07484

    Article  CAS  PubMed  Google Scholar 

  64. Zhou Y, Lin W, Rao T, Zheng J, Zhang T, Zhang M, Lin Z (2022) Ferroptosis and Its Potential Role in the Nervous System Diseases. J Inflamm Res 15:1555–1574. https://doi.org/10.2147/JIR.S351799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhu D, Liang R, Liu Y, Li Z, Cheng L, Ren J, Guo Y, Wang M, Chai H, Niu Q, Yang S, Bai J, Yu H, Zhang H, Qin X (2022) Deferoxamine ameliorated Al(mal)3-induced neuronal ferroptosis in adult rats by chelating brain iron to attenuate oxidative damage. Toxicol Mech Methods 32:530–541. https://doi.org/10.1080/15376516.2022.2053254

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (Grant Nos. 82360671 and 82060580), the Bingtuan Program of Science and Technology Innovation (Grant No. 2021CB046), as well as the Shihezi University International Science and Technology Cooperation Promotion Programme Project (No. GJHZ202308).

Author information

Authors and Affiliations

Authors

Contributions

Panpan Xu: Investigation, Writing–original draft. Hengrui Xing and Yue Ma: Writing–review & editing. Xueman Ding: Data curation. Tingting Li: Methodology, Yue Zhang and Li Liu: Visualization, Jiaolong Ma: Software, Validation, Qiang Niu: Resources, Conceptualization, Funding acquisition.

Corresponding authors

Correspondence to Jiaolong Ma or Qiang Niu.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. NaF exposure causes disturbed lysosomal iron metabolism by the Steap3/TRPML1 axis.

2. NaF exposure causes ferroptosis in neuronal cells.

3. DFO restored the lysosomal iron metabolism and further inhibited LMP and ferroptosis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Xing, H., Ma, Y. et al. Fluoride Induces Neurocytotoxicity by Disrupting Lysosomal Iron Metabolism and Membrane Permeability. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04226-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-024-04226-0

Keywords

Navigation