Skip to main content
Log in

Trace Element Concentration in the Blood and Aqueous Humor of Subjects with Eye Cataract

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cataract, characterized by the opacification of the lens, is the leading cause of reversible blindness and visual impairment globally. The study aims to investigate the role of trace elements such as Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn in the development and severity of cataract. Elements were quantified by inductively coupled plasma mass spectrometry in blood and aqueous humor of 32 cataract cases and 27 controls living in the Latium region, Italy. The association between element concentration in blood and aqueous humor and cataract severity, gender, and age of subjects were also assessed. Results showed Cr levels significantly elevated in both blood and aqueous humor of cataract cases, with concentrations that increased with cataract severity. In addition, blood Pb levels were significantly higher in older cases and positively correlated with the age of cataract cases, while blood Co and Cu levels negatively correlated with cataract severity, suggesting changes in the levels of these elements. In conclusion, this study provides evidence of the involvement of specific elements in cataract development and severity, and the findings highlighted important avenues for future research. Understanding the biological mechanism underlying element-induced cataract may contribute to preventing cataractogenesis and providing targeted interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data are unavailable due to privacy or ethical restrictions.

References

  1. Micun Z, Falkowska M, Młynarczyk M, Kochanowicz J, Socha K, Konopińska J (2022) Levels of trace elements in the lens, aqueous humour, and plasma of cataractous patients—a narrative review. Int J Environ Res Public Health 19:10376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. IAPB – Italian section of the International Agency for the Prevention of Blindness. https://iapb.it/cataratta/. Accessed 21 December 2023

  3. ANSA - Agenzia Nazionale Stampa Associata. https://www.ansa.it/canale_saluteebenessere/notizie/medicina/2019/11/20/ogni-anno-650.000-persone-operate-di-cataratta-in-italia_dffd0d6a-4e2a-4665-aa5f-fdffd5b0e367.html. Accessed 19 December 2023

  4. Gupta VB, Rajagopala M, Ravishankar B (2014) Etiopathogenesis of cataract: an appraisal. Indian J Ophthalmol 62:103–110

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nita M, Grzybowski A (2016) The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev 2016:3164734

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang W, Schaumberg DA, Park SK (2016) Cadmium and lead exposure and risk of cataract surgery in U.S. adults. Int J Hyg Environ Health 219:850–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. De Sio S, Goglia C, Cristaudo A, Pacella E, Romanelli F, Santilli V, Vitarelli A, Mandolesi D, Balladore F, Nieto H (2016) Italy and Argentina compared: an epidemiological study of occupational diseases. Ann Ig 28(1):50–57

    PubMed  Google Scholar 

  8. Wills NK, Sadagopa Ramanujam VM, Chang J, Kalariya N, Lewis JR, Weng T-X, van Kuijk FJGM (2008) Cadmium accumulation in the human retina: effects of age, gender, and cellular toxicity. Exp Eye Res 86:41–51

    Article  CAS  PubMed  Google Scholar 

  9. Sharma N, Kaur Sodhi K, Kumar M, Kumar Singh D (2021) Heavy metal pollution: insights into chromium eco-toxicity and recent advancement in its remediation. Environ Nanotechnol Monit Manag 15:100388

    CAS  Google Scholar 

  10. Costa M, Murphy A (2019) Overview of chromium(III) toxicology. In: Vincent JB (ed) The nutritional biochemistry of chromium (III), 2nd edn. Elsevier, Amsterdam, The Netherlands, pp 341–359

    Chapter  Google Scholar 

  11. IARC, International Agency for Research on Cancer (1990) Chromium, nickel and welding. Lyon, France, Volume 49

  12. Jackson SE (2013) Hsp90: structure and function. Top Curr Chem 328:155–240

    Article  CAS  PubMed  Google Scholar 

  13. Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, Geczy CL (2013) Functions of S100 Proteins. Curr Mol Med 13:24–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuzenko YV, Kuzenko OV, Dyomin YA (2018) Eye retinal changes under the influence of chromium ions. J Ophthal (Ukraine) 1(480):67–73

    Google Scholar 

  15. La Torre G, Pacella E, Saulle R, Giraldi G, Pacella F, Lenzi T, Mastrangelo O, Mirra F, Aloe G, Turchetti P, Brillante C, De Paolis G, Boccia A, Giustolisi R (2013) The synergistic effect of exposure to alcohol, tobacco smoke and other risk factors for age-related macular degeneration. Eur J Epidemiol 28(5):445–446

    Article  PubMed  Google Scholar 

  16. Rice KM, Walker EM Jr, Wu M, Gillette C, Blough ER (2014) Environmental mercury and its toxic effects. J Prev Med Public Health 47:74–83

    Article  PubMed  PubMed Central  Google Scholar 

  17. Domínguez-Calva JA, Pérez-Vázquez ML, Serebryany E, King JA, Quintanar L (2018) Mercury-induced aggregation of human lens γ-crystallins reveals a potential role in cataract disease. J Biol Inorg Chem 23(7):1105–1118

    Article  PubMed  Google Scholar 

  18. ATSDR - Agency for Toxic Substances and Disease Registry (2005) Toxicological profile for nickel. Department of Health and Human Services, Public Health Service, Atlanta, USA, U.S

    Google Scholar 

  19. Nagarjuna A, Mohan D (2017) Biochemical and histopathological changes induced by nickel in the striped mullet, Mugil cephalus (Linnaeus 1758). Bull Environ Contam Toxicol 98:33–40

    Article  CAS  PubMed  Google Scholar 

  20. Aberami S, Nikhalashree S, Bharathselvi M, Biswas J, Sulochana KN, Coral K (2019) Elemental concentrations in Choroid-RPE and retina of human eyes with age-related macular degeneration. Exp Eye Res 186:107718

    Article  CAS  PubMed  Google Scholar 

  21. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87

    Article  CAS  PubMed  Google Scholar 

  22. Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K (2016) Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 90:1–37

    Article  CAS  PubMed  Google Scholar 

  23. Schaumberg DA, Mendes F, Balaram M, Dana MR, Sparrow D, Hu H (2004) Accumulated lead exposure and risk of age-related cataract in men. JAMA 292:2750–2754

    Article  CAS  PubMed  Google Scholar 

  24. Neal RE, Lin C, Zigler JS Jr (2003) Pb exposure induces cataract formation in cultured rat lens and alters cytoskeletal protein profiles. IOVS Invest Ophthalmol Vis Sci 44:3491

    Google Scholar 

  25. Shen X-F, Huang P, Fox DA, Lin Y, Zhao Z-H, Wang W, Wang J-Y, Liu X-Q, Chen J-Y, Luo W-J (2016) Adult lead exposure increases blood-retinal permeability: a risk factor for retinal vascular disease. Neurotoxicology 57:145–152

    Article  CAS  PubMed  Google Scholar 

  26. Genchi G, Lauria G, Catalano A, Carocci A, Sinicropi MS (2023) Prevalence of cobalt in the environment and its role in biological processes. Biology 12:1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leyssens L, Vinck B, Van Der Straeten C, Wuyts F, Maes L (2017) Cobalt toxicity in humans: a review of the potential sources and systemic health effects. Toxicology 387:43–56

    Article  CAS  PubMed  Google Scholar 

  28. Paustenbach DJ, Tvermoes BE, Unice KM, Finley BL, Kerger BD (2013) A review of the health hazards posed by cobalt. Crit Rev Toxicol 43(4):316–362

    Article  CAS  PubMed  Google Scholar 

  29. Apel W, Stark D, Stark A, O’Hagan S, Ling J (2013) Cobalt–chromium toxic retinopathy case study. Doc Ophthalmol 126:69–78

    Article  PubMed  Google Scholar 

  30. Meo SA (2009) Cobalt deficiency. In: Lang F (ed) Encyclopedia of molecular mechanisms of disease. Springer, Berlin, Heidelberg, Germany, pp 380–381

    Google Scholar 

  31. Hara A, Niwa M, Aoki M, Kumada M, Kunisada T, Oyama T, Yamamoto T, Kozawa O, Mori H (2006) A new model of retinal photoreceptor cell degeneration induced by a chemical hypoxia-mimicking agent, cobalt chloride. Brain Res 1109:192–200

    Article  CAS  PubMed  Google Scholar 

  32. Bocca B, Forte G, Oggiano R, Clemente S, Asara Y, Peruzzu P, Farace C, Pala S, Fois AG, Pirina P, Madeddu R (2015) Level of neurotoxic metals in amyotrophic lateral sclerosis: a population-based case–control study. J Neurol Sci 359:11–17

    Article  CAS  PubMed  Google Scholar 

  33. Ugarte M, Osborne NN, Brown LA, Bishop PN (2013) Iron, zinc, and copper in retinal physiology and disease. Surv Ophthalmol 58:585–609

    Article  PubMed  Google Scholar 

  34. Palomino-Vizcaino G, Schuth N, Domínguez-Calva JA, Rodríguez-Meza O, Martínez-Jurado E, Serebryany E, King JA, Kroll T, Costas M, Quintanar L (2023) Copper reductase activity and free radical chemistry by cataract associated human lens γ-crystallins. J Am Chem Soc 145:6781–6797

    Article  CAS  PubMed  Google Scholar 

  35. Goralska M, Ferrell J, Harned J, Lall M, Nagar S, Fleisher LN, McGahan MC (2009) Iron metabolism in the eye, a review. Exp Eye Res 88(2):204–215

    Article  CAS  PubMed  Google Scholar 

  36. Trovato Battagliola E, Pacella F, Malvasi M, Scalinci SZ, Turchetti P, Pacella E, La Torre G, Arrico L (2022) Risk factors in central retinal vein occlusion: a multi-center case-control study conducted on the Italian population: demographic, environmental, systemic, and ocular factors that increase the risk for major thrombotic events in the retinal venous system. Eur J Ophthalmol 32(5):2801–2809

    Article  PubMed  Google Scholar 

  37. Smith MR, Fernandes J, Go Y-M, Jones DP (2017) Redox dynamics of manganese as a mitochondrial life-death switch. Biochem Biophys Res Commun 482:388–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Endo K, Itoh N, Maehara S, Shinozaki A, Imagawa T, Uehara M (2008) Functional disorder of the retina in manganese-deficient Japanese quail revealed by electroretinography using a contact lens electrode with built-in light source. J Vet Med Sci 70:139–144

    Article  PubMed  Google Scholar 

  39. Gong H, Amemiya T (1996) Ultrastructure of retina of manganese-deficient rats. Invest Ophthalmol Vis Sci 37:1967–1974

    CAS  PubMed  Google Scholar 

  40. Hou X, Hou Y (1996) Determination of 19 elements in human eye lenses. Biol Trace Elem Res 55(1–2):89–98

    Article  CAS  PubMed  Google Scholar 

  41. Karaküçük S, Mirza GE, Ekinciler F, Saraymen R, Karaküçük I, Üstdal M (2009) Selenium concentrations in serum, lens and aqueous humour of patients with senile cataract. Acta Ophthalmol Scand 73:329–332

    Article  Google Scholar 

  42. Flohé L (2005) Selenium, selenoproteins and vision. Dev Ophthalmol 38:89–102

    PubMed  Google Scholar 

  43. Post M, Lubiński W, Lubiński J, Krzystolik K, Baszuk P, Muszyńska M, Marciniak W (2018) Serum selenium levels are associated with age-related cataract. Ann Agric Environ Med 25:443–448

    Article  CAS  PubMed  Google Scholar 

  44. Hyun HJ, Sohn JH, Ha DW, Ahn YH, Koh J-Y, Yoon YH (2001) Depletion of intracellular zinc and copper with TPEN results in apoptosis of cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 42:460–465

    CAS  PubMed  Google Scholar 

  45. Srivastava VK, Varshney N, Pandey DC (2009) Role of trace elements in senile cataract. Acta Ophthalmol 70:839–841

    Article  Google Scholar 

  46. Chylack LT Jr, Wolfe JK, Singer DM, Leske MC, Bullimore MA, Bailey IL, Friend J, McCarthy D, Wu S-Y (1993) The lens opacities classification system III. Arch Ophthalmol 111(6):831–836

    Article  PubMed  Google Scholar 

  47. Flieger J, Dolar-Szczasny J, Rejdak R, Majerek D, Tatarczak Michalewska M, Proch J, Blicharska E, Flieger W, Baj J, Niedzielski P (2021) The multi-elemental composition of the aqueous humor of patients undergoing cataract surgery, suffering from coexisting diabetes, hypertension, or diabetic retinopathy. Int J Mol Sci 22:9413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kiel JW, Hollingsworth M, Rao R, Chen M, Reitsamer HA (2011) Ciliary blood flow and aqueous humor production. Prog Retin Eye Res 30(1):1–17

    Article  CAS  PubMed  Google Scholar 

  49. Stamper RL, Lieberman MF, Drake MV (2009) Aqueous humor formation. In: Stamper RL, Lieberman MF, Drake MV (eds) Becker-Shaffer’s diagnosis and therapy of the glaucomas, 8th edn. Mosby, St. Louis, Missouri (USA), pp 8–24

    Chapter  Google Scholar 

  50. Asmatullah SN, Shakoori AR (1998) Embryotoxic and teratogenic effects of hexavalent chromium in developing chicks of Gallus domesticus. Bull Environ Contam Toxicol 61:281–288

    Article  CAS  PubMed  Google Scholar 

  51. Hassan NA, Shehab AA (2004) Hexavalent chromium (VI) induced toxicity on rat corneal structure: a light scanning electron microscopy study. Mansoura J Forensic Med Clin Toxicol 12:1–22

    Article  Google Scholar 

  52. Amany M, Sawsan K, Abdel-Wahhab M (2006) Chromium-picolinate induced ocular changes: protective role of ascorbic acid. Toxicology 226:143–151

    Article  Google Scholar 

  53. Wu W, Jiang H, Guo X, Wang Y, Ying S, Feng L, Li T, Xia H, Zhang Y, Chen R, Chen T, Lou J (2017) The protective role of hyaluronic acid in Cr(VI)-induced oxidative damage in corneal epithelial cells. J Ophthalmol 2017:3678586

    Article  PubMed  PubMed Central  Google Scholar 

  54. Schmeling M, Gaynes BI, Tidow-Kebritchi S (2014) Heavy metal analysis in lens and aqueous humor of cataract patients by total reflection X-ray fluorescence spectrometry. Powder Diffr 29:155–158

    Article  CAS  Google Scholar 

  55. Dolar-Szczasny J, Święch A, Flieger J, Tatarczak-Michalewska M, Niedzielski P, Proch J, Majerek D, Kawka J, Mackiewicz J (2019) Levels of trace elements in the aqueous humor of cataract patients measured by the inductively coupled plasma optical emission spectrometry. Molecules 24:4127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cumurcu T, Mendil D, Erkorkmaz U (2008) Aqueous humor and serum levels of chromium in cataract patients with and without diabetes mellitus. Ophthalmologica 222(5):324–328

    Article  CAS  PubMed  Google Scholar 

  57. Iomdina E, Arutyunyan L, Khorosheva E (2019) Analyzing trace elements in the structures of glaucomatous eyes. Int J Biomed 9(1):23–25

    Article  Google Scholar 

  58. Haddad HH (2012) The effect of heavy metals cadmium, chromium and iron accumulation in human eyes. Am J Anal Chem 3:710–713

    Article  Google Scholar 

  59. Ceylan OM, Demirdöğen BC, Mumcuoğlu T, Aykut O (2013) Evaluation of essential and toxic trace elements in pseudoexfoliation syndrome and pseudoexfoliation glaucoma. Biol Trace Elem Res 153:28–34

    Article  CAS  PubMed  Google Scholar 

  60. IARC, International Agency for Research on Cancer (2006) Inorganic and organic lead compounds. IARC, Lyon, France, volume 87

  61. Sani AH, Amanabo M (2021) Lead: a concise review of its toxicity, mechanism and health effect. GSC Biol Pharm Sci 15:055–062

    Article  CAS  Google Scholar 

  62. Barbosa F Jr, Tanus-Santos JE, Gerlach RF, Parsone PJ (2005) A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environ Health Perspect 113:1669–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Erie JC, Butz JA, Good JA, Erie EA, Burritt MF, Cameron JD (2005) Heavy metal concentrations in human eyes. Am J Ophthalmol 139:888–893

    Article  CAS  PubMed  Google Scholar 

  64. Cekic O (1998) Copper, lead, cadmium and calcium in cataractous lenses. Ophthalmic Res 30(1):49–53

    Article  CAS  PubMed  Google Scholar 

  65. Shukla N, Moitra JK, Trivedi RC (1996) Determination of lead, zinc, potassium, calcium, copper and sodium in human cataract lenses. Sci Total Environ 181(2):161–165

    Article  CAS  PubMed  Google Scholar 

  66. Bocca B, Forte G, Pisano P, Farace C, Giancipoli E, Pinna A, Dore S, Madeddu R (2020) A pilot study to evaluate the levels of aqueous humor trace elements in open-angle glaucoma. J Trace Elem Med Biol 61:1265

    Article  Google Scholar 

  67. Erie JC, Good JA, Butz JA (2009) Excess lead in the neural retina in age-related macular degeneration. Am J Ophthalmol 148(6):890–894

    Article  CAS  PubMed  Google Scholar 

  68. Biesemeier A, Yoeruek E, Eibl O, Schraermeyer U (2015) Iron accumulation in Bruch’s membrane and melanosomes of donor eyes with age-related macular degeneration. Exp Eye Res 137:39–49

    Article  CAS  PubMed  Google Scholar 

  69. Czarnek K, Terpiłowska S, Siwicki AK (2015) Selected aspects of the action of cobalt ions in the human body. Cent Eur J Immunol 40(2):236–242

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chan W, Almasieh M, Catrinescu MM, Levin LA (2018) Cobalamin-associated superoxide scavenging in neuronal cells is a potential mechanism for vitamin B(12)-deprivation optic neuropathy. Am J Pathol 188:160–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stein JD, Khawaja AP, Weizer JS (2021) Glaucoma in adults-screening, diagnosis, and management: a review. JAMA 325:164–174

    Article  PubMed  Google Scholar 

  72. Kim KE, Kim MJ, Park KH, Jeoung JW, Kim SH, Kim CY, Kang SW (2016) Prevalence, awareness, and risk factors of primary open-angle glaucoma: Korea National Health and nutrition examination survey 2008–2011. Ophthalmology 123:532–541

    Article  PubMed  Google Scholar 

  73. Rochtchina E, Wang JJ, Flood VM, Mitchell P (2007) Elevated serum homocysteine, low serum vitamin B12, folate, and age-related macular degeneration: the blue mountains eye study. Am J Ophthalmol 143(2):344–346

    Article  CAS  PubMed  Google Scholar 

  74. Ren X, Chou Y, Jiang X, Hao R, Wang Y, Chen Y, Li X (2020) Effects of oral vitamin B1 and mecobalamin on dry eye disease. J Ophthalmol 2020:9539674

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ozen S, Ozer MA, Akdemir MO (2017) Vitamin B12 deficiency evaluation and treatment in severe dry eye disease with neuropathic ocular pain. Graefes Arch Clin Exp Ophthalmol 255(6):1173–1177

    Article  CAS  PubMed  Google Scholar 

  76. Kuzniarz M, Mitchell P, Cumming RG, Flood VM (2001) Use of vitamin supplements and cataract: the blue mountains eye study. Am J Ophthalmol 132(1):19–26

    Article  CAS  PubMed  Google Scholar 

  77. Fick A, Jünemann A, Michalke B, Lucio M, Hohberger B (2019) Levels of serum trace elements in patients with primary open-angle glaucoma. J Trace Elem Med Biol 53:129–134

    Article  CAS  PubMed  Google Scholar 

  78. Jünemann AGM, Stopa P, Michalke B, Chaudhri A, Reulbach U, Huchzermeyer C, Schlötzer-Schrehardt U, Kruse FE, Zrenner E, Rejdak R (2013) Levels of aqueous humor trace elements in patients with non-exsudative age-related macular degeneration: a case-control study. PLoS ONE 8(2):e56734

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hohberger B, Chaudhri MA, Michalke B, Lucio M, Nowomiejska K, Schlötzer Schrehardt U, Grieb P, Rejdak R, Jünemann AGM (2018) Levels of aqueous humor trace elements in patients with open-angle glaucoma. J Trace Elem Med Biol 45:150–155

    Article  CAS  PubMed  Google Scholar 

  80. Dake OY, Amemiya T (1991) Electron microscopic study of the optic nerve in copper deficient rats. Exp Eye Res 52:277–281

    Article  CAS  PubMed  Google Scholar 

  81. Bharathselvi M, Biswas S, Raman R, Selvi R, Coral K, Narayanansamy A, Ramakrishnan S, Sulochana KN (2016) Homocysteine & its metabolite homocysteine-thiolactone & deficiency of copper in patients with age related macular degeneration - a pilot study. Ind J Med Res 143:756–762

    Article  CAS  Google Scholar 

  82. Clemons TE, Kurinij N, Sperduto RD (2004) Associations of mortality with ocular disorders and an intervention of high-dose antioxidants and zinc in the age-related eye disease study: AREDS Report No. 13. Arch Ophthalmol 122:716–726

    Article  CAS  PubMed  Google Scholar 

  83. Erie JC, Good JA, Butz JA, Pulido JS (2009) Reduced zinc and copper in the retinal pigment epithelium and choroid in age-related macular degeneration. Am J Ophthalmol 147:276–282

    Article  CAS  PubMed  Google Scholar 

  84. Rai PSK, Deokar S, Yadav RR, Shelke S, Sundharan S (2017) Serum zinc and copper levels: a marker of disease activity in senile cataract patients. Int J Res Med Sci 5(8):3697–3700

    Article  Google Scholar 

  85. Manoj B, Jayaram S (2014) Serum levels of antioxidant trace elements zinc and copper in senile mature cataract. Int J Cur Res Rev 06:131–137

    Google Scholar 

  86. Kaźmierczak K, Malukiewicz G, Lesiewska-Junk H, Laudencka A, Szady-Grad M, Klawe J, Nowick K (2014) Blood plasma levels of microelements in patients with history of optic neuritis. Curr Eye Res 39(1):93–98

    Article  PubMed  Google Scholar 

  87. Yildirim Z, Uçgun NI, Kiliç N, Gürsel E, Sepici-Dinçel A (2007) Pseudoexfoliation syndrome and trace elements. Ann NY Acad Sci 1100:207–212

    Article  CAS  PubMed  Google Scholar 

  88. Panteli VS, Kanellopoulou DG, Gartaganis SP, Koutsoukos PG (2009) Application of anodic stripping voltammetry for zinc, copper, and cadmium quantification in the aqueous humor: implications of pseudoexfoliation syndrome. Biol Trace Elem Res 132:9–18

    Article  CAS  PubMed  Google Scholar 

  89. Cumurcu T, Mendil D, Etikan I (2006) Levels of zinc, iron, and copper in patients with pseudoexfoliative cataract. Eur J Ophthalmol 16:548–553

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

G.F. and B.B.: formal analysis, data curation, and writing of the original version.

E.P. and E.T.B.: conceptualization, sampling, and methodology.

M.M.: methodology and data curation.

N.R. and P.D.: sampling and data curation.

A.M.: review editing.

All authors have approved the manuscript and agreed with the order of authors.

Corresponding author

Correspondence to Elena Pacella.

Ethics declarations

Ethics Approval

The study was conducted according to the declaration of Helsinki. The study protocol was approved by the Institutional Ethical Committee of the University of Rome (protocol number 1005/2021, approval date November 10, 2021).

Consent to Participate

The written informed consent was obtained from all individual participants included in the study.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forte, G., Battagliola, E.T., Malvasi, M. et al. Trace Element Concentration in the Blood and Aqueous Humor of Subjects with Eye Cataract. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04207-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-024-04207-3

Keywords

Navigation