Skip to main content

Advertisement

Log in

The Protective Effects of Taurine, a Non-essential Amino Acid, Against Metals Toxicities: A Review Article

  • Review
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Taurine is a non-proteinogenic amino acid derived from cysteine. It is involved in several phenomena such as the regulation of growth and differentiation, osmoregulation, neurohormonal modulation, and lipid metabolism. Taurine is important because of its high levels in several tissues such as the central nervous system (CNS), heart, skeletal muscles, retinal membranes, and platelets. In this report, we present the functional properties of taurine indicating that it has potential effects on various metal toxicities. Therefore, a comprehensive literature review was performed using the Scopus, PubMed, and Web of Science databases. According to the search keywords, 61 articles were included in the study. The results indicate that taurine protects tissues against metal toxicity through enhancement of enzymatic and non-enzymatic antioxidant capacity, modulation of oxidative stress, anti-inflammatory and anti-apoptotic effects, involvement in different molecular pathways, and interference with the activity of various enzymes. Taken together, taurine is a natural supplement that presents antitoxic effects against many types of compounds, especially metals, suggesting public consumption of this amino acid as a prophylactic agent against the incidence of metal toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

Al:

Aluminum

ALAD:

δ-aminolevulinic acid dehydratase

ALT:

Alanine aminotransferase

ALD:

Alendronate

ALP:

Alkaline phosphatase

As:

Arsenic

AST:

Aspartate aminotransferase

ATF-6:

Activating transcription factor-6

AZA:

Azathioprine

BALF:

Bronchoalveolar lavage fluid

Bax:

bcl-2-like protein 4

Bcl-2:

B-cell lymphoma 2

BUN:

Blood urine nitrogen

CAT:

Catalase

Cd:

Cadmium

CHOP:

C/EBP homologous protein

CK:

creatine kinase

COX-2:

Cyclooxygenase-2

Cr:

Chromium

Cr:

Creatinine

CRP:

C-reactive protein

CYP:

Cytochrome P450

DBAN:

Dibromoacetonitrile

DP:

Depotentiation

ER:

Endoplasmic reticulum

EPSP:

Excitatory postsynaptic potential

ERK:

Extracellular regulated protein kinases

FBP:

Fructose 1,6-bisphosphatase

FSH:

Follicle stimulating

G6-PD:

Glucose 6-phosphate dehydrogenase

GABA:

gamma-Aminobutyric acid

GPx:

Glutathione peroxidase

GSH:

Glutathione

GSH-Px:

Glutathione peroxidase

GSSG:

Glutathione disulfide

GST:

Glutathione-S-transferase

H2O2:

Hydrogen peroxide

HBCD:

Hexabromocyclododecane

Hcy:

Homocysteine

HDL:

High-density lipoprotein

HO-1:

Heme oxygenase-1

ICAM-1:

Intercellular adhesion molecule-1

ICAM-1:

Intercellular cell adhesion molecule-1

IL-1β:

Interlukin-1β

IL-6:

Interleukin

INH:

Isoniazid

iNOS:

Inducible nitric oxide synthase

IRE1α:

Inositol-requiring enzyme 1 alpha

ISO:

Isoproterenol

JNKs:

c-Jun N-terminal kinases

KBrO3:

Potassium bromate

LDH:

Lactate dehydrogenase

LDL:

Low-density lipoprotein

LH:

Luteinizing

LHP:

Lipid hydroperoxides

LOX-1:

Lectin-type oxidized LDL receptor 1

LPO:

Lipid peroxidase

LPS:

Lipopolysaccharide

LTP:

Long-term potentiation

LVEF:

Left ventricular ejection fraction

MDH:

Malate dehydrogenase

MCH:

Mean cell hemoglobin

MCHC:

Mean cell hemoglobin concentration

MCP-1:

Monocyte chemoattractant protein-1

MDA:

Malondialdehyde

ME:

Malic enzyme

METH:

Methamphetamine

MPO:

Myeloperoxidase

mTOR:

Mammalian target of rapamycin

NAGase:

N-acetyl-b-D-glucosaminidase

NF-кβ:

Nuclear factor kappa‐β

NLRP3:

Pyrin domain-containing 3

NO:

Nitric oxide

NQO:

NADPH-quinone oxidoreductase

Nrf2:

Nuclear factor erythroid 2–related factor 2

PARP:

Poly (ADP-ribose) polymerase

PD:

Parkinson’s disease

PERK:

Protein kinase RNA-like ER kinase

PLT:

Platelet

ROS:

Reactive oxygen system

SOD:

Superoxide dismutase

TBARS:

Thiobarbituric acid reactive substances

TG:

Triglycerides

TNF-α:

Tumor necrosis factor-alpha

TOCP:

Triorthocresyl phosphate

VCAM-1:

Vascular cell adhesion molecule-1

WBC:

White blood cells

ZPP:

Zinc protoporphyrin

References

  1. Inam UL et al (2018) Ameliorative effects of taurine against diabetes: a review. Amino Acids 50(5):487–502

    Article  Google Scholar 

  2. Ripps H, Shen W (2012) Review: taurine: a “very essential” amino acid. Mol Vis 18:2673–86

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Han X et al (2006) The taurine transporter: mechanisms of regulation. Acta Physiol (Oxf) 187(1–2):61–73

    Article  CAS  PubMed  Google Scholar 

  4. Zulli A (2011) Taurine in cardiovascular disease. Curr Opin Clin Nutr Metab Care 14(1):57–60

    Article  CAS  PubMed  Google Scholar 

  5. Yamori Y et al (2010) Taurine in health and diseases: consistent evidence from experimental and epidemiological studies. J Biomed Sci 17(Suppl 1):S6

    Article  PubMed  PubMed Central  Google Scholar 

  6. L’Amoreaux WJ et al (2010) Taurine regulates insulin release from pancreatic beta cell lines. J Biomed Sci 17(Suppl 1):S11

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schmidt SY, Berson EL, Hayes KC (1976) Retinal degeneration in cats fed casein I. Taurine deficiency. Invest Ophthalmol 15(1):47–52

    CAS  PubMed  Google Scholar 

  8. Gupta RC (2006) Taurine analogues and taurine transport: therapeutic advantages. Adv Exp Med Biol 583:449–67

    Article  CAS  PubMed  Google Scholar 

  9. Kulthinee S et al (2017) Taurine supplementation ameliorates the adverse effects of perinatal taurine depletion and high sugar intake on cardiac ischemia/reperfusion injury of adult female rats. Adv Exp Med Biol 975(Pt 2):741–755

    Article  CAS  PubMed  Google Scholar 

  10. Miyazaki T, Matsuzaki Y (2014) Taurine and liver diseases: a focus on the heterogeneous protective properties of taurine. Amino Acids 46(1):101–10

    Article  CAS  PubMed  Google Scholar 

  11. Sirdah MM (2015) Protective and therapeutic effectiveness of taurine in diabetes mellitus: a rationale for antioxidant supplementation. Diabetes Metab Syndr 9(1):55–64

    Article  PubMed  Google Scholar 

  12. Lerdweeraphon W et al (2013) Perinatal taurine exposure affects adult oxidative stress. Am J Physiol Regul Integr Comp Physiol 305(2):R95-7

    Article  CAS  PubMed  Google Scholar 

  13. Ghosh J et al (2009) Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: role of NF-kappa B, p38 and JNK MAPK pathway. Toxicol Appl Pharmacol 240(1):73–87

    Article  CAS  PubMed  Google Scholar 

  14. Kim C, Cha Y-N (2014) Taurine chloramine produced from taurine under inflammation provides anti-inflammatory and cytoprotective effects. Amino Acids 46(1):89–100

    Article  CAS  PubMed  Google Scholar 

  15. Ommati MM et al (2022) Taurine mitigates the development of pulmonary inflammation, oxidative stress, and histopathological alterations in a rat model of bile duct ligation. Naunyn-Schmiedeberg’s Archives of Pharmacology 395(12):1557–1572

    Article  CAS  PubMed  Google Scholar 

  16. Khlifi R, Hamza-Chaffai A (2010) Head and neck cancer due to heavy metal exposure via tobacco smoking and professional exposure: a review. Toxicol Appl Pharmacol 248(2):71–88

    Article  CAS  PubMed  Google Scholar 

  17. Gilbert SG (2004) A small dose of toxicology: The health effects of common chemicals. 1st Edition edn. CRC Press. https://doi.org/10.1201/9780203461730

  18. Seiler H, Sigel A, Sigel H (1994) Handbook on metals in clinical and analytical chemistry. 1st Edition edn. CRC Press

  19. Egorova KS, Ananikov VP (2017) Toxicity of metal compounds: knowledge and myths. Organometallics 36(21):4071–4090

    Article  CAS  Google Scholar 

  20. El-Sayed WM, Al-Kahtani MA, Abdel-Moneim AM (2011) Prophylactic and therapeutic effects of taurine against aluminum-induced acute hepatotoxicity in mice. J Hazard Mater 192(2):880–886

    Article  CAS  PubMed  Google Scholar 

  21. Feng T et al (2016) Combination of DFP and taurine counteracts the aluminum-induced alterations in oxidative stress and ATPase in cortex and blood of rats. Biol Trace Elem Res 174(1):142–149

    Article  CAS  PubMed  Google Scholar 

  22. Qiao M et al (2015) Potential protection of taurine on antioxidant system and ATPase in brain and blood of rats exposed to aluminum. Biotechnol Lett 37(8):1579–84

    Article  CAS  PubMed  Google Scholar 

  23. Wenting L et al (2014) Therapeutic effect of taurine against aluminum-induced impairment on learning, memory and brain neurotransmitters in rats. Neurol Sci 35(10):1579–84

    Article  PubMed  Google Scholar 

  24. Abdulkadir TS et al (2021) Taurine and camel milk modulate neurobehavioral and biochemical changes in aluminum chloride-induced Alzheimer’s disease in rats. J Alzheimer’s Dis 84(1):291–302

    Article  CAS  Google Scholar 

  25. Al Kahtani MA, Abdel-Moneim AM, El-Sayed WM (2014) The influence of taurine pretreatment on aluminum chloride induced nephrotoxicity in Swiss albino mice

  26. Khalaf HA et al (2022) Endoplasmic reticulum stress and mitochondrial injury are critical molecular drivers of AlCl3-induced testicular and epididymal distortion and dysfunction: protective role of taurine. Histochem Cell Biol 158(1):97–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zheng Y et al (2017) Protection of taurine against arsenic-induced DNA damage of mice kidneys. Adv Exp Med Biol 975(Pt 2):917–927

    Article  CAS  PubMed  Google Scholar 

  28. Zhang C et al (2017) Taurine normalizes the levels of Se, Cu, Fe in mouse liver and kidney exposed to arsenic subchronically. In: Taurine 10. Springer

  29. Roy A, Manna P, Sil PC (2009) Prophylactic role of taurine on arsenic mediated oxidative renal dysfunction via MAPKs/NF-κ B and mitochondria dependent pathways. Free radic res 43(10):995–1007

  30. Guan H et al (2017) Protection of taurine against impairment in learning and memory in mice exposed to arsenic. Adv Exp Med Biol 975(Pt 1):255–269

    Article  CAS  PubMed  Google Scholar 

  31. Li S et al (2017) Taurine ameliorates arsenic-induced apoptosis in the hippocampus of mice through intrinsic pathway. Adv Exp Med Biol 975(Pt 1):183–192

    Article  CAS  PubMed  Google Scholar 

  32. Das J et al (2009) Arsenic-induced oxidative cerebral disorders: protection by taurine. Drug Chem Toxicol 32(2):93–102

    Article  CAS  PubMed  Google Scholar 

  33. Das J et al (2010) Protective role of taurine against arsenic-induced mitochondria-dependent hepatic apoptosis via the inhibition of PKCdelta-JNK pathway. PLoS One 5(9):e12602

    Article  PubMed  PubMed Central  Google Scholar 

  34. Flora SJ et al (2008) Combined administration of taurine and monoisoamyl DMSA protects arsenic induced oxidative injury in rats. Oxid Med Cell Longev 1(1):39–45

    Article  PubMed  PubMed Central  Google Scholar 

  35.  Li S et al (2017) Taurine protects mouse liver against arsenic-induced apoptosis through JNK pathway. Adv Exp Med Biol 975 Pt 2:855–862. https://doi.org/10.1007/978-94-024-1079-2_67

  36. Pei P et al (2019) Inorganic arsenic induces pyroptosis and pancreatic β cells dysfunction through stimulating the IRE1α/TNF-α pathway and protective effect of taurine. Food Chem Toxicol 125:392–402

    Article  CAS  PubMed  Google Scholar 

  37. Sinha M, Manna P, Sil PC (2007) Taurine, a conditionally essential amino acid, ameliorates arsenic-induced cytotoxicity in murine hepatocytes. Toxicol In Vitro 21(8):1419–28

    Article  CAS  PubMed  Google Scholar 

  38. Wang Z et al (2019) Taurine protected As2O3-induced the activation of hepatic stellate cells through inhibiting PPARα-autophagy pathway. Chem Biol Interact 300:123–130

    Article  CAS  PubMed  Google Scholar 

  39. Gao N et al (2019) Taurine improves low-level inorganic arsenic-induced insulin resistance by activating PPARγ-mTORC2 signalling and inhibiting hepatic autophagy. J Cell Physiol 234(4):5143–5152

    Article  CAS  PubMed  Google Scholar 

  40. Bai J et al (2016) Taurine protects against As2O3-induced autophagy in livers of rat offsprings through PPARγ pathway. Sci Rep 6(1):27733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bai J et al (2016) Taurine protects against As2O3-induced autophagy in pancreas of rat offsprings through Nrf2/Trx pathway. Biochim 123:1–6. https://doi.org/10.1016/j.biochi.2016.01.002

  42. Qiu T et al (2018) Taurine attenuates arsenic-induced pyroptosis and nonalcoholic steatohepatitis by inhibiting the autophagic-inflammasomal pathway. Cell Death Dis 9(10):946

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ghosh J et al (2009) Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: Role of NF-κB, p38 and JNK MAPK pathway. Toxicol Appl Pharmacol 240(1):73–87

    Article  CAS  PubMed  Google Scholar 

  44. Kumar P et al (2009) Ascorbic acid, garlic extract and taurine alleviate cadmium-induced oxidative stress in freshwater catfish (Clarias batrachus). Sci Total Environ 407(18):5024–30

    Article  CAS  PubMed  Google Scholar 

  45. Manna P, Sinha M, Sil PC (2009) Taurine plays a beneficial role against cadmium-induced oxidative renal dysfunction. Amino Acids 36:417–428

    Article  CAS  PubMed  Google Scholar 

  46. Hwang D-F, Wang L (2001) Effect of taurine on toxicity of cadmium in rats. Toxicol 167(3):173–180

    Article  CAS  Google Scholar 

  47. Zheng J et al (2023) Hepatoprotective effects of taurine against cadmium-induced liver injury in female mice. Biol Trace Elem Res 201(3):1368–1376

    Article  CAS  PubMed  Google Scholar 

  48. Hano T et al (2017) Effect of taurine supplementation on hepatic metabolism and alleviation of cadmium toxicity and bioaccumulation in a marine teleost, red sea bream Pagrus major. Fish Physiol Biochem 43(1):137–152

    Article  CAS  PubMed  Google Scholar 

  49. Manna P, Sinha M, Sil PC (2008) Amelioration of cadmium-induced cardiac impairment by taurine. Chem Biol Interact 174(2):88–97

    Article  CAS  PubMed  Google Scholar 

  50. Choi K-S et al (2013) Effects of taurine on cadmium exposure in muscle, gill, and bone tissues of Carassius auratus. Nutr Res Pract 7(1):22–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Abalaka SE et al (2021) Effects of Moringa oleifera leaves extract, vitamin C, and taurine co-exposures on calcium and metallothionein levels, oxidative stress, and gill histopathological changes in Clarias gariepinus exposed to sub-lethal cadmium. Environ Sci Pollut Res 28(37):52258–52271

    Article  CAS  Google Scholar 

  52. Chen N et al (2022) Cadmium induces placental glucocorticoid barrier damage by suppressing the cAMP/PKA/Sp1 pathway and the protective role of taurine. Toxicol Appl Pharmacol 440:115938

    Article  CAS  PubMed  Google Scholar 

  53. Manna P, Sinha M, Sil PC (2008) Cadmium induced testicular pathophysiology: prophylactic role of taurine. Reprod Toxicol 26(3–4):282–291

    Article  CAS  PubMed  Google Scholar 

  54. Sinha M, Manna P, Sil PC (2008) Cadmium-induced neurological disorders: prophylactic role of taurine. J Appl Toxicol 28(8):974–986

    Article  CAS  PubMed  Google Scholar 

  55. Hwang D-F, Wang L, Cheng H (1998) Effect of taurine on toxicity of copper in rats. Food Chem Toxicol 36(3):239–244

    Article  CAS  PubMed  Google Scholar 

  56. Husain N, Mahmood R (2020) Taurine attenuates Cr(VI)-induced cellular and DNA damage: an in vitro study using human erythrocytes and lymphocytes. Amino Acids 52(1):35–53

    Article  CAS  PubMed  Google Scholar 

  57. Boşgelmez II, Söylemezoğlu T, Güvendik G (2008) The protective and antidotal effects of taurine on hexavalent chromium-induced oxidative stress in mice liver tissue. Biol Trace Elem Res 125(1):46-58

  58. Boşgelmez İİ, Güvendik G (2019) Beneficial effects of N-acetyl-L-cysteine or taurine pre-or post-treatments in the heart, spleen, lung, and testis of hexavalent chromium-exposed mice. Biol Trace Elem Res 190(2):437–445

    Article  PubMed  Google Scholar 

  59. Boşgelmez II, Güvendik G (2004) Effects of taurine on oxidative stress parameters and chromium levels altered by acute hexavalent chromium exposure in mice kidney tissue. Biol Trace Elem Res 102:209–225

    Article  PubMed  Google Scholar 

  60. Lakshmi Devi S, Anuradha CV (2010) Mitochondrial damage, cytotoxicity and apoptosis in iron-potentiated alcoholic liver fibrosis: amelioration by taurine. Amino Acids 38(3):869-79

  61. Zhang Z et al (2014) Taurine supplementation reduces oxidative stress and protects the liver in an iron-overload murine model. Mol Med Rep 10(5):2255–62

  62. Oudit GY et al (2004) Taurine supplementation reduces oxidative stress and improves cardiovascular function in an iron-overload murine model. Circulation 109(15):1877–1885

    Article  CAS  PubMed  Google Scholar 

  63. Devi SL, Viswanathan P, Anuradha CV (2009) Taurine enhances the metabolism and detoxification of ethanol and prevents hepatic fibrosis in rats treated with iron and alcohol. Environ Toxicol Pharmacol 27(1):120–126

    Article  CAS  PubMed  Google Scholar 

  64. Feng X et al (2022) Taurine ameliorates iron overload-induced hepatocyte injury via the Bcl-2/VDAC1-mediated mitochondrial apoptosis pathway. Oxid Med Cell Longev 2022

  65. Dawson R et al (2000) Taurine inhibition of metal-stimulated catecholamine oxidation. Neurotox Res 2:1–15

    Article  CAS  PubMed  Google Scholar 

  66. Gürer H et al (2001) Antioxidant effect of taurine against lead-induced oxidative stress. Arch Environ Contam Toxicol 41(4):397–402

    Article  PubMed  Google Scholar 

  67. Flora SJ et al (2004) Combined administration of taurine and meso 2,3-dimercaptosuccinic acid in the treatment of chronic lead intoxication in rats. Hum Exp Toxicol 23(4):157–66

    Article  CAS  PubMed  Google Scholar 

  68. Zhu DM et al (2005) Protection by a taurine supplemented diet from lead-induced deficits of long-term potentiation/depotentiation in dentate gyrus of rats in vivo. Neuroscience 134(1):215–24

    Article  CAS  PubMed  Google Scholar 

  69. Neuwirth LS et al (2022) Taurine-derived compounds produce anxiolytic effects in rats following developmental lead exposure. Taurine 12: a conditionally essential amino acid. Springer, pp 445–460

    Chapter  Google Scholar 

  70. Akande M et al (2014) Taurine mitigates cognitive impairment induced by chronic co-exposure of male Wistar rats to chlorpyrifos and lead acetate. Environ Toxicol Pharmacol 37(1):315–325

    Article  CAS  PubMed  Google Scholar 

  71. Aglan HS et al (2021) Developmental toxicity of lead in rats after gestational exposure and the protective role of taurine. 35(8):e22816

  72. Ommati MM et al (2023) Taurine improves sperm mitochondrial indices, blunts oxidative stress parameters, and enhances steroidogenesis and kinematics of sperm in lead-exposed mice. Reprod Sci 30(6):1891–1910

    Article  CAS  PubMed  Google Scholar 

  73. Lu C-L et al (2014) Taurine improves the spatial learning and memory ability impaired by sub-chronic manganese exposure. J Biomed Sci 21(1):1–8

    Article  Google Scholar 

  74. Xu Z et al (2010) Effects of MK-801, taurine and dextromethorphan on neurotoxicity caused by manganese in rats. Toxicol Ind Health 26(1):55–60

    Article  CAS  PubMed  Google Scholar 

  75. Ahmadi N et al (2018) Taurine prevents mitochondrial membrane permeabilization and swelling upon interaction with manganese: implication in the treatment of cirrhosis-associated central nervous system complications. J Biochem Mol Toxicol 32(11):e22216

    Article  PubMed  Google Scholar 

  76. Ommati MM et al (2019) Taurine treatment provides neuroprotection in a mouse model of manganism. Biol Trace Elem Res 190(2):384–395

    Article  CAS  PubMed  Google Scholar 

  77. Agha FE et al (2014) Nephroprotective potential of selenium and taurine against mercuric chloride induced nephropathy in rats. Ren Fail 36(5):704–16

    Article  CAS  PubMed  Google Scholar 

  78. Jagadeesan G, Pillai SS (2007) Hepatoprotective effects of taurine against mercury induced toxicity in rat. J Environ Biol 28(4):753

    CAS  PubMed  Google Scholar 

  79. Xu S et al (2015) The neuroprotective effects of taurine against nickel by reducing oxidative stress and maintaining mitochondrial function in cortical neurons. Neurosci Lett 590:52–7

    Article  CAS  PubMed  Google Scholar 

  80. Yeh YH et al (2011) Dietary taurine reduces zinc-induced toxicity in male Wistar rats. J Food Sci 76(4):T90–T98

    Article  CAS  PubMed  Google Scholar 

  81. Abdoli N et al (2021) Taurine mitigates bile duct obstruction-associated cholemic nephropathy: effect on oxidative stress and mitochondrial parameters. Clin Exp Hepatol 7(1):30–40

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mousavi K et al (2020) Taurine mitigates cirrhosis-associated heart injury through mitochondrial-dependent and antioxidative mechanisms. Clin Exp Hepatol 6(3):207–219

    Article  PubMed  PubMed Central  Google Scholar 

  83. Niknahad H et al (2023) Cirrhosis-induced oxidative stress in erythrocytes: the therapeutic potential of taurine. Clin Exp Hepatol 9(1):79–93

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ommati MM et al (2023) Taurine improves sperm mitochondrial indices, blunts oxidative stress parameters, and enhances steroidogenesis and kinematics of sperm in lead-exposed mice. Reprod Sci 30(6):1891–1910

    Article  CAS  PubMed  Google Scholar 

  85. Ommati MM et al (2019) Taurine enhances skeletal muscle mitochondrial function in a rat model of resistance training. PharmaNutrition 9:100161

    Article  Google Scholar 

  86. Klotz K et al (2017) The health effects of aluminum exposure. Dtsch Arztebl Int 114(39):653–659

    PubMed  PubMed Central  Google Scholar 

  87. Barabasz W et al (2002) Ecotoxicology of aluminium. Pol J Environ Stud 11(3):199–204

    CAS  Google Scholar 

  88. Olaniran AO, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14(5):10197–10228

    Article  PubMed  PubMed Central  Google Scholar 

  89. Vardar F, Ünal M (2007) Aluminum toxicity and resistance in higher plants

  90. Shayan M et al (2023) The protective effect of natural or chemical compounds against arsenic-induced neurotoxicity: Cellular and molecular mechanisms. Food Chem Toxicol 175:113691. https://doi.org/10.1016/j.fct.2023.113691

  91. Costa M (2019) Review of arsenic toxicity, speciation and polyadenylation of canonical histones. Toxicol Appl Pharmacol 375:1–4

    Article  CAS  PubMed  Google Scholar 

  92. Susan A et al (2019) An overview of plant-based interventions to ameliorate arsenic toxicity. Biomed Pharmacother 109:838–852

    Article  CAS  PubMed  Google Scholar 

  93. Yarmohammadi F et al (2023) Melatonin ameliorates arsenic-induced cardiotoxicity through the regulation of the Sirt1/Nrf2 pathway in rats. Biofactors 49(3):620–635

    Article  CAS  PubMed  Google Scholar 

  94. Yang L et al (2019) Taurine protects against arsenic trioxide-induced insulin resistance via ROS-Autophagy pathway in skeletal muscle. Int J Biochem Cell Biol 112:50–60

    Article  CAS  PubMed  Google Scholar 

  95. Yang H, Shu Y (2015) Cadmium transporters in the kidney and cadmium-induced nephrotoxicity. Int J Mol Sci 16(1):1484–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rani A et al (2014) Cellular mechanisms of cadmium-induced toxicity: a review. International journal of environmental health research 24(4):378–399

    Article  CAS  PubMed  Google Scholar 

  97. Patrick L (2003) Toxic metals and antioxidants: Part II. The role of antioxidants in arsenic and cadmium toxicity. Altern Med Rev 8(2)

  98. Ahmadian R et al (2023) Alpha-mangostin protects PC12 cells against neurotoxicity induced by cadmium and arsenic. Biol Trace Elem Res 201(8):4008–4021

    Article  CAS  PubMed  Google Scholar 

  99. Joseph P (2009) Mechanisms of cadmium carcinogenesis. Toxicol Appl Pharmacol 238(3):272–279

    Article  CAS  PubMed  Google Scholar 

  100. Rahimzadeh MR et al (2017) Cadmium toxicity and treatment: an update. Caspian J Intern Med 8(3):135–145. https://doi.org/10.22088/cjim.8.3.135

  101. Balarastaghi S et al (2022) Melatonin improves arsenic-induced hypertension through the inactivation of the Sirt1/autophagy pathway in rat. Biomed Pharmacother 151:113135

    Article  CAS  PubMed  Google Scholar 

  102. Keshavarzi M et al (2019) Hormesis effects of nano-and micro-sized copper oxide. Iran J Pharm Res: IJPR 18(4):2042

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gaetke LM, Chow-Johnson HS, Chow CK (2014) Copper: toxicological relevance and mechanisms. Arch Toxicol 88:1929–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hasan NM, Lutsenko S (2012) Regulation of copper transporters in human cells. Curr Top Membr 69:137–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tian X et al (2009) Copper–taurine (CT): a potential organic compound to facilitate infected wound healing. Med Hypotheses 73(6):1048–1050

    Article  CAS  PubMed  Google Scholar 

  106. Costello RB, Dwyer JT, Bailey RL (2016) Chromium supplements for glycemic control in type 2 diabetes: limited evidence of effectiveness. Nutr Rev 74(7):455–68

    Article  PubMed  PubMed Central  Google Scholar 

  107. Dayan A, Paine A (2001) Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000. Hum Exp Toxicol 20(9):439–451

    Article  CAS  PubMed  Google Scholar 

  108. DesMarias TL, Costa M (2019) Mechanisms of chromium-induced toxicity. Curr Opin Toxicol 14:1–7

    Article  Google Scholar 

  109. Hershko C (2007) Mechanism of iron toxicity. Food Nutr Bull 28(4_suppl4): S500-S509

  110. Rouault TA (2016) Mitochondrial iron overload: causes and consequences. Curr Opin Genet Dev 38:31–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pasantes-Morales H, Wright C, Gaull G (1985) Taurine protection of lymphoblastoid cells from iron-ascorbate induced damage. Biochem Pharmacol 34(12):2205–2207

    Article  CAS  PubMed  Google Scholar 

  112. Mitra P et al (2017) Clinical and molecular aspects of lead toxicity: an update. Crit Rev Clin Lab Sci 54(7–8):506–528

    Article  CAS  PubMed  Google Scholar 

  113. Nemsadze K et al (2009) Mechanisms of lead-induced poisoning. Georgian Med News 172–173:92–96

    Google Scholar 

  114. Dzugkoev S, Dzugkoeva F, Margieva O (2022) Mechanisms of lead toxicity and their pathogenetic correction. J Evol Biochem Phys 58(3):807–814

    Article  CAS  Google Scholar 

  115. Neuwirth LS et al (2019) Early neurodevelopmental exposure to low lead levels induces fronto-executive dysfunctions that are recovered by taurine co-treatment in the rat attention set-shift test: implications for taurine as a psychopharmacotherapy against neurotoxicants. Taurine 11. Springer, pp 821–846

    Chapter  Google Scholar 

  116. Cruz GB et al (2022) Developmental lead exposure in rats causes sex-dependent changes in neurobiological and anxiety-like behaviors that are improved by taurine co-treatment. Taurine 12: a conditionally essential amino acid. Springer, pp 461–479

  117. Caudle WM (2015) Occupational exposures and parkinsonism. Handb Clin Neurol 131:225–239

    Article  PubMed  Google Scholar 

  118. Cappelletti S et al (2019) Mercuric chloride poisoning: symptoms, analysis, therapies, and autoptic findings. A review of the literature. Crit Rev Toxicol 49(4):329-341

  119. Yang L et al (2020) Toxicity of mercury: molecular evidence. Chemosphere 245:125586

    Article  CAS  PubMed  Google Scholar 

  120. Das KK et al (2018) Primary concept of nickel toxicity - an overview. J Basic Clin Physiol Pharmacol 30(2):141–152

    Article  PubMed  Google Scholar 

  121. Macomber L, Hausinger RP (2011) Mechanisms of nickel toxicity in microorganisms. Metallomics 3(11):1153–1162

    Article  CAS  PubMed  Google Scholar 

  122. Agnew UM, Slesinger TL (2020) Zinc toxicity

Download references

Author information

Authors and Affiliations

Authors

Contributions

HH contributed to the study conception, design, and supervision of the research. Data collection and analysis were performed by KN and MK. A critical revision of the paper was conducted by BMR. The first draft of the manuscript was written by KN and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hossein Hosseinzadeh.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by the author.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naraki, K., Keshavarzi, M., Razavi, B.M. et al. The Protective Effects of Taurine, a Non-essential Amino Acid, Against Metals Toxicities: A Review Article. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04191-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-024-04191-8

Keywords

Navigation