Skip to main content

Advertisement

Log in

Melatonin Attenuates Arsenic-Induced Neurotoxicity in Rats Through the Regulation of miR-34a/miR-144 in Sirt1/Nrf2 Pathway

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

A Correction to this article was published on 03 January 2024

This article has been updated

Abstract

Arsenic (As) exposure is known to cause several neurological disorders through various molecular mechanisms such as oxidative stress, apoptosis, and autophagy. In the current study, we assessed the effect of melatonin (Mel) on As-induced neurotoxicity. Thirty male Wistar rat were treated daily for 28 consecutive days. As (15 mg/kg, gavage) and Mel (10 and 20 mg/kg, i.p.) were administered to rats. Morris water maze test was done to evaluate learning and memory impairment in training days and probe trial. Oxidative stress markers including MDA and GSH levels, SOD activity, and HO-1 levels were measured. Besides, the levels of apoptosis (caspase 3, Bax/Bcl2 ratio) and autophagy markers (Sirt1, Beclin-1, and LC3 II/I ratio) as well as the expression of miR-144 and miR-34a in cortex tissue were determined. As exposure disturbed learning and memory in animals and Mel alleviated these effects. Also, Mel recovered cortex pathological damages and oxidative stress induced by As. Furthermore, As increased the levels of apoptosis and autophagy proteins in cortex, while Mel (20 mg/kg) decreased apoptosis and autophagy. Also, Mel increased the expression of miR-144 and miR-34a which inhibited by As. In conclusion, Mel administration attenuated As-induced neurotoxicity through anti-oxidative, anti-apoptotic, and anti-autophagy mechanisms, which may be recommended as a therapeutic target for neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

Abbreviations

AChE:

Acetyl choline esterase

Bax:

Bcl-2-associated X protein

BBB:

Blood brain barrier

Bcl-2:

B-cell lymphoma 2

BSA:

Bovine serum albumin

cDNA:

Complementary DNA

CT:

Cycle threshold

DTNB 5:

5′-dithiobis 2-nitrobenzoic acid

EDTA:

Ethylene diamine tetraacetic acid

EGTA:

Ethylene glycol tetraacetic acid

GSH:

Glutathione

H&E:

Hematoxylin and eosin

HO-1:

Heme oxygenase-1

LC3:

Microtubule-associated protein 1 light chain 3

LPS:

Lipopolysaccharide

MDA:

Malondialdehyde

Mel:

Melatonin

ml:

Milliliter

miR:

MicroRNA

mTOR:

Mechanistic target of rapamycin

MWM:

Morris water maze

Nrf2:

Nuclear factor-carotenoid 2 related factor 2

PBS:

Phosphate buffer saline

PIC:

Phosphatase inhibitor cocktail

PMSF:

Phenylmethylsulfonyl fluoride

PVDF:

Polyvinylidene fluoride

ROS:

Reactive oxygen species

SD:

Standard deviation

SDS:

Sodium dodecyl sulfate

Sirt1:

Sirtuin

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

TBST:

Tris buffered saline tween

TMED:

Tetramethylethylenediamine

References

  1. Najafi N, Rezaee R, Hayes AW, Karimi G (2022) A review of mechanisms underlying the protective effects of natural compounds against arsenic-induced neurotoxicity. BioMetals 36(4):799–813. https://doi.org/10.1007/s10534-022-00482-6

  2. Jomova K, Jenisova Z, Feszterova M et al (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107. https://doi.org/10.1002/jat.1649

    Article  CAS  PubMed  Google Scholar 

  3. Garza-Lombó C, Pappa A, Panayiotidis MI et al (2019) Arsenic-induced neurotoxicity: a mechanistic appraisal. J Biol Inorg Chem 24:1305–1316. https://doi.org/10.1007/s00775-019-01740-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ran S, Liu J, Li S (2020) A systematic review of the various effect of arsenic on glutathione synthesis in vitro and in vivo. Biomed Res Int 2020:9414196. https://doi.org/10.1155/2020/9414196

  5. Hu Y, Li J, Lou B et al (2020) The role of reactive oxygen species in arsenic toxicity. Biomolecules 10. https://doi.org/10.3390/biom10020240

  6. Kirilovsky ER, Anguiano OL, Bongiovanni GA, Ferrari A (2022) Effects of acute arsenic exposure in two different populations of Hyalella curvispina amphipods from North Patagonia Argentina. J Toxicol Environ Health 85:71–88

    Article  CAS  Google Scholar 

  7. Thakur M, Rachamalla M, Niyogi S et al (2021) Molecular mechanism of arsenic-induced neurotoxicity including neuronal dysfunctions. Int J Mol Sci:22. https://doi.org/10.3390/ijms221810077

  8. Arora MK, Singh D, Tomar R, Jangra A (2022) Neuroprotective efficacy of edaravone against arsenic-induced behavioral and neurochemical deficits in rats: amelioration of cholinergic and mitochondrial functions. CNS Neurol Disord Drug Targets. https://doi.org/10.2174/1871527321666220225112241

  9. Li B, Xia M, Zorec R et al (2021) Astrocytes in heavy metal neurotoxicity and neurodegeneration. Brain Res 1752:147234. https://doi.org/10.1016/j.brainres.2020.147234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. O’Callaghan JP, Sriram K (2005) Glial fibrillary acidic protein and related glial proteins as biomarkers of neurotoxicity. Expert Opin Drug Saf 4:433–442

    Article  PubMed  Google Scholar 

  11. Singh Sankhla M (2018) Arsenic-induced neurotoxic & carcinogenic effects on humans. Open Acc J of Toxicol 3:4–7. https://doi.org/10.19080/oajt.2018.03.555617

    Article  Google Scholar 

  12. Bali İ, Bilir B, Emir S, Turan F, Yılmaz A, Gökkuş T, Aydın M (2016) The effects of melatonin on liver functions in arsenic-induced liver damage. Turkish Journal of Surgery/Ulus Cerrahi Derg 32(4):233. https://doi.org/10.5152/UCD.2015.3224

  13. Kadeyala PK, Sannadi S, Gottipolu RR (2013) Alterations in apoptotic caspases and antioxidant enzymes in arsenic exposed rat brain regions: reversal effect of essential metals and a chelating agent. Environ Toxicol Pharmacol 36:1150–1166. https://doi.org/10.1016/j.etap.2013.09.021

    Article  CAS  PubMed  Google Scholar 

  14. Mozaffarian F, Dehghani MA, Vanani AR, Mahdavinia M (2021) Protective effects of alpha lipoic acid against arsenic induced oxidative stress in isolated rat liver mitochondria. Biol Trace Elem Res. https://doi.org/10.1007/s12011-021-02712-3

  15. Zhang Y, Wei Z, Liu W et al (2017) Melatonin protects against arsenic trioxide-induced liver injury by the upregulation of Nrf2 expression through the activation of PI3K/AKT pathway. Oncotarget 8:3773

    Article  PubMed  Google Scholar 

  16. Wu S, Rao G, Wang R et al (2021) The neuroprotective effect of curcumin against ATO triggered neurotoxicity through Nrf2 and NF-κB signaling pathway in the brain of ducks. Ecotoxicol Environ Saf 228:112965. https://doi.org/10.1016/j.ecoenv.2021.112965

    Article  CAS  PubMed  Google Scholar 

  17. Abdollahzade N, Babri S, Majidinia M (2021) Attenuation of chronic arsenic neurotoxicity via melatonin in male offspring of maternal rats exposed to arsenic during conception: involvement of oxidative DNA damage and inflammatory signaling cascades. Life Sci 266:118876. https://doi.org/10.1016/j.lfs.2020.118876

    Article  CAS  PubMed  Google Scholar 

  18. Najafi N, Ghasemzadeh Rahbardar M, Hosseinzadeh H et al (2022) Chemical agents protective against rotenone-induced neurotoxicity. Toxicol Environ Chem 104:149–175

    Article  CAS  Google Scholar 

  19. Pastorek M, Gronesova P, Cholujova D et al (2014) Realgar (As4S4) nanoparticles and arsenic trioxide (As2O3) induced autophagy and apoptosis in human melanoma cells in vitro. Neoplasma 61:700–709. https://doi.org/10.4149/neo_2014_085

    Article  CAS  PubMed  Google Scholar 

  20. Herbert KJ, Holloway A, Cook AL et al (2014) Arsenic exposure disrupts epigenetic regulation of SIRT1 in human keratinocytes. Toxicol Appl Pharmacol 281:136–145. https://doi.org/10.1016/j.taap.2014.09.012

    Article  CAS  PubMed  Google Scholar 

  21. Shen X, Zhi F, Shi C et al (2023) The involvement and therapeutic potential of lncRNA Kcnq1ot1/miR-34a-5p/Sirt1 pathway in arsenic trioxide-induced cardiotoxicity. J Transl Med 21:1–15

    Google Scholar 

  22. Yarmohammadi F, Barangi S, Aghaee-Bakhtiari SH, Hosseinzadeh H, Moosavi Z, Reiter RJ, Hayes AW, Mehri S, Karimi G (2023) Melatonin ameliorates arsenic-induced cardiotoxicity through the regulation of the Sirt1/Nrf2 pathway in rats. BioFactors 49(3):620–635. https://doi.org/10.1002/biof.1934

  23. Hao R, Ge J, Song X et al (2022) Cadmium induces ferroptosis and apoptosis by modulating miR-34a-5p/Sirt1axis in PC12 cells. Environ Toxicol 37:41–51

    Article  CAS  PubMed  Google Scholar 

  24. Chen P, Chen F, Lei J et al (2019) Activation of the miR-34a-mediated SIRT1/mTOR signaling pathway by urolithin A attenuates D-galactose-induced brain aging in mice. Neurotherapeutics 16:1269–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Azzimato V, Chen P, Barreby E et al (2021) Hepatic miR-144 drives fumarase activity preventing NRF2 activation during obesity. Gastroenterology 161:1982–1997

    Article  CAS  PubMed  Google Scholar 

  26. Zhang S, Liu X, Wang J et al (2022) Targeting ferroptosis with miR-144-3p to attenuate pancreatic β cells dysfunction via regulating USP22/SIRT1 in type 2 diabetes. Diabetol Metab Syndr 14:1–14

    Article  Google Scholar 

  27. Chen N, Chu S, Zhou X et al (2019) Ginsenoside Rg1 protects against ischemic/reperfusion-induced neurotoxicity through miR-144/Nrf2/ARE pathway. FASEB J 33:500–514

    Google Scholar 

  28. Karami A, Darreh-Shori T, Schultzberg M, Eriksdotter M (2021) CSF and plasma cholinergic markers in patients with cognitive impairment. Front Aging Neurosci 13:704583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yadav RS, Chandravanshi LP, Shukla RK et al (2011) Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats. Neurotoxicology 32:760–768. https://doi.org/10.1016/j.neuro.2011.07.004

    Article  CAS  PubMed  Google Scholar 

  30. Korkmaz A, Reiter RJ, Topal T et al (2009) Melatonin: an established antioxidant worthy of use in clinical trials. Mol Med 15:43–50

    Article  CAS  PubMed  Google Scholar 

  31. Jiang Y, Shi H, Liu Y, Zhao S, Zhao H (2021) Applications of melatonin in female reproduction in the context of oxidative stress. Oxid med cell longev 2021:6668365. https://doi.org/10.1155/2021/6668365

  32. Erdoğan MM, Erdemli ME, Özhan O et al (2023) Effect of melatonin on increasing the effectiveness of liver preservation solution. Turk J Gastroenterol 34:943–951

    PubMed  PubMed Central  Google Scholar 

  33. Brzozowski T, Konturek PC, Zwirska-Korczala K et al (2005) Importance of the pineal gland, endogenous prostaglandins and sensory nerves in the gastroprotective actions of central and peripheral melatonin against stress-induced damage. J Pineal Res 39:375–385

    Article  CAS  PubMed  Google Scholar 

  34. Roy J, Wong KY, Aquili L et al (2022) Role of melatonin in Alzheimer’s disease: from preclinical studies to novel melatonin-based therapies. Front Neuroendocrinol 65:100986

    Article  CAS  PubMed  Google Scholar 

  35. Deng Y, Jiao C, Mi C et al (2015) Melatonin inhibits manganese-induced motor dysfunction and neuronal loss in mice: involvement of oxidative stress and dopaminergic neurodegeneration. Mol Neurobiol 51:68–88. https://doi.org/10.1007/s12035-014-8789-3

    Article  CAS  PubMed  Google Scholar 

  36. Shen X, Tang C, Wei C et al (2022) Melatonin induces autophagy in amyotrophic lateral sclerosis mice via upregulation of SIRT1. Mol Neurobiol 59:4747–4760

    Article  CAS  PubMed  Google Scholar 

  37. Escribano BM, Colin-Gonzalez AL, Santamaría A, Túnez I (2014) The role of melatonin in multiple sclerosis, Huntington’s disease and cerebral ischemia. CNS Neurol Disord Drug Targets 13(6):1096–1119. https://doi.org/10.2174/1871527313666140806160400

  38. Abdollahzade N, Mihanfar A, Majidinia M (2022) Molecular mechanisms underlying ameliorative impact of melatonin against age-dependent chronic arsenic toxicity in rats’ brains. J Exp Zool A Ecol Integr Physiol 337:1010–1024

    Article  CAS  PubMed  Google Scholar 

  39. Durappanavar PN, Nadoor P, Waghe P et al (2019) Melatonin ameliorates neuropharmacological and neurobiochemical alterations induced by subchronic exposure to arsenic in wistar rats. Biol Trace Elem Res 190:124–139. https://doi.org/10.1007/s12011-018-1537-1

    Article  CAS  PubMed  Google Scholar 

  40. Tolins M, Ruchirawat M, Landrigan P (2014) The developmental neurotoxicity of arsenic: cognitive and behavioral consequences of early life exposure. Ann Glob Health 80:303–314. https://doi.org/10.1016/j.aogh.2014.09.005

    Article  PubMed  Google Scholar 

  41. Dutta S, Saha S, Mahalanobish S et al (2018) Melatonin attenuates arsenic induced nephropathy via the regulation of oxidative stress and inflammatory signaling cascades in mice. Food Chem Toxicol 118:303–316

    Article  CAS  PubMed  Google Scholar 

  42. Ali T, Rehman SU, Shah FA, Kim MO (2018) Acute dose of melatonin via Nrf2 dependently prevents acute ethanol-induced neurotoxicity in the developing rodent brain. J Neuroinflammation 15:1–19

    Article  Google Scholar 

  43. Sadek KM, Lebda MA, Abouzed TK (2019) The possible neuroprotective effects of melatonin in aluminum chloride-induced neurotoxicity via antioxidant pathway and Nrf2 signaling apart from metal chelation. Environ Sci Pollut Res 26:9174–9183

    Article  CAS  Google Scholar 

  44. Shah SA, Khan M, Jo M et al (2017) Melatonin stimulates the SIRT 1/Nrf2 signaling pathway counteracting lipopolysaccharide (LPS)-induced oxidative stress to rescue postnatal rat brain. CNS Neurosci Ther 23:33–44

    Article  CAS  PubMed  Google Scholar 

  45. Solmaz I, Gürkanlar D, Gökçil Z et al (2009) Antiepileptic activity of melatonin in guinea pigs with pentylenetetrazol-induced seizures. Neurol Res 31:989–995

    Article  CAS  PubMed  Google Scholar 

  46. Kundurovic Z, Sofic E (2006) The effects of exogenous melatonin on the morphology of thyrocytes in pinealectomized and irradiated rats. J Neural Transm 113:49–58

    Article  CAS  PubMed  Google Scholar 

  47. Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78

    Article  CAS  PubMed  Google Scholar 

  48. Graham DI (1977) Pathology of hypoxic brain damage in man. J Clin Pathol Suppl (R Coll Pathol) 11:170

    Article  CAS  PubMed  Google Scholar 

  49. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858

    Article  PubMed  PubMed Central  Google Scholar 

  50. Uchiyama M, Mihara M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278

    Article  CAS  PubMed  Google Scholar 

  51. Mehri S, Meshki MA, Hosseinzadeh H (2015) Linalool as a neuroprotective agent against acrylamide-induced neurotoxicity in Wistar rats. Drug Chem Toxicol 38:162–166

    Article  CAS  PubMed  Google Scholar 

  52. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  53. Xu S, He M, Zhong M et al (2015) The neuroprotective effects of taurine against nickel by reducing oxidative stress and maintaining mitochondrial function in cortical neurons. Neurosci Lett 590:52–57

    Article  CAS  PubMed  Google Scholar 

  54. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  55. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

  56. Rao X, Huang X, Zhou Z, Lin X (2013) An improvement of the 2ˆ (–delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath 3:71

    PubMed  PubMed Central  Google Scholar 

  57. Goudarzi M, Amiri S, Nesari A et al (2018) The possible neuroprotective effect of ellagic acid on sodium arsenate-induced neurotoxicity in rats. Life Sci 198:38–45. https://doi.org/10.1016/j.lfs.2018.02.022

    Article  CAS  PubMed  Google Scholar 

  58. Taheri Zadeh Z, Esmaeilpour K, Aminzadeh A et al (2021) Resveratrol attenuates learning, memory, and social interaction impairments in rats exposed to arsenic. Biomed Res Int 2021

  59. Rudnitskaya EA, Muraleva NA, Maksimova KY et al (2015) Melatonin attenuates memory impairment, amyloid-β accumulation, and neurodegeneration in a rat model of sporadic Alzheimer’s disease. J Alzheimers Dis 47:103–116

    Article  CAS  PubMed  Google Scholar 

  60. Tyler CR, Allan AM (2014) The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Curr Environ Health Rep 1:132–147

    Article  PubMed  PubMed Central  Google Scholar 

  61. Du X, Tian M, Wang X et al (2018) Cortex and hippocampus DNA epigenetic response to a long-term arsenic exposure via drinking water. Environ Pollut 234:590–600

    Article  CAS  PubMed  Google Scholar 

  62. Ince S, Kucukkurt I, Turkmen R et al (2013) Dietary Yucca schidigera supplementation reduces arsenic-induced oxidative stress in Swiss albino mice. Toxicol Ind Health 29:904–914

    Article  PubMed  Google Scholar 

  63. Matsubara E, Bryant-Thomas T, Pacheco Quinto J et al (2003) Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J Neurochem 85:1101–1108

    Article  CAS  PubMed  Google Scholar 

  64. Rahman MA, Hannan MA, Uddin MJ et al (2021) Exposure to environmental arsenic and emerging risk of Alzheimer’s disease: perspective mechanisms, management strategy, and future directions. Toxics 9:188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Omeiza NA, Abdulrahim HA, Alagbonsi AI et al (2021) Melatonin salvages lead-induced neuro-cognitive shutdown, anxiety, and depressive-like symptoms via oxido-inflammatory and cholinergic mechanisms. Brain Behav 11:e2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gonçalves JF, Fiorenza AM, Spanevello RM et al (2010) N-acetylcysteine prevents memory deficits, the decrease in acetylcholinesterase activity and oxidative stress in rats exposed to cadmium. Chem Biol Interact 186:53–60

    Article  PubMed  Google Scholar 

  67. Gu F, Chauhan V, Chauhan A (2015) Glutathione redox imbalance in brain disorders. Curr Opin Clin Nutr Metab Care 18:89–95. https://doi.org/10.1097/MCO.0000000000000134

    Article  CAS  PubMed  Google Scholar 

  68. Valdovinos-Flores C, Gonsebatt ME (2013) Nerve growth factor exhibits an antioxidant and an autocrine activity in mouse liver that is modulated by buthionine sulfoximine, arsenic, and acetaminophen. Free Radic Res 47:404–412. https://doi.org/10.3109/10715762.2013.783210

    Article  CAS  PubMed  Google Scholar 

  69. Zhou C, Zhao L, Zheng J et al (2017) MicroRNA-144 modulates oxidative stress tolerance in SH-SY5Y cells by regulating nuclear factor erythroid 2-related factor 2-glutathione axis. Neurosci Lett 655:21–27

    Article  CAS  PubMed  Google Scholar 

  70. Suh JH, Shenvi SV, Dixon BM et al (2004) Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci 101:3381–3386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Paladino S, Conte A, Caggiano R et al (2018) Nrf2 pathway in age-related neurological disorders: insights into MicroRNAs. Cell Physiol Biochem 47:1951–1976

    Article  CAS  PubMed  Google Scholar 

  72. Herskovits AZ, Guarente L (2014) SIRT1 in neurodevelopment and brain senescence. Neuron 81:471–483. https://doi.org/10.1016/j.neuron.2014.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Davies DA, Adlimoghaddam A, Albensi BC (2021) Role of Nrf2 in synaptic plasticity and memory in Alzheimer’s disease. Cells 10. https://doi.org/10.3390/cells10081884

  74. Yang D, Tan X, Lv Z et al (2016) Regulation of Sirt1/Nrf2/TNF-α signaling pathway by luteolin is critical to attenuate acute mercuric chloride exposure induced hepatotoxicity. Sci Rep 6:37157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang Y, Duan X, Li J et al (2016) Inorganic arsenic induces NRF2-regulated antioxidant defenses in both cerebral cortex and hippocampus in vivo. Neurochem Res 41:2119–2128

    Article  CAS  PubMed  Google Scholar 

  76. He Z, Zhang Y, Zhang H et al (2021) NAC antagonizes arsenic-induced neurotoxicity through TMEM179 by inhibiting oxidative stress in Oli-neu cells. Ecotoxicol Environ Saf 223:112554

    Article  CAS  PubMed  Google Scholar 

  77. Firdaus F, Zafeer MF, Anis E et al (2018) Ellagic acid attenuates arsenic induced neuro-inflammation and mitochondrial dysfunction associated apoptosis. Toxicol Rep 5:411–417. https://doi.org/10.1016/j.toxrep.2018.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chaudhary S, Sahu U, Parvez S (2021) Melatonin attenuates branch chain fatty acid induced apoptosis mediated neurodegeneration. Environ Toxicol 36:491–505

    Article  CAS  PubMed  Google Scholar 

  79. Balarastaghi S, Barangi S, Hosseinzadeh H et al (2022) Melatonin improves arsenic-induced hypertension through the inactivation of the Sirt1/autophagy pathway in rat. Biomed Pharmacother 151:113135

    Article  CAS  PubMed  Google Scholar 

  80. Selvendiran K, Koga H, Ueno T et al (2006) Luteolin promotes degradation in signal transducer and activator of transcription 3 in human hepatoma cells: an implication for the antitumor potential of flavonoids. Cancer Res 66:4826–4834

    Article  CAS  PubMed  Google Scholar 

  81. Lau A, Whitman SA, Jaramillo MC, Zhang DD (2013) Arsenic-mediated activation of the Nrf2-Keap1 antioxidant pathway. J Biochem Mol Toxicol 27:99–105. https://doi.org/10.1002/jbt.21463

    Article  CAS  PubMed  Google Scholar 

  82. Do MT, Kim HG, Choi JH, Jeong HG (2014) Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1α/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents. Free Radic Biol Med 74:21–34

    Article  PubMed  Google Scholar 

  83. Jiang W, Zhang X, Hao J et al (2014) SIRT1 protects against apoptosis by promoting autophagy in degenerative human disc nucleus pulposus cells. Sci Rep 4:7456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhu H, Lin Y, Liu Y (2021) miR-34a increases inflammation and oxidative stress levels in patients with necrotizing enterocolitis by downregulating SIRT1 expression. Mol Med Rep 24:1–9

    Article  Google Scholar 

  85. Huang K, Huang J, Xie X et al (2013) Sirt1 resists advanced glycation end products-induced expressions of fibronectin and TGF-β1 by activating the Nrf2/ARE pathway in glomerular mesangial cells. Free Radic Biol Med 65:528–540

    Article  CAS  PubMed  Google Scholar 

  86. Yamakuchi M, Ferlito M, Lowenstein CJ (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci 105:13421–13426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang L, Sun M, Cao Y et al (2020) miR-34a regulates lipid metabolism by targeting SIRT1 in non-alcoholic fatty liver disease with iron overload. Arch Biochem Biophys 695:108642

    Article  CAS  PubMed  Google Scholar 

  88. Ong C-S, Zhou J, Ong C-N, Shen H-M (2010) Luteolin induces G1 arrest in human nasopharyngeal carcinoma cells via the Akt–GSK-3β–Cyclin D1 pathway. Cancer Lett 298:167–175

    Article  CAS  PubMed  Google Scholar 

  89. Kwon E-Y, Jung UJ, Park T et al (2015) Luteolin attenuates hepatic steatosis and insulin resistance through the interplay between the liver and adipose tissue in mice with diet-induced obesity. Diabetes 64:1658–1669

    Article  CAS  PubMed  Google Scholar 

  90. Lin C, Zhao X, Sun D et al (2016) Transcriptional activation of follistatin by Nrf2 protects pulmonary epithelial cells against silica nanoparticle-induced oxidative stress. Sci Rep 6:21133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wirawan E, Vande Walle L, Kersse K et al (2010) Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis 1:e18–e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Marquez RT, Xu L (2012) Bcl-2: Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am J Cancer Res 2:214

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Fang S, Wan X, Zou X et al (2021) Arsenic trioxide induces macrophage autophagy and atheroprotection by regulating ROS-dependent TFEB nuclear translocation and AKT/mTOR pathway. Cell Death Dis 12:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pi Q-Z, Wang X-W, Jian Z-L et al (2021) Melatonin alleviates cardiac dysfunction via increasing sirt1-mediated beclin-1 deacetylation and autophagy during sepsis. Inflammation 44:1184–1193

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by Mashhad University of Medical Science, Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Gholamreza Karimi and Soghra Mehri; methodology: Gholamreza Karimi, Soghra Mehri, Nahid Najafi, Samira Barangi, Zahra Moosavi, and Seyed Hamid Aghaee-Bakhtiari; software: Nahid Najafi and Samira Barangi; investigation: Nahid Najafi; data curation: Nahid Najafi; writing—original draft and writing—review and editing: Nahid Najafi, Gholamreza Karimi, and Soghra Mehri; supervision and project administration: Gholamreza Karimi and Soghra Mehri; funding acquisition: Gholamreza Karimi. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Soghra Mehri or Gholamreza Karimi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article contained a mistake. Figure 2a in the original version of this article has been replaced.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi, N., Barangi, S., Moosavi, Z. et al. Melatonin Attenuates Arsenic-Induced Neurotoxicity in Rats Through the Regulation of miR-34a/miR-144 in Sirt1/Nrf2 Pathway. Biol Trace Elem Res 202, 3163–3179 (2024). https://doi.org/10.1007/s12011-023-03897-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03897-5

Keywords

Navigation