Skip to main content

Advertisement

Log in

Cross-Talk Between Selenium Nanoparticles and Cancer Treatment Through Autophagy

  • Review
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Autophagy is commonly referred as self-eating and a complex cellular process that is involved in the digestion of protein and damaged organelles through a lysosome-dependent mechanism, and this mechanism is essential for maintaining proper cellular homeostasis. Selenium is a vital trace element that plays essential functions in antioxidant defense, redox state control, and range of particular metabolic processes. Selenium nanoparticles have become known as a promising agent for biomedical use, because of their high bioavailability, low toxicity, and degradability. However, and in recent years, they have attracted the interest of researchers in developing anticancer nano-drugs. Selenium nanoparticles can be used as a potential therapeutic agent or in combination with other agents to act as carriers for the development of new treatments. More intriguingly, selenium nanoparticles have been extensively shown to impact autophagy signaling, allowing selenium nanoparticles to be used as possible cancer treatment agents. This review explored the connections between selenium and autophagy, followed by developments and current advances of selenium nanoparticles for autophagy control in various clinical circumstances. Furthermore, this study examined the functions and possible processes of selenium nanoparticles in autophagy regulation, which may help us understand how selenium nanoparticles regulate autophagy for the potential cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The authors confirm that data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Paskeh MDA, Entezari M, Clark C, Zabolian A, Ranjbar E, Farahani MV et al (2022) Targeted regulation of autophagy using nanoparticles: new insight into cancer therapy. Biochim Biophys Acta (BBA)-Mol Basis Dis 1868(3):166326

    Article  CAS  Google Scholar 

  2. Wu H, Chen S, Ammar A-B, Xu J, Wu Q, Pan K et al (2015) Crosstalk between macroautophagy and chaperone-mediated autophagy: implications for the treatment of neurological diseases. Mol Neurobiol 52:1284–1296

    Article  CAS  PubMed  Google Scholar 

  3. Vistro WA, Zhang Y, Bai X, Yang P, Huang Y, Qu W et al (2019) In vivo autophagy up-regulation of small intestine enterocytes in Chinese soft-shelled turtles during hibernation. Biomolecules 9(11):682

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yang Z, Klionsky DJ (2009) An overview of the molecular mechanism of autophagy. Autophagy Infect Immun:1–32

  5. Baek K-H, Park J, Shin I (2012) Autophagy-regulating small molecules and their therapeutic applications. Chem Soc Rev 41(8):3245–3263

    Article  CAS  PubMed  Google Scholar 

  6. Glick D, Barth S, Macleod KF (2010) Orthomolecular medicine. J Pathol 221(1):3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ali W, Bian Y, Ali H, Sun J, Zhu J, Ma Y et al (2023) Cadmium-induced impairment of spermatozoa development by reducing exosomal-MVBs secretion: a novel pathway. Aging (Albany NY) 15(10):4096

    Article  CAS  PubMed  Google Scholar 

  8. Duan Y, Zhao Y, Wang T, Sun J, Ali W, Ma Y et al (2023) Taurine alleviates cadmium-induced hepatotoxicity by regulating autophagy flux. Int J Mol Sci 24(2):1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. UT CABEB, Droge W, French M, Terman A (2005) Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 1:131–140

    Article  Google Scholar 

  10. Tarique I, Vistro WA, Bai X, Yang P, Hong C, Huang Y et al (2019) LIPOPHAGY: a novel form of steroidogenic activity within the LEYDIG cell during the reproductive cycle of turtle. Reprod Biol Endocrinol 17:1–12

    Article  Google Scholar 

  11. Haseeb A, Bai X, Tarique I, Chen H, Yang P, Gandahi N et al (2019) Characterization of in vivo autophagy during avian spermatogenesis. Poult Sci 98(10):5089–5099

    Article  CAS  PubMed  Google Scholar 

  12. Lochi GM, Shah MG, Gandahi JA, Gadahi JA, Hadi SA, Farooq T et al (2023) Effect of selenium nanoparticles and chitosan on production performance and antioxidant integrity of heat-stressed broiler. Biol Trace Elem Res 201(4):1977–1986

    Article  CAS  PubMed  Google Scholar 

  13. Huang G, Liu Z, He L, Luk K-H, Cheung S-T, Wong K-H et al (2018) Autophagy is an important action mode for functionalized selenium nanoparticles to exhibit anti-colorectal cancer activity. Biomater Sci 6(9):2508–2517

    Article  CAS  PubMed  Google Scholar 

  14. Malyar RM, Li H, Liu D, Abdulrahim Y, Farid RA, Gan F et al (2020) Selenium/zinc-enriched probiotics improve serum enzyme activity, antioxidant ability, inflammatory factors and related gene expression of Wistar rats inflated under heat stress. Life Sci 248:117464

    Article  CAS  PubMed  Google Scholar 

  15. Joseph J, Loscalzo J (2013) Selenistasis: epistatic effects of selenium on cardiovascular phenotype. Nutrients 5(2):340–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yüksel E, Nazıroğlu M, Şahin M, Çiğ B (2017) Involvement of TRPM2 and TRPV1 channels on hyperalgesia, apoptosis and oxidative stress in rat fibromyalgia model: protective role of selenium. Sci Rep 7(1):17543

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rayman MP (2012) Selenium and human health. Lancet 379(9822):1256–1268

    Article  CAS  Google Scholar 

  18. Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN (2014) Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci 39:112–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang Y, Roh YJ, Han S-J, Park I, Lee HM, Ok YS et al (2020) Role of selenoproteins in redox regulation of signaling and the antioxidant system: a review. Antioxidants 9(5):383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Larsen PR, Zavacki AM (2013) Role of the iodothyronine deiodinases in the physiology and pathophysiology of thyroid hormone action. Eur Thyroid J 1(4):232–242

    Google Scholar 

  21. Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94(3):739–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fath MA, Ahmad IM, Smith CJ, Spence J, Spitz DR (2011) Enhancement of carboplatin-mediated lung cancer cell killing by simultaneous disruption of glutathione and thioredoxin metabolism chemosensitization of lung cancer using GSH and TR inhibitors. Clin Cancer Res 17(19):6206–6217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Scarbrough PM, Mapuskar KA, Mattson DM, Gius D, Watson WH, Spitz DR (2012) Simultaneous inhibition of glutathione-and thioredoxin-dependent metabolism is necessary to potentiate 17AAG-induced cancer cell killing via oxidative stress. Free Radic Biol Med 52(2):436–443

    Article  CAS  PubMed  Google Scholar 

  24. Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci USA 104(14):5925–5930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schwartz LM (2021) Autophagic cell death during development–ancient and mysterious. Front Cell Dev Biol 9:656370

    Article  PubMed  PubMed Central  Google Scholar 

  26. Minich WB (2022) Selenium metabolism and biosynthesis of selenoproteins in the human body. Biochemistry (Moscow) 87(Suppl 1):S168–SS77

    Article  CAS  PubMed  Google Scholar 

  27. Kieliszek M, Bano I (2022) Selenium as an important factor in various disease states: a review. EXCLI J 21:948–966

    PubMed  PubMed Central  Google Scholar 

  28. Chi Q, Luan Y, Zhang Y, Hu X, Li S (2019) The regulatory effects of miR-138-5p on selenium deficiency-induced chondrocyte apoptosis are mediated by targeting SelM. Metallomics 11(4):845–857

    Article  CAS  PubMed  Google Scholar 

  29. Cui J, Liu H, Xu S (2020) Selenium-deficient diet induces necroptosis in the pig brain by activating TNFR1 via mir-29a-3p. Metallomics 12(8):1290–1301

    Article  CAS  PubMed  Google Scholar 

  30. Zhang F, Li X, Wei Y (2023) Selenium and Selenoproteins in Health. Biomolecules 13(5):799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barchielli G, Capperucci A, Tanini D (2022) The role of selenium in pathologies: An updated review. Antioxidants 11(2):251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tan S, Zheng Z, Liu T, Yao X, Yu M, Ji Y (2022) Schisandrin B induced ROS-mediated autophagy and Th1/Th2 imbalance via selenoproteins in Hepa1-6 cells. Front Immunol 13

  33. Qian G, Liu D, Hu J, Gan F, Hou L, Zhai N et al (2018) SeMet attenuates OTA-induced PCV2 replication promotion by inhibiting autophagy by activating the AKT/mTOR signaling pathway. Vet Res 49(1):1–12

    Article  Google Scholar 

  34. Zang H, Qian S, Li J, Zhou Y, Zhu Q, Cui L et al (2020) The effect of selenium on the autophagy of macrophage infected by Staphylococcus aureus. Int Immunopharmacol 83:106406

    Article  CAS  PubMed  Google Scholar 

  35. Chen W, Liu Z, Zheng Y, Wei B, Shi J, Shao B et al (2021) Selenium donor restricts the intracellular growth of Mycobacterium tuberculosis through the induction of c-Jun-mediated both canonical autophagy and LC3-associated phagocytosis of alveolar macrophages. Microb Pathog 161:105269

    Article  CAS  PubMed  Google Scholar 

  36. Yu H, Huang Y, Ge Y, Hong X, Lin X, Tang K et al (2021) Selenite-induced ROS/AMPK/FoxO3a/GABARAPL-1 signaling pathway modulates autophagy that antagonize apoptosis in colorectal cancer cells. Discov Oncol 12:1–12

    Google Scholar 

  37. Chen J, Feng T, Wang B, He R, Xu Y, Gao P et al (2022) Enhancing organic selenium content and antioxidant activities of soy sauce using nano-selenium during soybean soaking. Front Nutr 9

  38. Kumar A, Prasad KS (2021) Role of nano-selenium in health and environment. J Biotechnol 325:152–163

    Article  CAS  PubMed  Google Scholar 

  39. Sentkowska A, Pyrzyńska K (2022) The influence of synthesis conditions on the antioxidant activity of selenium nanoparticles. Molecules 27(8):2486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ra S, Bowman B, Russell R (eds) (2006) Selenium. Present Knowledge in Nutrition, 9th edn. International Life Sciences Institute, Washington, DC, pp 480–497

    Google Scholar 

  41. Zhang S, Luo Y, Zeng H, Wang Q, Tian F, Song J et al (2011) Encapsulation of selenium in chitosan nanoparticles improves selenium availability and protects cells from selenium-induced DNA damage response. J Nutr Biochem 22(12):1137–1142

    Article  PubMed  Google Scholar 

  42. Bisht N, Phalswal P, Khanna PK (2022) Selenium nanoparticles: a review on synthesis and biomedical applications. Mater Adv 3(3):1415–1431

    Article  CAS  Google Scholar 

  43. Varlamova EG, Turovsky EA, Blinova EV (2021) Therapeutic potential and main methods of obtaining selenium nanoparticles. Int J Mol Sci 22(19):10808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Varlamova EG, Goltyaev MV, Mal’tseva VN, Turovsky EA, Sarimov RM, Simakin AV et al (2021) Mechanisms of the cytotoxic effect of selenium nanoparticles in different human cancer cell lines. Int J Mol Sci 22(15):7798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ferro C, Florindo HF, Santos HA (2021) Selenium nanoparticles for biomedical applications: From development and characterization to therapeutics. Adv Healthcare Mater 10(16):2100598

    Article  CAS  Google Scholar 

  46. Rao L, Ma Y, Zhuang M, Luo T, Wang Y, Hong A (2014) Chitosan-decorated selenium nanoparticles as protein carriers to improve the in vivo half-life of the peptide therapeutic BAY 55-9837 for type 2 diabetes mellitus. Int J Nanomed 9:4819

    CAS  Google Scholar 

  47. Ikram M, Javed B, Raja NI, Mashwani ZUR (2021) Biomedical potential of plant-based selenium nanoparticles: a comprehensive review on therapeutic and mechanistic aspects. Int J Nanomed: 249–268

  48. Wang Y, Wang C, Li K, Song X, Yan X, Yu L et al (2021) Recent advances of nanomedicine-based strategies in diabetes and complications management: diagnostics, monitoring, and therapeutics. J Controlled Release 330:618–640

    Article  CAS  Google Scholar 

  49. Xia Y, Lin Z, Li Y, Zhao M, Wang C, Guo M et al (2017) Targeted delivery of siRNA using RGDfC-conjugated functionalized selenium nanoparticles for anticancer therapy. J Mater Chem B 5(33):6941–6952

    Article  CAS  PubMed  Google Scholar 

  50. Wang C, Chen H, Chen D, Zhao M, Lin Z, Guo M et al (2020) The inhibition of H1N1 influenza virus-induced apoptosis by surface decoration of selenium nanoparticles with β-thujaplicin through reactive oxygen species-mediated AKT and p53 signaling pathways. ACS Omega 5(47):30633–30642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang H, Li Z, Dai C, Wang P, Fan S, Yu B et al (2021) Antibacterial properties and mechanism of selenium nanoparticles synthesized by Providencia sp. DCX. Environ Res 194:110630

    Article  CAS  PubMed  Google Scholar 

  52. Menon S, Ks SD, Santhiya R, Rajeshkumar S, Kumar V (2018) Selenium nanoparticles: a potent chemotherapeutic agent and an elucidation of its mechanism. Colloids Surf B: Biointerfaces 170:280–292

    Article  CAS  PubMed  Google Scholar 

  53. Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C (2019) Therapeutic applications of selenium nanoparticles. Biomed Pharmacother 111:802–812

    Article  CAS  PubMed  Google Scholar 

  54. Cui D, Ma J, Liang T, Sun L, Meng L, Liang T et al (2019) Selenium nanoparticles fabricated in laminarin polysaccharides solutions exert their cytotoxicities in HepG2 cells by inhibiting autophagy and promoting apoptosis. Int J Biol Macromol 137:829–835

    Article  CAS  PubMed  Google Scholar 

  55. Hu Y, Liu T, Li J, Mai F, Li J, Chen Y et al (2019) Selenium nanoparticles as new strategy to potentiate γδ T cell anti-tumor cytotoxicity through upregulation of tubulin-α acetylation. Biomaterials 222:119397

    Article  CAS  PubMed  Google Scholar 

  56. Trocoli A, Djavaheri-Mergny M (2011) The complex interplay between autophagy and NF-κB signaling pathways in cancer cells. Am J Cancer Res 1(5):629

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Xiao X, Dufek J, Murphy RR (2021) Autonomous visual assistance for robot operations using a tethered uav. In: Field and Service Robotics: Results of the 12th International Conference. Springer, pp 15–29

    Chapter  Google Scholar 

  58. Cheng Z, Shu Y, Li X, Li Y, Zhou S, Liu H (2022) Evaluation of potential cardiotoxicity of ammonia: L-selenomethionine inhibits ammonia-induced cardiac autophagy by activating the PI3K/AKT/mTOR signaling pathway. Ecotoxicol Environ Saf 233:113304

    Article  CAS  PubMed  Google Scholar 

  59. Yang B, Li Y, Ma Y, Zhang X, Yang L, Shen X et al (2021) Selenium attenuates ischemia/reperfusion injury-induced damage to the blood-brain barrier in hyperglycemia through PI3K/AKT/mTOR pathway-mediated autophagy inhibition. Int J Mol Med 48(3):1–13

    Article  CAS  Google Scholar 

  60. Wu JC, Wang FZ, Tsai ML, Lo CY, Badmaev V, Ho CT et al (2015) Se-Allylselenocysteine induces autophagy by modulating the AMPK/mTOR signaling pathway and epigenetic regulation of PCDH17 in human colorectal adenocarcinoma cells. Mol Nutr Food Res 59(12):2511–2522

    Article  CAS  PubMed  Google Scholar 

  61. Pant R, Sharma N, Kabeer SW, Sharma S, Tikoo K (2023) Selenium-enriched probiotic alleviates western diet-induced non-alcoholic fatty liver disease in rats via modulation of autophagy through AMPK/SIRT-1 pathway. Biol Trace Elem Res 201(3):1344–1357

    Article  CAS  PubMed  Google Scholar 

  62. Zhang N, Zhao Y (2019) Other molecular mechanisms regulating autophagy. Autophagy: Biology and Diseases: Basic. Science:261–271

  63. Zhang R, Liu Q, Guo R, Zhang D, Chen Y, Li G et al (2021) Selenium deficiency induces autophagy in chicken bursa of fabricius through ChTLR4/MyD88/NF-κB pathway. Biol Trace Elem Res:1–12

  64. Adegoke E, Xue W, Machebe N, Adeniran S, Hao W, Chen W et al (2018) Sodium Selenite inhibits mitophagy, downregulation and mislocalization of blood-testis barrier proteins of bovine Sertoli cell exposed to microcystin-leucine arginine (MC-LR) via TLR4/NF-kB and mitochondrial signaling pathways blockage. Ecotoxicol Environ Saf 166:165–175

    Article  CAS  PubMed  Google Scholar 

  65. Vickers NJ (2017) Animal communication: when i’m calling you, will you answer too? Curr Biol 27(14):R713–R7R5

    Article  CAS  PubMed  Google Scholar 

  66. Shi K, Meng D, Wang Y, Tian W, Zhang Y, An J (2022) ATM/IKK alpha axis regulates the crosstalk between autophagy and apoptosis in selenite-treated Jurkat cells. Chem-Biol Interact 367:110178

    Article  CAS  PubMed  Google Scholar 

  67. Ding D, Mou D, Zhao L, Jiang X, Che L, Fang Z et al (2021) Maternal organic selenium supplementation alleviates LPS induced inflammation, autophagy and ER stress in the thymus and spleen of offspring piglets by improving the expression of selenoproteins. Food Funct 12(22):11214–11228

    Article  CAS  PubMed  Google Scholar 

  68. Li M, Cheng W, Zhang L (2021) Maternal selenium deficiency suppresses proliferation, induces autophagy dysfunction and apoptosis in the placenta of mice. Metallomics 13(11):mfab058

    Article  PubMed  Google Scholar 

  69. El Asar HM, Mohammed EA, Aboulhoda BE, Emam HY, Imam AA-A (2019) Selenium protection against mercury neurotoxicity: modulation of apoptosis and autophagy in the anterior pituitary. Life Sci 231:116578

    Article  PubMed  Google Scholar 

  70. Zhou S, Zhang X, Fu Q, Cheng Z, Ji W, Liu H (2022) The use of selenomethionine to reduce ammonia toxicity in porcine spleen by inhibiting endoplasmic reticulum stress and autophagy mediated by oxidative stress. Ecotoxicol Environ Saf 242:113887

    Article  CAS  PubMed  Google Scholar 

  71. Ran D, Zhou D, Liu G, Ma Y, Ali W, Yu R et al (2023) Reactive oxygen species control osteoblast apoptosis through SIRT1/PGC-1α/P53Lys382 signaling, mediating the onset of Cd-induced osteoporosis. J Agric Food Chem 71(15):5991–6002

    CAS  Google Scholar 

  72. Sun J, Qu H, Ali W, Chen Y, Wang T, Ma Y et al (2022) Co-exposure to cadmium and microplastics promotes liver fibrosis through the hemichannels-ATP-P2X7 pathway

    Book  Google Scholar 

  73. Ali W, Ma Y, Zhu J, Zou H, Liu Z (2022) Mechanisms of cadmium-induced testicular injury: a risk to male fertility. Cells 11(22):3601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ali W, Deng K, Sun J, Ma Y, Liu Z, Zou H (2023) A new insight of cadmium-induced cellular evidence of autophagic-associated spermiophagy during spermatogenesis. Environ SciPollut Res:1–11

  75. Ali W, Bian Y, Zhang H, Qazi IH, Zou H, Zhu J et al (2023) Effect of cadmium exposure during and after pregnancy of female. Environ Pollut Bioavailab 35(1):2181124

    Article  Google Scholar 

  76. Wang S, Hou L, Wang M, Feng R, Lin X, Pan S et al (2021) Selenium-alleviated testicular toxicity by modulating inflammation, heat shock response, and autophagy under oxidative stress in lead-treated chickens. Biol Trace Elem Res:1–13

  77. Huang H, Wang Y, An Y, Jiao W, Xu Y, Han Q et al (2019) Selenium alleviates oxidative stress and autophagy in lead-treated chicken testes. Theriogenology 131:146–152

    Article  CAS  PubMed  Google Scholar 

  78. Liu D, Xu J, Qian G, Hamid M, Gan F, Chen X et al (2018) Selenizing astragalus polysaccharide attenuates PCV2 replication promotion caused by oxidative stress through autophagy inhibition via PI3K/AKT activation. Int J Biol Macromol 108:350–359

    Article  CAS  PubMed  Google Scholar 

  79. Yang Y, Luo H, Hui K, Ci Y, Shi K, Chen G et al (2016) Selenite-induced autophagy antagonizes apoptosis in colorectal cancer cells in vitro and in vivo. Oncol Rep 35(3):1255–1264

    Article  CAS  PubMed  Google Scholar 

  80. Geng S, Wang S, Zhu W, Xie C, Li X, Wu J et al (2017) Curcumin attenuates BPA-induced insulin resistance in HepG2 cells through suppression of JNK/p38 pathways. Toxicol Lett 272:75–83

    Article  CAS  PubMed  Google Scholar 

  81. Tao L, Liu K, Li J, Zhang Y, Cui L, Dong J et al (2022) Selenomethionine alleviates NF-κB-mediated inflammation in bovine mammary epithelial cells induced by Escherichia coli by enhancing autophagy. Int Immunopharmacol 110:108989

    Article  CAS  PubMed  Google Scholar 

  82. Wang R, Ha K-y, Dhandapani S, Kim Y-J (2022) Biologically synthesized black ginger-selenium nanoparticle induces apoptosis and autophagy of AGS gastric cancer cells by suppressing the PI3K/Akt/mTOR signaling pathway. J Nanobiotechnol 20(1):1–20

    Article  Google Scholar 

  83. Hosseinabadi T, Lorigooini Z, Tabarzad M, Salehi B, Rodrigues CF, Martins N et al (2019) Silymarin antiproliferative and apoptotic effects: insights into its clinical impact in various types of cancer. Phytother Res 33(11):2849–2861

    Article  CAS  PubMed  Google Scholar 

  84. Wang Z, Gao L, Guo X, Feng C, Deng K, Lian W et al (2019) Identification of microRNAs associated with the aggressiveness of prolactin pituitary tumors using bioinformatic analysis Corrigendum in/10.3892/or. 2021.8081. Oncol Rep 42(2):533–548

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Javed S, Kohli K, Ali M (2011) Reassessing bioavailability of silymarin. Altern Med Rev 16(3):239

    PubMed  Google Scholar 

  86. Mi X-j, Choi HS, Perumalsamy H, Shanmugam R, Thangavelu L, Balusamy SR et al (2022) Biosynthesis and cytotoxic effect of silymarin-functionalized selenium nanoparticles induced autophagy mediated cellular apoptosis via downregulation of PI3K/Akt/mTOR pathway in gastric cancer. Phytomedicine 99:154014

    Article  CAS  PubMed  Google Scholar 

  87. Zhang W, Lin W, Pei Q, Hu X, Xie Z, Jing X (2016) Redox-hypersensitive organic nanoparticles for selective treatment of cancer cells. Chem Mater 28(12):4440–4446

    Article  CAS  Google Scholar 

  88. Li J, Gu Y, Zhang W, Bao C-Y, Li C-R, Zhang J-Y et al (2019) Molecular mechanism for selective cytotoxicity towards cancer cells of diselenide-containing paclitaxel nanoparticles. Int J Biol Sci 15(8):1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kumari M, Ray L, Purohit M, Patnaik S, Pant A, Shukla Y et al (2017) Curcumin loading potentiates the chemotherapeutic efficacy of selenium nanoparticles in HCT116 cells and Ehrlich’s ascites carcinoma bearing mice. Eur J Pharm Biopharm 117:346–362

    Article  CAS  PubMed  Google Scholar 

  90. Kumari M, Purohit MP, Patnaik S, Shukla Y, Kumar P, Gupta KC (2018) Curcumin loaded selenium nanoparticles synergize the anticancer potential of doxorubicin contained in self-assembled, cell receptor targeted nanoparticles. Eur J Pharm Biopharm 130:185–199

    Article  CAS  PubMed  Google Scholar 

  91. Alarifi S, Ali H, Alkahtani S, Alessia MS (2017) Regulation of apoptosis through bcl-2/bax proteins expression and DNA damage by nano-sized gadolinium oxide. Int J Nanomed 12:4541

    Article  CAS  Google Scholar 

  92. Li X, Wang Y, Chen Y, Zhou P, Wei K, Wang H et al (2020) Hierarchically constructed selenium-doped bone-mimetic nanoparticles promote ROS-mediated autophagy and apoptosis for bone tumor inhibition. Biomaterials 257:120253

    Article  CAS  PubMed  Google Scholar 

  93. Huang J, Liu Y, Liu T, Chang Y, Chen T, Li X (2019) Dual-targeting nanotherapeutics antagonize hyperinsulinemia-promoted tumor growth via activating cell autophagy. J Mater Chem B 7(43):6751–6758

    Article  CAS  PubMed  Google Scholar 

  94. Bao P, Chen Z, Tai R-Z, Shen H-M, Martin FL, Zhu Y-G (2015) Selenite-induced toxicity in cancer cells is mediated by metabolic generation of endogenous selenium nanoparticles. J Proteome Res 14(2):1127–1136

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (grant numbers 31702305, 31872533, 32072933), and a Project Funded by Jiangsu Higher Education Institutions Priority Academic Program Development (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongping Liu or Hui Zou.

Ethics declarations

Conflict of interest

This work contains no potential conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, W., Chen, Y., Gandahi, J.A. et al. Cross-Talk Between Selenium Nanoparticles and Cancer Treatment Through Autophagy. Biol Trace Elem Res 202, 2931–2940 (2024). https://doi.org/10.1007/s12011-023-03886-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03886-8

Keywords

Navigation