Skip to main content
Log in

Metal Content in Caps and Stalks of Edible Mushrooms: Health Benefits and Risk Evaluation

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Mushrooms are a good source of protein and phenolic compounds which provides health benefits for humans. The purpose of this study was to compare the content of eight metals, protein, and total phenolics (TPC) of 5 different species (Agaricus bisporus—white and brown mushrooms, Agaricus cupreobrunneus, Auricularia cornea, Hypsizgus tesselatus, and Pleurotus eryngii species-complex) of edible mushrooms available on the Romanian market. Agaricus bisporus and Agaricus cupreobrunneus were purchased and cultivated in Romania and the other species were cultivated in other countries (Turkey and China). The metal content determined by graphite atomic absorption spectrometry (GTAAS) varied in the order Cu > Pb > Ni > Fe > Cr > Mn > Co > Cd. Almost all the samples contained a greater quantity of metals in the stalk than in the cap. In addition, the levels of toxic metals were low. The protein content of analyzed samples ranged from 0.0926 to 0.2743%, the highest value being observed in Pleurotus eryngii species-complex mushroom. TPC of extracts increased over time but there was a variability in the concentration for each mushroom species (0.25–12.25 mg GAE/g). The investigated mushroom species possess no health risk and may be potential nutritional supplements for human diets due to their phenolic compounds, protein, and mineral content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nnorom IC, Eze SO, Ukaogo PO (2020) Mineral contents of three wild-grown edible mushrooms collected from forests of south eastern Nigeria: an evaluation of bioaccumulation potentials and dietary intake risks. Sci Afr 8:e00163

    Google Scholar 

  2. Ronda O, Grządka E, Ostolska I, Orzeł J, Cie´slik BM (2022) Accumulation of radioisotopes and heavy metals in selected species of mushrooms. Food Chem 367:130670

    Article  CAS  PubMed  Google Scholar 

  3. Aisala H, Sola J, Hopia A, Linderborg KM, Sandell M (2019) Odor-contributing volatile compounds of wild edible Nordic mushrooms analyzed with HS–SPME–GC–MS and HS–SPME–GC–O/FID. Food Chem 283:566–578

    Article  CAS  PubMed  Google Scholar 

  4. Dospatliev L, Ivanova M (2017) Determination of heavy metals in mushroom samples by atomic absorption spectrometry. Bul Chem Commun 49:5–9

    Google Scholar 

  5. Chiocchetti GM, Latorre T, Clemente MJ, Jadán-Piedra C, Devesa V, Vélez D (2020) Toxic trace elements in dried mushrooms: effects of cooking and gastrointestinal digestion on food safety. Food Chem 306:125478. https://doi.org/10.1016/j.foodchem.2019.125478

    Article  CAS  PubMed  Google Scholar 

  6. Árvay J, Hauptvogl M, Demková L, Harangozo L, Šnirc M, Bobuľská L, Štefániková J, Kováčik A, Jakabová S, Jančo I, Kunca V, Relić D (2022) Mercury in scarletina bolete mushroom (Neoboletus luridiformis): intake, spatial distribution in the fruiting body, accumulation ability and health risk assessment. Ecotoxicol Environ Saf 232:113235. https://doi.org/10.1016/j.ecoenv.2022.113235

    Article  CAS  PubMed  Google Scholar 

  7. Kalacˇ P (2009) Chemical composition and nutritional value of European species of wild growing mushrooms: a review. Food Chem 113:9–16

    Article  Google Scholar 

  8. Altunay N, Tuzen M (2021) A simple and green ultrasound liquid–liquid microextraction method based on low viscous hydrophobic deep eutectic solvent for the preconcentration and separation of selenium in water and food samples prior to HG-AAS detection. Food Chem 364:130371. https://doi.org/10.1016/j.foodchem.2021.130371

    Article  CAS  PubMed  Google Scholar 

  9. Kosanic M, Rankovic B, Rancic A, Stanojkovic T (2016) Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. J Food Drug Anal 24:477–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sesli E, Tuzen M, Soylak M (2008) Evaluation of trace metal contents of some wild edible mushrooms from Black sea region, Turkey. J Hazard Mater 160:462–467

    Article  CAS  PubMed  Google Scholar 

  11. Kučak A, Blanuša M (1998) Validation of microwave digestion method for determination of trace metals in mushrooms. Arh Hig Rada Toksikol 49(4):35–342

  12. Mendil D, Uluőzlű ÖD, Hasdemir E, Çağlar A (2004) Determination of trace elements on some wild edible mushroom samples from Kastamonu, Turkey. Food Chem 88:281–285

    Article  CAS  Google Scholar 

  13. Yamaç M, Yıldız D, Sarıkürkcü C, Çelikkollu M, Solak MH (2007) Heavy metals in some edible mushrooms from the Central Anatolia, Turkey. Food Chem 103(2):263–267

    Article  Google Scholar 

  14. Kalač P, Burda J, Stašková I (1991) Concentration of lead, cadmium, mercury and copper in mushrooms in the vicinity of a lead smelter. Sci Total Environ 105:109–119

    Article  PubMed  Google Scholar 

  15. Borovička J, Sácký J, Kaňa A, Walenta M, Ackerman L, Braeuer S, Leonhardt T, Hršelová H, Goessler W, Kotrba P (2023) Cadmium in the hyperaccumulating mushroom Thelephora penicillata: intracellular speciation and isotopic composition. Sci Total Environ 885:159002

    Article  Google Scholar 

  16. Dowlati M, Sobhi HR, Esrafili A, FarzadKia M, Yeganeh M (2021) Heavy metals content in edible mushrooms: a systematic review, meta-analysis and health risk assessment. Trends Food Sci Technol 109:527–535

    Article  CAS  Google Scholar 

  17. Cacique AP, Barbosa ES, de Pinh GP, Silvério FV (2020) Maceration extraction conditions for determining the phenolic compounds and the antioxidant activity of Catharanthus roseus (L.) G. Don. Sci Agrotech 44:1–12

  18. Dobrinas S, Soceanu A (2021) Determination of total phenolic content from plant extracts used in cosmetic purpose. J Sci Arts 1(54):247–260

    Article  Google Scholar 

  19. Association of Official Analytical Chemists (AOAC) Official Method of Analysis. 19th ed. AOAC; Washington, DC, USA: 2012

  20. Birghila S, Matei N, Dobrinas S, Popescu V, Soceanu A, Niculescu A (2022) Assessment of heavy metal content in soil and Lycopersicon esculentum (tomato) and their health implications. Biol Trace Elem Res. https://doi.org/10.1007/s12011-022-03257-9

    Article  PubMed  Google Scholar 

  21. Dobrinas S, Soceanu A, Birghila S, Birghila C, Popescu V, Matei N, Constanda LM (2022) Chemical analysis and quality assessment of honey obtained from different sources. Processes 10(12):2554. https://doi.org/10.3390/pr10122554

    Article  CAS  Google Scholar 

  22. Environmental Protection Agency, Reference Dose (RfD): Description and Use in Health Risk Assessments, Reference Dose (RfD): Description and Use in Health Risk Assessments | US EPA

  23. Sinha SK, Upadhyay TK, Sharma SK (2019) Heavy metals detection in white button mushroom (Agaricus Bisporus) cultivated in state of Maharashtra, India. Biochem Cell Arch 19(2):3501–3506

    Google Scholar 

  24. Bosiacki M, Siwulski M, Sobieralski K, Krzebietke S (2018) The content of selected heavy metals in fruiting bodies of Agaricus Bisporus (Lange) imbach. wild growing in Poland. J Elem 23(3):875–886

    Google Scholar 

  25. Siwulski M, Budka A, Rzymski P, Gasecka M, Kala P, Budzynska S, Magdziak Z, Niedzielski P, Mleczek P, Mleczek M (2020) Worldwide basket survey of multielemental composition of white button mushroom Agaricus bisporus. Chemosphere 239:124718

    Article  CAS  PubMed  Google Scholar 

  26. Orhan I, Ustun O (2011) Determination of total phenol content, antioxidant activity and acetylcholinesterase inhibition in selected mushrooms from Turkey. J Food Compos Anal 24:386–390

    Article  CAS  Google Scholar 

  27. Alispahić A, Šapčanin A, Salihović M, Ramić E, Dedić A, Pazalja M (2015) Phenolic content and antioxidant activity of mushroom extracts from Bosnian market. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina 44:5–8

    Google Scholar 

  28. Abacan SF, Hurtada WA, Devanadera MAR (2017) Effects of cooking time, temperature, and salt concentration on the phenolic content and antioxidant activity of selected edible mushrooms. Int Food Res J 24(5):2028–2032

    CAS  Google Scholar 

  29. Xu X, Yan H, Chen J, Zhang X (2011) Bioactive proteins from mushrooms. Biotechnol Adv 29:667–674

    Article  CAS  PubMed  Google Scholar 

  30. Uzun Y, Gençcelep H, Tunçtürk Y, Demirel K (2009) Determination of protein and nitrogen fractions of wild edible mushrooms. Asian J Chem 21(4):2769–2776

    CAS  Google Scholar 

  31. Al Azad S, Chong Ai Ping V (2021) Comparison of protein and amino acids in the extracts of two edible mushroom, Pleurotus sajor-caju and Schizophyllum commune. Adv Biosci Biotechnol 12(9):286–296

    Article  CAS  Google Scholar 

  32. Falandysz J, Borovička J (2013) Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl Microbiol Biotechnol 97(2):477–501

    Article  CAS  PubMed  Google Scholar 

  33. Sithole SC, Mugivhisa LL, Amoo SO, Olowoyo JO (2017) Pattern and concentrations of tracemetals inmushrooms harvested from trace metal-polluted soils in Pretoria, South Africa. S Afr J Bot 108:315–320

    Article  CAS  Google Scholar 

  34. Su J, Zhang J, Li J, Li T, Liu H, Wang Y (2018) Determination of mineral contents of wild Boletus edulis mushroom and its edible safety assessment. J Environ Sci Health B 53(7):454–463

  35. Jarzynska G, Chojnacka A, Dryzałowska A, Nnorom IC, Falandysz J (2012) Concentrations and bioconcentration factors of minerals in yellow-cracking bolete (Xerocomus Subtomentosus) mushroom collected in Notec Forest, Poland. J Food Sci 77(9):H202–H2063

    Article  CAS  PubMed  Google Scholar 

  36. Kojta AK, Jarzynska G, Falandysz J (2012) Mineral composition and heavy metal accumulation capacity of Bay Bolete (Xerocomus badius) fruiting bodies collected near a former gold and copper mining area. J Geochem Explor 121:76–82

    Article  CAS  Google Scholar 

  37. Liu B, Huang Q, Cai H, Guo X, Wang T, Gui M (2015) Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China. Food Chem 188:294–300

    Article  CAS  PubMed  Google Scholar 

  38. Aloupi M, Koutrotsios G, Koulousaris M, Kalogeropoulos N (2012) Trace metal contents in wild edible mushrooms growing on serpentineand volcanic soils on the island of Lesvos, Greece. Ecotoxicol Environ Saf 78:184–194

    Article  CAS  PubMed  Google Scholar 

  39. Zavastin DE, Biliuta G, Dodi G, Macsim AM, Lisa G, Gherman SP, Breaban IG, Miron A, Coseri S (2018) Metal content and crude polysaccharide characterization of selected mushrooms growing in Romania. J Food Compos Anal 67:149–158

    Article  CAS  Google Scholar 

  40. EEC Directive 2001/22/EC, European Commission (EC). European Commission, Office for Official publications of the European Communities, Luxembourg, Council Directive 66/278/EEC on the protection of environment, and in particular of soil, when sewage sludge is used in agriculture (1986)

  41. World Health Organization (WHO) (1996) World Health Organization technical series. Heavy elements in human nutrition and health. World Health Organization, Geneva, pp 199–205

    Google Scholar 

  42. Ronda O, Grządka E, Ostolska I, Orzeł J, Cieslik BM (2022) Accumulation of radioisotopes and heavy metals in selected species of mushrooms. Food Chem 367:130670

    Article  CAS  PubMed  Google Scholar 

  43. Barea-Sepúlveda M, Espada-Bellido E, Ferreiro-Gonzalez M, Benítez-Rodríguez A, Lopez-Castillo JG, Palma M, Barbero GF (2021) Metal concentrations in Lactarius mushroom species collected from Southern Spain and Northern Morocco: evaluation of health risks and benefits. J Food Compos Anal 99:103859

    Article  Google Scholar 

  44. Sarikurkcu C, Popović-Djordjevi J, Solak MH (2020) Wild edible mushrooms from Mediterranean region: metal concentrations and health risk assessment. Ecotoxicol Environ Saf 190:110058

    Article  CAS  PubMed  Google Scholar 

  45. World Health Organization (WHO) (2001) Toxicological evaluation of certain food additives. Joint FAO/WHO Expert Committee on Food Additives. Food Additive Series No. 683, World Health Organization, Geneva

  46. Türkmen M, Budur D (2018) Heavy metal contaminations in edible wild mushroom species from Turkey’s Black Sea region. Food Chem 254:256–259

    Article  PubMed  Google Scholar 

  47. Wang C, Hou Y (2011) Determination of trace elements in three mushroom samples of Basidiomycetes from Shandong, China. Biol Trace Elem Res 142(3):843–847

    Article  CAS  PubMed  Google Scholar 

  48. Ouzounia PK, Veltsistasb PG, Paleologosa EK, Riganakosa KA (2007) Determination of metal content in wild edible mushroom species from regions of Greece. J Food Compos Anal 20:480–486

    Article  Google Scholar 

  49. Sarikurkcu C, Copur M, Yildiz D, Akata I (2011) Metal concentration of wild edible mushrooms in Soguksu National Park in Turkey. Food Chem 128:731–734

    Article  CAS  Google Scholar 

  50. Liu H, Zhang J, Li T, Shi Y, Wang Y (2012) Mineral element levels in wild edible mushrooms from Yunnan, China. Biol Trace Elem Res 147:341–345

    Article  CAS  PubMed  Google Scholar 

  51. Sithole SC, Agboola OO, Mugivhisa LL, Amoo SO, Olowoyo JO (2022) Elemental concentration of heavy metals in oyster mushrooms grown on mine polluted soils in Pretoria, South Africa. Journal of King Saud University – Science 34(2):101763. https://doi.org/10.1016/j.jksus.2021.101763

  52. Ihugba UA, Nwoko CO, Tony-Njoku FR, Ojiaku AA, Izunobi L (2018) Heavy metal determination and health risk assessment of oyster mushroom Pleurotus tuberregium (Fr.) Singer, collected from selected markets in Imo State. NIGERIA Am J Environ Prot 6(1):22–27

    CAS  Google Scholar 

  53. Sarikurkcu C, Yildiz D, Akata I, Tepe B (2021) Evaluation of the metal concentrations of wild mushroom species with their health risk assessments. Environ Sci Pollut Res Int 28(17):21437–21454

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S. D. and A. S.; methodology, S. D. and S. B.; software, N. M. and A. S.; validation, S. D. and A. S.; formal analysis, V. P. and S. B.; investigation, S. D. and A. S.; resources, G. C. and N. M.; data curation, G. C. and C. B.; writing—original draft preparation, S. D. and N. M.; writing—review and editing, A. S.; visualization, V. P.; supervision, S. B. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Nicoleta Matei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soceanu, A., Matei, N., Dobrinas, S. et al. Metal Content in Caps and Stalks of Edible Mushrooms: Health Benefits and Risk Evaluation. Biol Trace Elem Res 202, 2347–2356 (2024). https://doi.org/10.1007/s12011-023-03800-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03800-2

Keywords

Navigation