Skip to main content

Advertisement

Log in

Impact of Early Arsenic Exposure on the Mineral Content and Oxidative Status of the Liver and Kidney of Pubescent and Adult Rats

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study evaluated the effect of prepubertal arsenic exposure in the liver and kidney of pubescent rats and their reversibility 30 days after arsenic withdrawal. Male pups of Wistar rats (21 days old) were divided into two groups (n = 20/group): control animals received filtered water, and exposed rats received 10 mg L−1 arsenic from postnatal day (PND) 21 to PND 51. The liver and kidney of 52 days old rats (n = 10/group) were examined to investigate the effects of arsenic on micromineral content, antioxidant enzyme activity, histology, and biochemistry parameters. The other animals were kept alive under free arsenic conditions until 82 days old and further analyzed by the same parameters. Our results revealed that 52-day-old rats increased arsenic content in their liver and arsenic and manganese in their kidney. In those animals, glycogen and zinc content and catalase activity were reduced in the liver, and the selenium content decreased in the kidney. Thirty days later, arsenic reduced the manganese and iron content and SOD and CAT activity in the liver of 82-day-old rats previously exposed to arsenic, while glycogen and selenium content decreased in their kidney. In contrast, PND 82 rats exhibited higher retention of copper in the liver, an increase in iron and copper content, and CAT and GST activity in the kidney. Significant histological alterations of liver and kidney tissues were not observed in rats of both ages. We conclude that arsenic-induced toxicity could alter differently the oxidative status and balance of trace elements in pubertal and adult rats, demonstrating that the metalloid can cause effects in adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data used to support the findings of the current study are available from the corresponding author upon reasonable request.

References

  1. Flora SJS (2011) Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 51:257–281. https://doi.org/10.1016/j.freeradbiomed.2011.04.008

    Article  PubMed  CAS  Google Scholar 

  2. Ng J (2001) Arsenic and arsenic compounds, 2nd edn. World Health Organization, Geneva

    Google Scholar 

  3. Huang L, Wu H, Van Der Kuijp TJ (2015) The health effects of exposure to arsenic-contaminated drinking water: a review by global geographical distribution. Int J Environ Health Res 25:432–452. https://doi.org/10.1080/09603123.2014.958139

    Article  PubMed  CAS  Google Scholar 

  4. Sarma SD, Hussain A, Sarma JD (2017) Advances made in understanding the effects of arsenic exposure on humans. Curr Sci 112:2008. https://doi.org/10.18520/cs/v112/i10/2008-2015

    Article  CAS  Google Scholar 

  5. Singh SK, Stern EA (2017) Global arsenic contamination: living with the poison nectar. Environ Sci Policy Sustain Dev 59:24–28. https://doi.org/10.1080/00139157.2017.1274583

    Article  Google Scholar 

  6. Julia LB, Pamela AR (2013) Arsenic in groundwater: a summary of sources and the biogeochemical and hydrogeologic factors affecting arsenic occurrence and mobility. In: Bradley P (ed) Current perspectives in contaminant hydrology and water resources sustainability. InTech

  7. Orloff K, Mistry K, Metcalf S (2009) Biomonitoring for environmental exposures to arsenic. J Toxicol Environ Health, B 12:509–524. https://doi.org/10.1080/10937400903358934

    Article  CAS  Google Scholar 

  8. Hirano S (2020) Biotransformation of arsenic and toxicological implication of arsenic metabolities. Arch Toxicol 94:2587–2601. https://doi.org/10.1007/s00204-020-02772-9

    Article  PubMed  CAS  Google Scholar 

  9. Vahter M (2002) Mechanisms of arsenic biotransformation. Toxicology 181–182:211–217. https://doi.org/10.1016/S0300-483X(02)00285-8

    Article  PubMed  Google Scholar 

  10. Nordberg GF, Nordberg M, Fowler BA, Friberg L (2011) Handbook on the toxicology of metals, 3rd edn. Elsevier Science, Burlington

    Google Scholar 

  11. Machado-Neves M, Souza ACF (2022) The effect of arsenical compounds on mitochondrial metabolism. In: Oliveira M (ed) Mitochondrial intoxication. Elsevier, Amsterdam, pp 379–407. https://doi.org/10.1016/B978-0-323-88462-4.00006-7

    Chapter  Google Scholar 

  12. Turk E, Kandemir FM, Yildirim S et al (2019) Protective effect of hesperidin on sodium arsenite-induced nephrotoxicity and hepatotoxicity in rats. Biol Trace Elem Res 189:95–108. https://doi.org/10.1007/s12011-018-1443-6

    Article  PubMed  CAS  Google Scholar 

  13. Souza ACF, Marchesi SC, De Almeida Lima GD, Machado-Neves M (2018) Effects of arsenic compounds on microminerals content and antioxidant enzyme activities in rat liver. Biol Trace Elem Res 183:305–313. https://doi.org/10.1007/s12011-017-1147-3

    Article  PubMed  CAS  Google Scholar 

  14. Souza ACF, Bastos DSS, Santos FC et al (2018) Arsenic aggravates oxidative stress causing hepatic alterations and inflammation in diabetic rats. Life Sci 209:472–480. https://doi.org/10.1016/j.lfs.2018.08.054

    Article  PubMed  CAS  Google Scholar 

  15. Kharroubi W, Dhibi M, Haouas Z et al (2014) Effects of sodium arsenate exposure on liver fatty acid profiles and oxidative stress in rats. Environ Sci Pollut Res 21:1648–1657. https://doi.org/10.1007/s11356-013-2057-3

    Article  CAS  Google Scholar 

  16. Adil M, Kandhare AD, Visnagri A, Bodhankar SL (2015) Naringin ameliorates sodium arsenite-induced renal and hepatic toxicity in rats: decisive role of KIM-1, Caspase-3, TGF-β, and TNF-α. Ren Fail 37:1396–1407. https://doi.org/10.3109/0886022X.2015.1074462

    Article  PubMed  CAS  Google Scholar 

  17. Zhang C, Liu X, Li S et al (2017) Taurine normalizes the levels of Se, Cu, Fe in mouse liver and kidney exposed to arsenic subchronically. In: Lee D-H, Schaffer SW, Park E, Kim HW (eds) Taurine 10. Springer, Netherlands, Dordrecht, pp 843–853

    Chapter  Google Scholar 

  18. Wang L, Xu ZR, Jia XY, Han XY (2006) Effects of dietary arsenic levels on serum parameters and trace mineral retentions in growing and finishing pigs. Biol Trace Elem Res 113:155–164. https://doi.org/10.1385/BTER:113:2:155

    Article  PubMed  CAS  Google Scholar 

  19. Gluckman P, Hanson M (2006) Developmental origins of health and disease, 1st edn. Cambridge University Press

    Book  Google Scholar 

  20. Samelo RR, Cunha De Medeiros P, Carvalho Cavalcante DN et al (2020) Low concentrations of sodium arsenite induce hepatotoxicity in prepubertal male rats. Environ Toxicol 35:553–560. https://doi.org/10.1002/tox.22890

    Article  PubMed  ADS  CAS  Google Scholar 

  21. Couto-Santos F, Souza ACF, Bastos DSS et al (2020) Prepubertal exposure to arsenic alters male reproductive parameters in pubertal and adult rats. Toxicol Appl Pharmacol 409:115304. https://doi.org/10.1016/j.taap.2020.115304

    Article  PubMed  CAS  Google Scholar 

  22. Couto-Santos F, Viana AGDA, Souza ACF et al (2021) Prepubertal arsenic exposure alters phosphoproteins profile, quality, and fertility of epididymal spermatozoa in sexually mature rats. Toxicology 460:152886. https://doi.org/10.1016/j.tox.2021.152886

    Article  PubMed  CAS  Google Scholar 

  23. Mandarim-de-Lacerda CA (2003) Stereological tools in biomedical research. An Acad Bras Cienc 75:469–486. https://doi.org/10.1590/S0001-37652003000400006

    Article  PubMed  Google Scholar 

  24. Novaes RD, Penitente AR, Gonçalves RV et al (2013) Trypanosoma cruzi infection induces morphological reorganization of the myocardium parenchyma and stroma, and modifies the mechanical properties of atrial and ventricular cardiomyocytes in rats. Cardiovasc Pathol 22:270–279. https://doi.org/10.1016/j.carpath.2012.12.001

    Article  PubMed  CAS  Google Scholar 

  25. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. In: Methods in enzymology. Elsevier, pp 302–310

    Google Scholar 

  26. Levine RL, Garland D, Oliver CN et al (1990) Determination of carbonyl content in oxidatively modified proteins. In: Methods in Enzymology. Elsevier, pp 464–478

    Google Scholar 

  27. Tsikas D (2007) Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. J Chromatogr B 851(1-2):51–70. https://doi.org/10.1016/j.jchromb.2006.07.054

    Article  CAS  Google Scholar 

  28. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  29. Molin Y, Frisk P, Ilbäck N-G (2008) Sequential effects of daily arsenic trioxide treatment on essential and nonessential trace elements in tissues in mice. Anti-Cancer Drugs 19:812–818. https://doi.org/10.1097/CAD.0b013e32830c456b

    Article  PubMed  CAS  Google Scholar 

  30. Liu X, Nordberg GF, Jin T (1992) Increased urinary excretion of zinc and copper by mercuric chloride injection in rats. Biometals 5:17–22. https://doi.org/10.1007/BF01079693

    Article  PubMed  CAS  Google Scholar 

  31. Wang X, Zhang J, Zhao L et al (2013) Effect of subchronic exposure to arsenic on levels of essential trace elements in mice brain and its gender difference. Biometals 26:123–131. https://doi.org/10.1007/s10534-012-9599-6

    Article  PubMed  CAS  Google Scholar 

  32. Cui X, Okayasu R (2008) Arsenic accumulation, elimination, and interaction with copper, zinc and manganese in liver and kidney of rats. Food Chem Toxicol 46:3646–3650. https://doi.org/10.1016/j.fct.2008.09.040

    Article  PubMed  CAS  Google Scholar 

  33. Shibata Y (1992) Selenium and arsenic in biology: their chemical forms and biological functions. Adv Biophys 28:31–80. https://doi.org/10.1016/0065-227X(92)90022-J

    Article  PubMed  CAS  Google Scholar 

  34. King JC, Shames DM, Woodhouse LR (2000) Zinc homeostasis in humans. J Nutr 130:S1360–S1366. https://doi.org/10.1093/jn/130.5.1360S

    Article  Google Scholar 

  35. Jeong J, Eide DJ (2013) The SLC39 family of zinc transporters. Mol Asp Med 34:612–619. https://doi.org/10.1016/j.mam.2012.05.011

    Article  CAS  Google Scholar 

  36. Huang L, Tepaamorndech S (2013) The SLC30 family of zinc transporters – a review of current understanding of their biological and pathophysiological roles. Mol Asp Med 34:548–560. https://doi.org/10.1016/j.mam.2012.05.008

    Article  CAS  Google Scholar 

  37. Rubatto Birri PN, Pérez RD, Cremonezzi D et al (2010) Association between As and Cu renal cortex accumulation and physiological and histological alterations after chronic arsenic intake. Environ Res 110:417–423. https://doi.org/10.1016/j.envres.2009.09.002

    Article  PubMed  CAS  Google Scholar 

  38. Yu S, Beynen AC (2001) High arsenic intake raises kidney copper and lowers plasma copper concentrations in rats. Biol Trace Elem Res 81:63–70. https://doi.org/10.1385/BTER:81:1:63

    Article  PubMed  CAS  Google Scholar 

  39. Turnlund J (1998) Human whole-body copper metabolism. Am J Clin Nutr 67:S960–S964. https://doi.org/10.1093/ajcn/67.5.960S

    Article  Google Scholar 

  40. Yu S, West CE, Beynen AC (1994) Increasing intakes of iron reduce status, absorption and biliary excretion of copper in rats. Br J Nutr 71:887–895. https://doi.org/10.1079/BJN19940194

    Article  PubMed  CAS  Google Scholar 

  41. Ademuyiwa O, Elsenhans B, Nguyen P-T, Forth W (1996) Arsenic-copper interaction in the kidney of the rat: influence of arsenic metabolites. Pharmacol Toxicol 78:154–160. https://doi.org/10.1111/j.1600-0773.1996.tb00197.x

    Article  PubMed  CAS  Google Scholar 

  42. Kim N-H, Park S-J, Jin J-K et al (2000) Increased ferric iron content and iron-induced oxidative stress in the brains of scrapie-infected mice. Brain Res 884:98–103. https://doi.org/10.1016/S0006-8993(00)02907-3

    Article  PubMed  CAS  Google Scholar 

  43. Conrad ME, Umbreit JN, Moore EG (1999) Iron absorption and transport. Am J Med Sci 318:213. https://doi.org/10.1097/00000441-199910000-00002

    Article  PubMed  CAS  Google Scholar 

  44. Paul PC, Misbahuddin M, Ahmed ANN et al (2002) Accumulation of arsenic in tissues of iron-deficient rats. Toxicol Lett 135:193–197. https://doi.org/10.1016/S0378-4274(02)00278-3

    Article  PubMed  CAS  Google Scholar 

  45. Fraga CG (2005) Relevance, essentiality and toxicity of trace elements in human health. Mol Asp Med 26:235–244. https://doi.org/10.1016/j.mam.2005.07.013

    Article  CAS  Google Scholar 

  46. Sziráki I, Rauhala P, Koh KK et al (1999) Implications for atypical antioxidative properties of manganese in iron-induced brain lipid peroxidation and copper-dependent low density lipoprotein conjugation. Neurotoxicology 20:455–466

    PubMed  Google Scholar 

  47. Zeng H, Combs GF (2008) Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion. J Nutr Biochem 19:1–7. https://doi.org/10.1016/j.jnutbio.2007.02.005

    Article  PubMed  CAS  Google Scholar 

  48. Gailer J (2007) Arsenic–selenium and mercury–selenium bonds in biology. Coord Chem Rev 251:234–254. https://doi.org/10.1016/j.ccr.2006.07.018

    Article  ADS  CAS  Google Scholar 

  49. Zeng H, Uthus EO, Combs GF Jr (2005) Mechanistic aspects of the interaction between selenium and arsenic. J Inorg Biochem 99:1269–1274. https://doi.org/10.1016/j.jinorgbio.2005.03.006

    Article  PubMed  CAS  Google Scholar 

  50. Ganger R, Garla R, Mohanty BP et al (2016) Protective effects of zinc against acute arsenic toxicity by regulating antioxidant defense system and cumulative metallothionein expression. Biol Trace Elem Res 169:218–229. https://doi.org/10.1007/s12011-015-0400-x

    Article  PubMed  CAS  Google Scholar 

  51. Gonçalves RV, Novaes RD, Leite JPV et al (2012) Hepatoprotective effect of Bathysa cuspidata in a murine model of severe toxic liver injury. Int J Exp Pathol 93:370–376. https://doi.org/10.1111/j.1365-2613.2012.00835.x

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bhattacharya PT, Misra SR, Hussain M (2016) Nutritional aspects of essential trace elements in oral health and disease: an extensive review. Scientifica 2016:1–12. https://doi.org/10.1155/2016/5464373

    Article  CAS  Google Scholar 

  53. Naito M, Hasegawa G, Ebe Y, Yamamoto T (2004) Differentiation and function of Kupffer cells. Med Electron Microsc 37:16–28. https://doi.org/10.1007/s00795-003-0228-x

    Article  PubMed  CAS  Google Scholar 

  54. Nurchi VM, Buha Djordjevic A, Crisponi G et al (2020) Arsenic toxicity: molecular targets and therapeutic agents. Biomolecules 10:235. https://doi.org/10.3390/biom10020235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Gonzalez MJ, Aguilar MV, Martinez Para MC (1995) Gastrointestinal absorption of inorganic arsenic (V): the effect of concentration and interactions with phosphate and dichromate. Vet Hum Toxicol 37:131–136

    PubMed  CAS  Google Scholar 

  56. Reichl FX, Szinicz L, Kreppel H et al (1990) Effect of glucose in mice after acute experimental poisoning with arsenic trioxide (As2O3). Arch Toxicol 64:336–338. https://doi.org/10.1007/BF01972996

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to “Núcleo de Microscopia e Microanálise” of the Universidade Federal de Viçosa for assistance in EDS analysis.

Funding

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

Felipe Couto-Santos designed the study, and all authors performed the work, analyzed the data, contributed to the methods, wrote the paper, and gave final approval of the manuscript.

Corresponding author

Correspondence to Mariana Machado-Neves.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 24 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couto-Santos, F., Guimarães-Ervilha, L.O., Carvalho, R.P.R. et al. Impact of Early Arsenic Exposure on the Mineral Content and Oxidative Status of the Liver and Kidney of Pubescent and Adult Rats. Biol Trace Elem Res 202, 1644–1655 (2024). https://doi.org/10.1007/s12011-023-03787-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03787-w

Keywords

Navigation