Skip to main content
Log in

Review Article on Molecular Mechanism of Regulation of Hypertension by Macro-elements (Na, K, Ca and Mg), Micro-elements/Trace Metals (Zn and Cu) and Toxic Elements (Pb and As)

  • Review
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Hypertension (HT) is a medical condition arising due to increase in blood pressure (BP) prevalent worldwide. The balanced dietary intakes of macro-elements and micro-elements including Na, K, Ca, Mg, Zn, and Cu have been described to maintain BP in humans by regulating the osmolarity of blood, cells/tissues, prevention of generation of oxidative and nitrosative stress (OANS), and endothelial damage through their functioning as important components of renin-angiotensin-aldosterone system (RAAS), antioxidant enzyme defense system, and maintenance of blood vascular-endothelial and vascular smooth muscle cell (VSMC) functions. However, inadequate/excess dietary intakes of Na/K, Ca/Mg, and Zn/Cu along with higher Pb and As exposures recognized to induce HT through common mechanisms including the followings: endothelial dysfunctions due to impairment of vasodilatation, increased vasoconstriction and arterial stiffness, blood clotting, inflammation, modification of sympathetic activity and higher catecholamine release, increased peripheral vascular resistance, and cardiac output; increased OANS due to reduced and elevated activities of extracellular superoxide dismutase and NAD(P)H oxidase, less nitric oxide bioavailability, decrease in cGMP and guanylate cyclase activity, increase in intracellular Ca2+ ions in VSMCs, and higher pro-inflammatory cytokines; higher parathyroid and calcitriol hormones; activation/suppression of RAAS resulting imbalance in blood Na+, K+, and water regulated by renin, angiotensin II, and aldosterone through affecting natriuresis/kaliuresis/diuresis; elevation in serum cholesterol and LDL cholesterol, decrease in HDL cholesterol due to defect in lipoprotein metabolism. The present study recommends the need to review simple dietary mineral intervention studies/supplementation trials before keeping their individual dietary excess intakes/exposures in consideration because their interactions lead to elevation and fall of their concentrations in body affecting onset of HT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jeannette N, Syndercombe CD (2014) Medical sciences E book, 2nd edn. Elsevier Health Sciences, PublisherSaunders, p 562. Retrieved from https://123library.org/ebook/isbn/9780702052491/

  2. NICE (2019) Hypertension in adults: diagnosis and management NG136. National Institute for Health and Care Excellence. Guidance and guidelines. Retrieved from https://www.niceorg.uk/guidance/ng136. Accessed 11 Dec 2019

  3. CDC (2015) High blood pressure fact sheet. Centers for Disease Control and Prevention. Retrieved from http://www.cdc.gov/dhdsp/data_statistics/fact_sheets/fs_bloodpressure.htm. Accessed 6 Mar 2016

  4. Lackland DT, Weber MA (2015) Global burden of cardiovascular disease and stroke: hypertension at the core. Canad J Cardiol 31(5):569–571. https://doi.org/10.1016/j.cjca.2015.01.009

    Article  Google Scholar 

  5. Mendis S, Puska P, Norrving Bo (2011) Global atlas on cardiovascular disease prevention and control. Geneva. World Health Organization in collaboration with the World Heart Federation and the World Stroke Organization. pp 38. Retrieved from https://apps.who.int/iris/handle/10665/44701. Accessed 17 Aug 2014

  6. Hernandorena I, Duron E, Vidal JS, Hanon O (2017) Treatment options and considerations for hypertensive patients to prevent dementia. Expert Opin Pharmacother (Review) 18(10):989–1000. https://doi.org/10.1080/14656566.2017.1333599

    Article  CAS  Google Scholar 

  7. Lau DH, Nattel S, Kalman JM, Sanders P (2017) Modifiable risk factors and atrial fibrillation. Circ (Review) 136(6):583–596. https://doi.org/10.1161/CIRCULATIONAHA.116.023163

    Article  Google Scholar 

  8. Marcinek K, Suliburska J, Krejpcio Z, Bogdański P (2015) Evaluation of mineral status in hypertensive patients undergoing pharmacotherapy. Rocz Panstw Zakl Hig 66(1):61–67

    PubMed  Google Scholar 

  9. Fauci SA, Baunwald E, Isselbacher KJ (1998) Harrison’s principles of internal medicine, 14th edn. Academic, New York

    Google Scholar 

  10. Edward JR, Giffard RW, Aldermand MD (1993) The fifth report of the Joint National Committee on detection, evaluation and treatment of high blood pressure (JNCV). Arch Intern Med 153:154–183

    Article  Google Scholar 

  11. Shepherd JT (1990) Increased systemic vascular resistance and primary hypertension: the expanding complexity. J Hypertens 8(7):S15–S27

    CAS  Google Scholar 

  12. Campbell NR, Lackland DT, Lisheng L, Niebylski ML, Nilsson PM, Zhang XH (2015) Using the Global Burden of Disease study to assist development of nation-specific fact sheets to promote, prevention and control of hypertension and reduction in dietary salt: a resource from the World Hypertension League. J Clin Hyper(Greenwich, Conn.) 17(3):165–167. https://doi.org/10.1111/jch.12479

    Article  Google Scholar 

  13. Poulter NR, Prabhakaran D, Caulfield M (2015) Hypertension. Lancet 386(9995):801–812. https://doi.org/10.1016/s0140-6736(14)61468-9

    Article  PubMed  Google Scholar 

  14. Carretero OA, Oparil S (2000) Essential hypertension. Part I: definition and etiology. Circulation 101(3):329–335. https://doi.org/10.1161/01.CIR.101.3.329

    Article  PubMed  CAS  Google Scholar 

  15. O’Brien E, Beevers DG, Lip GYH (2007) ABC of hypertension. BMJ Books, London

    Google Scholar 

  16. Dluhy RG, Williams GH (1998) Endocrine hypertension. In: Wilson JD, Foster DW, Kronenberg HM (eds) , 9th edn. Montreal, WB Saunders, Philadelphia, pp 729–749

    Google Scholar 

  17. Lambers HHJ, Perkovic V, de Zeeuw D (2009) Renal and cardio-protective effects of direct renin inhibition: a systematic literature review. J Hypertens 27:2321–2331

    Article  Google Scholar 

  18. Schmieder RE, Hilgers KF, Schlaich MP, Schmidt BM (2007) Renin-angiotensin system and cardiovascular risk. Lancet 369:1208–1219

    Article  PubMed  CAS  Google Scholar 

  19. Payne RA, Wilkinson IB, Webb DJ (2010) Arterial stiffness and hypertension: emerging concepts. Hypertension 55:9–14

    Article  PubMed  CAS  Google Scholar 

  20. Nürnberger J, Keflioglu-Scheiber A, Opazo Saez AM, Wenzel RR, Philipp T, Schafers RF (2002) Augmentation index is associated with cardiovascular risk. J Hypertens 20:2407–2414

    Article  PubMed  Google Scholar 

  21. Hadi HA, Carr CS, Al Suwaidi J (2005) Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag 1:183–198

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Conway J (1984) Hemodynamic aspects of essential hypertension in humans. Physiol Rev 64(2):617–660. https://doi.org/10.1152/physrev.1984.64.2.617

    Article  PubMed  CAS  Google Scholar 

  23. Folkow B (1982) Physiological aspects of primary hypertension. Physiol Rev 62(2):347–504. https://doi.org/10.1152/physrev.1982.62.2.347

    Article  PubMed  CAS  Google Scholar 

  24. Struijker Boudier HA, le Noble JL, Messing MW, Huijberts MS, le Noble FA, van Essen H (1992) The microcirculation and hypertension. J Hypertens Suppl 10(7):S147–S156. https://doi.org/10.1097/00004872-199212000-00016

    Article  PubMed  CAS  Google Scholar 

  25. Versari D, Daghini E, Virdis A, Ghiadoni L, Taddei S (2009) Endothelium-dependent contractions and endothelial dysfunction in human hypertension. Br J Pharmacol 157(4):527–536. https://doi.org/10.1111/j.1476-5381.2009.00240.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Marchesi C, Paradis P, Schiffrin EL (2008) Role of the renin–angiotensin system in vascular inflammation. Trends Pharmacol Sci 29(7):367–374. https://doi.org/10.1016/j.tips.2008.05.003

    Article  PubMed  CAS  Google Scholar 

  27. Safar ME, London GM (1987) Arterial and venous compliance in sustained essential hypertension. Hypertension 10(2):133–139. https://doi.org/10.1161/01.HYP.10.2.133

    Article  PubMed  CAS  Google Scholar 

  28. Navar LG (2010) Counterpoint: activation of the intrarenal renin–angiotensin system is the dominant contributor to systemic hypertension. J Appl Physiol 109(6):1998–2000. https://doi.org/10.1152/japplphysiol.00182.2010

    Article  PubMed  PubMed Central  Google Scholar 

  29. Esler M, Lambert E, Schlaich M (2010) Point: Chronic activation of the sympathetic nervous system is the dominant contributor to systemic hypertension. J Appl Physiol 109(6):1996–1998. https://doi.org/10.1152/japplphysiol.00182.2010

    Article  PubMed  Google Scholar 

  30. Gooch JL, Sharma AC (2014) Targeting the immune system to treat hypertension: where are we? Curr Opin Nephrol Hypertens 23(5):473–479. https://doi.org/10.1097/MNH.0000000000000052

    Article  PubMed  CAS  Google Scholar 

  31. WHO (2016) Raised blood pressure. World Health Organization. Global Health Observatory (GHO) data. Retrieved from https://web.archive.org/web/20160808122609; http://www.who.int/gho/ncd/risk_factors/blood_pressure_text/en/. Accessed 8 Aug 2016

  32. Lloyd-Jones D, Adams RJ, Brown TM et al (2010) Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121(7):e46–e215. https://doi.org/10.1161/CIRCULATIONAHA.109.192667

    Article  PubMed  Google Scholar 

  33. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS et al (2013) Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127:e6–e245

    PubMed  Google Scholar 

  34. Ellis D, Miyashita Y (2011) Primary hypertension and special aspects of hypertension in older children and adolescents. Adolesc Health Med Ther 2:45–62

    PubMed  PubMed Central  Google Scholar 

  35. Gupta R, Al-Odat NA, Gupta VP (1996) Hypertension epidemiology in India: meta-analysis of 50 years prevalence rates and blood pressure trends. J Hum Hypertens 10:465–472

    PubMed  CAS  Google Scholar 

  36. Sidhu S, Kamal N, Kumari K (2002) Incidence of hypertension among Punjabi population. In: Bhasin MK, Malik SK (eds) The science of man in service of man. University of Delhi, Delhi

    Google Scholar 

  37. Sidhu S, Kumari K, Prabhjot P (2005) Socio-demographic variables of hypertension among adult Punjabi females. J Hum Ecol 17(3):211–215

    Article  Google Scholar 

  38. Banerji M, Kusma YS, Das PK (2003) Prevalence of hypertension among an urban population of Bhubaneswar city, Orissa, India. J Hum Ecol 14:377–381

    Article  Google Scholar 

  39. Joseph A, Kutty VR, Soman CR (2000) High risk for coronary disease in Thiruvanthapuram city: a study of serum lipids and other factors. Indian Heart J 52:29–35

    PubMed  CAS  Google Scholar 

  40. Gupta R, Gupta VP, Sarma M, Bhatnagar S, Thanvi I, Sharma V (2002) Prevalence of coronary heart disease and coronary risk factors in an urban population, Jaipur Heart Watch-2. Indian Heart J 54:59–66

    PubMed  Google Scholar 

  41. Taneja SK, Mandral R (2007) Mineral factors controlling essential hypertension—a study in the Chandigarh, India population. Biol Trace Elem Res 120:61–73

    Article  PubMed  CAS  Google Scholar 

  42. Samal KK, Kar CR, Sinha AK (1990) Serum zinc and copper levels in acute myocardial infarction. Recent Adv Nutr 2:177–179

    Google Scholar 

  43. Privitera JR, Stang A (1996) Silent clots—life’s biggest killers. The Catacombs Press, Covina, CA, pp 1–55

    Google Scholar 

  44. Chattopadhyay P, Joshi H, Samaddar K (1990) Hair cadmium level of smoker and nonsmoker human volunteers in and around Calcutta city. Bull Environ Contam Toxicol 45:177–180

    Article  PubMed  CAS  Google Scholar 

  45. Wolfsperger M, Hauser G (1994) Heavy metals in human hair samples from Austria and Italy: influence of sex and smoking habits. Sci Total Environ 156(3):235–242

    Article  PubMed  CAS  Google Scholar 

  46. Hossain K, Suzuki T, Hasibuzzaman MM, Islam MS, Rahman A, Paul SK, Tanu T, Hossain S, Saud ZA, Rahman M, Nikkon F, Miyataka H, Himeno S, Nohara K (2017) Chronic exposure to arsenic, LINE-1 hypomethylation, and blood pressure: a cross-sectional study in Bangladesh (2017). Environ Health 16:20. https://doi.org/10.1186/s12940-017-0231-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Navas-Acien A, Schwartz BS, Rothenberg SJ, Hu H, Silbergeld EK, Guallar E (2008) Bone lead levels and blood pressure end points: a meta-analysis. Epidemiology 19:496–504

    Article  PubMed  Google Scholar 

  48. Chockalingam A (2007) Impact of world hypertension day. Canad J Cardiol 23(7):517–519. https://doi.org/10.1016/S0828-282X(07)70795-X

    Article  Google Scholar 

  49. Luma GB, Spiotta RT (2006) Hypertension in children and adolescents. Am Fam Physician 73(9):1558–1568

    PubMed  Google Scholar 

  50. WHO (2009) Global health risks: mortality and burden of disease attributable to selected major risks. World Health Organization. Retrieved from https://apps.who.int/iris/handle/10665/44203. Accessed 14 Feb 2012

  51. Law M, Wald N, Morris J (2003) Lowering blood pressure to prevent myocardial infarction and stroke: a new preventive strategy. Health Technol Assess 7(31):1–94. https://doi.org/10.3310/hta7310

    Article  PubMed  CAS  Google Scholar 

  52. Aburto NJ, Hanson S, Gutierrez H, Hooper L, Elliott P, Cappuccio FP (2013) Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ 346:f1378

    Article  PubMed  PubMed Central  Google Scholar 

  53. Aburto NJ, Ziolkovska A, Hooper L, Elliott P, Cappuccio FP, Meerpohl JJ (2013) Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ 346:f1326. https://doi.org/10.1136/bmj.f1326

    Article  PubMed  PubMed Central  Google Scholar 

  54. He FJ, Li J, Macgregor GA (2013) Effect of longer term modest salt reduction on blood pressure: Cochrane Database systematic review and meta-analysis of randomized trials. BMJ 30 (4): 346:f1325. https://doi.org/10.1002/14651858.CD004937

    Article  Google Scholar 

  55. Karppanen H, Mervaala E (2006) Sodium intake and hypertension. Progr Cardiovas Dis 49(2):59–75. https://doi.org/10.1016/j.pcad.2006.07.001

    Article  CAS  Google Scholar 

  56. Yokoyama Y, Nishimura K, Barnard ND, Takegami M, Watanabe M, Sekikawa A, Okamura T, Miyamoto Y (2014) Vegetarian diets and blood pressure. JAMA Internal Med 174(4):577–587. https://doi.org/10.1001/jamainternmed.2013.14547

    Article  Google Scholar 

  57. National Heart, Lung, and Blood Institute (2015) How is high blood pressure treated? National Institutes of Health. Retrieved from https://web.archive.org/web/20160406073903/; http://www.nhlbi.nih.gov/health/health-topics/topics/hbp/treatment. Accessed 6 Apr 2016

  58. Adrogué HJ, Madias NE (2007) Sodium and potassium in the pathogenesis of hypertension. New Engl J Med 356(19):1966–1978. https://doi.org/10.1056/NEJMra064486

    Article  PubMed  Google Scholar 

  59. Perez V, Chang ET (2014) Sodium-to-potassium ratio and blood pressure, hypertension, and related factors. Adv Nutr (Bethesda Md) 5:712–741. https://doi.org/10.3945/an.114.006783

    Article  CAS  Google Scholar 

  60. Saltman P (1983) Trace elements and blood pressure. Ann Intern Med 98:823–827

    Article  PubMed  CAS  Google Scholar 

  61. Tubeck S (2006) Role of trace elements in primary arterial hypertension: is mineral water style or prophylaxis? Biol Trace Elem Res 114:1–5

    Article  Google Scholar 

  62. Afridi HI, Kazi TG, Kazi GH, Jamali MK, Shar GQ (2006) Essential trace and toxic element distribution in the scalp hair of Pakistani myocardial infarction patients and controls. Biol Trace Elem Res 113:19–34

    Article  PubMed  CAS  Google Scholar 

  63. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ et al (2003) Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 42(6):1206–1252. https://doi.org/10.1161/01.HYP.0000107251.49515.c2

    Article  PubMed  CAS  Google Scholar 

  64. Society of Hypertension-European Society of Cardiology Guidelines Committee (2003) European Society of Hypertension-European Society of Cardiology guidelines for the management of arterial hypertension. J Hypertens 21:1011–1063

    Article  Google Scholar 

  65. Whitworth JA (2003) World Health Organization. International Society of Hypertension Writing Group. 2003 World Health Organization (WHO) International Society of Hypertension (ISH) statement on management of hypertension. J Hypertens 21:1983–1992

    Article  PubMed  Google Scholar 

  66. Williams B, Poulter NR, Brown MJ (2004) British Hypertension Society guidelines for hypertension management. 2004(BHS -IV): summary. BMJ 328:634–640

    Article  PubMed  PubMed Central  Google Scholar 

  67. Young DB, Lin H, McCabe RD (1995) Potassium’s cardiovascular protective mechanisms. Am J Physiol 268(4 Pt 2):R825–R837

    PubMed  CAS  Google Scholar 

  68. INTERSALT Cooperative Research Group (1988) INTERSALT: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. BMJ 297:319–328

    Article  Google Scholar 

  69. Efford J, Philips A, Thomsoon AG (1990) Migration and geographic variations in blood pressure in Britain. BMJ 300:291–295

    Article  Google Scholar 

  70. Hajjar I, Kotchen T (2003) Regional variations of blood pressure in the United States are associated with regional variations in dietary intakes: the NHANES-III data. J Nutr 133:211–214

    Article  PubMed  CAS  Google Scholar 

  71. Fridovich I, Freeman B (1986) Antioxidant defense in the lung. Annu Rev Physiol 48:693–702

    Article  PubMed  CAS  Google Scholar 

  72. Marklund SL, Holme E, Hellner L (1982) Superoxide dismutase in extracellular fluids. Clin Chim Acta 126:41–51

    Article  PubMed  CAS  Google Scholar 

  73. Sanchez-Muniz FJ, Bastida S, Cuesta C, Domingo A (1996) Lipaemia and lipoproteinaemia in Spanish male non-smoker population consuming sunflower oil. Z Erna¨hrungswiss 35:259–265

    Article  PubMed  CAS  Google Scholar 

  74. Loyke HFL (1991) Copper and zinc in experimental hypertension. Biol Trace Elem Res 29(1):45–49

    Article  PubMed  CAS  Google Scholar 

  75. Liu WM, Zhu ZG, Leng HX (2004) Analysis of the contents of K, Na, Ca, Mg, Zn, Cu, Fe and Mn in serum of middle and old-aged hypertensive patients. Guang Pu Xue Yu Guang Pu Fen Xi 24(3):360–362

    PubMed  CAS  Google Scholar 

  76. Sanna E, Liguori A, Palmas L, Soro MR, Floris G (2003) Blood and hair lead levels in boys and girls living in two Sardinian towns at different risks of lead pollution. Ecotoxicol Environ Saf 55:293–299

    Article  PubMed  CAS  Google Scholar 

  77. Gonzalez-Munoz MJ, Jose F, Muniz S, Rodenas S, Sevillano MI, Larrea Marín MT, Bastida S (2010) Differences in metal and metalloid content in the hair of normo- and hypertensive postmenopausal women. Hypertension Res 33:219–224. https://doi.org/10.1038/hr.2009.221

    Article  CAS  Google Scholar 

  78. Ahamed M, Singh S, Behari JR, Kumar A, Siddiqui MKJ (2007) Interaction of lead with some essential trace metals in the blood of anaemic children from Lucknow India. Clinica Chimica Acta 377(1-2):92–97

    Article  CAS  Google Scholar 

  79. Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5(2):47–58. https://doi.org/10.2478/v10102-012-0009-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Dart RC, Hurlbut KM, Boyer-Hassen LV (2004) Lead. In: Dart RC (ed) Medical Toxicology, 3rd edn. Lippincott Williams & Wilkins, p 1426

    Google Scholar 

  81. Chen MD, Sheu WH (2001) Plasma status of selected minerals in hypertensive men with and without insulin resistance. J Trace Elem Med Biol 14:228–231

    Article  PubMed  CAS  Google Scholar 

  82. He BP, Li DF, Ma JW, Chen J, Liu XY, Zhang XR, Xu JM (2004) Determination of trace copper and zinc in hypertension complicated with hyperlipemia by atomic absorption spectrophotometry. Guang Pu Xue Yu Guang Pu Fen Xi 24(6):741–743

    PubMed  CAS  Google Scholar 

  83. Tang YR, Zhang SQ, Xiong Y, Zhao Y, Fu H, Zhnag HP, Xiong KM (2003) Studies of five microelements contents in human serum, hair, and fingernails correlated with aged hypertension and coronary heart disease. Biol Trace Elem Res 92(2):97–104

    Article  PubMed  CAS  Google Scholar 

  84. Lopez C, Occon DC, Mengo MS, Frasquet M, Derarmino VA (1991) Study of zinc and copper serum levels in dislipemias. Therapie 46(1):17–20

    PubMed  CAS  Google Scholar 

  85. Ripa S, Ripa R (1994) Zinc and arterial pressure. Minerva Med 85(9):455–459

    PubMed  CAS  Google Scholar 

  86. Davydenko NV, Smirnova IP, Kvasha EA, Gorbas IM, Koblians KAV (1995) Interrelationship between dietary intake of minerals and prevalence of hypertension. Vopr Pitan 6:17–19

    Google Scholar 

  87. Lee DY, Prasad AS, Hydrick-Adair C, Brewer G, Johnson PE (1993) Homeostasis of zinc in marginal human zinc deficiency: role of absorption and endogenous excretion of zinc. J Lab Clin Med 122:549–556

    PubMed  CAS  Google Scholar 

  88. Vivoli G, Bergomi M, Roverti S, Pinotiti M, Caselgrands E (1995) Zinc, copper and zinc-or copper dependent enzymes in human hypertension. Biol Trace Elem Res 49:97–103

    Article  PubMed  CAS  Google Scholar 

  89. Swaminathan R (2003) Magnesium metabolism and its disorders. Clin Biochem Rev 24:47–66

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Gottlieb SS, Fisher ML, Pressel MD (1993) Effects of intravenous magnesium sulfate on arrhythmias in patients with congestive heart failure. Am Heart J 125:1646–1650

    Article  Google Scholar 

  91. Ekmekci OB, Donma O, Tunckale A (2003) Angiotensin-converting enzyme and metals in untreated essential hypertension. Boil Trace Elem Res 95:203–110

    Article  CAS  Google Scholar 

  92. Jaitovich A, Bertorello AM (2010) Salt, Na(+), K(+)-ATPase and hypertension. Life Sci 86:73–78

    Article  PubMed  CAS  Google Scholar 

  93. Jee SH, Miller ER III, Guallar E, Singh VK, Singh VK, Appel LJ, Klag MJ (2002) The effect of magnesium supplementation on blood pressure: a meta-analysis of randomized clinical trials. Am J Hypertens 15:691–696

    Article  PubMed  CAS  Google Scholar 

  94. Michon P (2002) The level of total and ionized Mg fraction based on the biochemical analysis of blood and hair and the effect of magnesium supplementation (Slow Mag B6) on selected parameters in hypertensive disease. Ann Acad Med Stetin 48:85–97

    PubMed  Google Scholar 

  95. Yanagisawa H, Sato M, Nodera M, Wada O (2004) Excessive Zinc intake elevates systemic blood pressure levels in normotensive rats-potential role of superoxide-induced oxidative stress. J Hypertens 22(3):543–550

    Article  PubMed  CAS  Google Scholar 

  96. Klevay LM (1987) Hypertension in rats due to copper deficiency. Nutr Rep Int 35:999–1005

    CAS  Google Scholar 

  97. Sandstead HH (1995) Requirements and toxicity of essential trace elements, illustrated by zinc and copper. Am J Clin Nutr 61(3):621S–624S

    Article  PubMed  CAS  Google Scholar 

  98. Allen GD, Klevay LM (1994) Copper: an antioxidant nutrient for cardiovascular health. Curr Opin Lipidol 5(1):220–208

    Article  Google Scholar 

  99. Duda G, Suliburska J, Wójciak R et al (2006) Analysis of dietary intake of iron, copper and zinc and their serum and hair levels in hypertensive adults. Polish J Environ Stud 15:252–255

    Google Scholar 

  100. Saari JT, Schuschke DA (2008) Cardiovascular effects of dietary copper deficiency. BioFactors 10:359–375

    Article  Google Scholar 

  101. Klevay LM (2000) Cardiovascular disease from copper deficiency—a history. J Nutr 130:489S–492S

    Article  PubMed  CAS  Google Scholar 

  102. Duda G, Suliburska J, Wójciak RW et al (2004) Levels of selected microelements in hypertensive subjects. In: Macro and trace elements. SCHUBERT-Verlag Leipzig Friedrich-Schiller-Universitat, Jena, pp 930–934

    Google Scholar 

  103. Suliburska J, Bogdański P, Pupek-Musialik D, Krejpcio Z (2011) Dietary intake and serum and hair concentrations of minerals and their relationship with serum lipids and glucose levels in hypertensive and obese patients with insulin resistance. Biol Trace Elem Res 139:137–150. https://doi.org/10.1007/s12011-010-8650-0

    Article  PubMed  CAS  Google Scholar 

  104. Prasad AS (1996) Zinc: the biology and therapeutics of an ion. Ann Intern Med 125:142–143

    Article  PubMed  CAS  Google Scholar 

  105. Schuschke DA (1997) Dietary copper in the physiology of the microcirculation. J Nutr 127:2274–2281

    Article  PubMed  CAS  Google Scholar 

  106. Cherasse Y, Urade Y (2017) Dietary Zinc acts as a sleep modulator. Int J Mol Sci 18(11):2334. https://doi.org/10.3390/ijms18112334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Satyanarayana U, Chakrapani U (2008) Essentials of biochemistry, 2nd edn. Kolkata Arunabha Sen Book and Allied (P) Ltd, pp 210–227

    Google Scholar 

  108. Vest KE, Hashemi HF, Cobine PA (2013) Chapter 13: The copper metallome in eukaryotic cells. In: Lucia B (ed) Metallomics and the cell. Metal Ions in Life Sciences. Springer, p 12. https://doi.org/10.1007/978-94-007-5561-10_12

    Chapter  Google Scholar 

  109. Steffen LM, Kroenke CH, Yu X, Pereira MA, Slattery ML, Horn LV, Gross MD, Jacobs DR (2005) Associations of plant food, dairy product, and meat intakes with 15-y incidence of elevated blood pressure in young black and white adults: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Clin Nutr 82(6):1169–1177. https://doi.org/10.1093/ajcn/82.6.1169

    Article  PubMed  CAS  Google Scholar 

  110. Afridi HI, Kazi TG, Jamali MK, Kazi GH, Arain MB, Jalbani N, Shar GQ (2006) Analysis of heavy metals in scalp hair samples of hypertensive patients by conventional and microwave digestion methods. Spectr Lett 39:203–214

    Article  CAS  Google Scholar 

  111. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, Obarzanek E, Conlin PR, Miller ER III, Simons-Morton DG et al (2001) Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med 344:3–10

    Article  PubMed  CAS  Google Scholar 

  112. North-western University (2011) Sodium (PDF)Retrieved from https://web.archive.org/web/20110823114818/; http://nuinfo-proto4.northwestern.edu/nutrition/factsheets/sodium.pdf. Accessed 23 Aug 2011

  113. Campbell N (1987) Biology. Benjamin/Cummings, p 795

    Google Scholar 

  114. Srilakshmi B (2006) Nutrition science (2nd ed.). New Age International, p 318. Retrieved from http://www.books.google.com. Accessed 1 Feb 2016

  115. Graudal NA, Galloe AM, Garred P (1998) Effects of sodium restriction on blood pressure, renin, aldosterone, catecholamines, cholesterols, and triglyceride: a meta-analysis. JAMA 279:1383–1391

    Article  PubMed  CAS  Google Scholar 

  116. Brunner HR, Laragh JH, Baer L, Newton MA, Goodwin FT, Krako LR, Bard RH, Buhler FR (1972) Essential hypertension: renin and aldosterone, heart attack and stroke. N Engl J Med 286:441–449

    Article  PubMed  CAS  Google Scholar 

  117. Grassi G, Dell’Oro R, Seravalle G, Foglia G, Trevano FQ, Mancia G (2002) Short- and long-term neuroadrenergic effects of moderate dietary sodium restriction in essential hypertension. Circulation 106:1957–1961

    Article  PubMed  CAS  Google Scholar 

  118. McGuire M, Beerman KA (2011) Nutritional sciences: from fundamentals to food. Cengage Learning, p 546

    Google Scholar 

  119. Catanozi S, Rocha JC, Passarelli M, Guzzo ML, Alves C, Furukawa LN, Nunes VS, Nakandakare ER, Heimann JC, Quintao EC (2003) Dietary sodium chloride restriction enhances aortic wall lipid storage and raises plasma lipid concentration in LDL receptor knockout mice. J Lipid Res 44:727–732

    Article  PubMed  CAS  Google Scholar 

  120. Grassi G, Cattaneo BM, Seravalle G, Lanfranchi A, Bolla G, Mancia G (1997) Baroreflex impairment by low sodium diet in mild or moderate essential hypertension. Hypertension 29:802–807

    Article  PubMed  CAS  Google Scholar 

  121. Girardin E, Caverzasio J, Iwai J, Bonjour JP, Muller AF, Grandchamp A (1980) Pressure natriuresis in isolated kidneys from hypertension-prone and hypertension-resistant rats (Dahl rats). Kidney Int 18:10–19

    Article  PubMed  CAS  Google Scholar 

  122. Marketou ME, Maragkoudakis S, Anastasiou I, Nakou H, Plataki M, Vardas PE, Parthenakis FI (2019) Salt-induced effects on microvascular function: a critical factor in hypertension mediated organ damage. J Clin Hypertens 21:749–757

    Article  Google Scholar 

  123. Grillo A, Salvi L, Coruzzi P, Salvi P (1970) Parati G (2019) Review - Sodium intake and hypertension. Nutrients 11:1–16. https://doi.org/10.3390/nu11091970

    Article  CAS  Google Scholar 

  124. Dumont O, Pinaud F, Guihot AL, Baufreton C, Loufrani L, Henrion D (2008) Alteration in flow (shear stress)-induced remodelling in rat resistance arteries with aging: Improvement by a treatment with hydralazine. Cardiovasc Res 77:600–608

    Article  PubMed  CAS  Google Scholar 

  125. Zhu J, Drenjancevic-Peric I, McEwen S, Friesema J, Schulta D, Yu M, Roman RJ, Lombard JH (2006) Role of superoxide and angiotensin II suppression in salt-induced changes in endothelial Ca2+ signaling and NO production in rat aorta. Am J Physiol Heart Circ Physiol 291:H929–H938

    Article  PubMed  CAS  Google Scholar 

  126. Wang J, Roman RJ, Falck JR, de la Cruz L, Lombard JH (2005) Effect of high-salt diet on CYP450-4A omega-hydroxylase expression and active tone in mesenteric resistance arteries. Am J Physiol Heart Circ Physiol 288:H1557–H1565

    Article  PubMed  CAS  Google Scholar 

  127. Lukaszewicz KM, Falck JR, Manthati VL, Lombard JH (2013) Introgression of Brown Norway CYP4A genes on to the Dahl salt-sensitive background restores vascular function in SS-5(BN) consomic rats. Clin Sci 124:333–342

    Article  CAS  Google Scholar 

  128. Abularrage CJ, Sidawy AN, Aidinian G, Singh N, Weiswasser JM, Arora S (2005) Evaluation of the microcirculation in vascular disease. J Vasc Surg 42:574–581

    Article  PubMed  Google Scholar 

  129. D’Elia L, Galletti F, La FE, Sabino P, Strazzullo P (2018) Effect of dietary sodium restriction on arterial stiffness: systematic review and meta-analysis of the randomized controlled trials. J Hypertens 36:734–743

    Article  PubMed  Google Scholar 

  130. Salvi P (2017) Pulse waves. How vascular hemodynamics affects blood pressure, 2nd edn. Springer Nature, Heidelberg, Germany

    Book  Google Scholar 

  131. Harvey A, Montezano AC, Lopes RA, Rios F, Touyz RM (2016) Vascular fibrosis in aging and hypertension: molecular mechanisms and clinical implications. Can J Cardiol 32:659–668

    Article  PubMed  Google Scholar 

  132. Duncan MR, Frazier KS, Abramson S, Williams S, Klapper H, Huang X, Grotendorst GR (1999) Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: down-regulation by cAMP. FASEB J 13:1774–1786

    Article  PubMed  CAS  Google Scholar 

  133. Wang M, Kim SH, Monticone RE, Lakatta EG (2015) Matrix metalloproteinases promote arterial remodeling in aging, hypertension, and atherosclerosis. Hypertension 65:698–703

    Article  PubMed  CAS  Google Scholar 

  134. CDC (2018) The links between sodium, potassium, and your blood pressure. Centers for Disease Control and Prevention. Retrieved from https://web.archive.org/web/20210117045956/; https://www.cdc.gov/salt/research_reviews/sodium_potassium_blood_pressure.htm. Accessed 17 Jan 2021

  135. Mente A et al (2016) Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: a pooled analysis of data from four studies. Lancet 388(10043):465–475. https://doi.org/10.1016/S0140-6736(16)30467-6

    Article  PubMed  CAS  Google Scholar 

  136. Lawes CM, Vander Hoorn S, Rodgers A (2008) International Society of Hypertension: global burden of blood-pressure-related disease, 2001 (PDF). Lancet 371(9623):1513–1518. https://doi.org/10.1016/S0140-6736(08)60655-8

    Article  PubMed  Google Scholar 

  137. US Food and Drug Administration (2018) Use the nutrition facts label to reduce your intake of sodium in your diet. Retrieved from https://web.archive.org/web/20180125015301/; https://www.fda.gov/Food/LabelingNutrition/ucm315393.htm. Accessed 25 Jan 2018

  138. Graudal NA, Hubeck-Graudal T, Jurgens G (2012) Effects of low-sodium diet vs. high-sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride (Cochrane Review). Am J Hypertens 25:1–15

    Article  PubMed  CAS  Google Scholar 

  139. Geleijnse JM, Kok FJ, Grobbee DE (2004) Impact of dietary and lifestyle factors on the prevalence of hypertension in Western populations (PDF). Eur J Public Health 14(3):235–239. https://doi.org/10.1093/eurpub/14.3.235

    Article  PubMed  Google Scholar 

  140. Whelton PK, He J (2014) Health effects of sodium and potassium in humans. Curr Opin Lipidol 25:75–79

    Article  PubMed  CAS  Google Scholar 

  141. Potts WTW, Parry G (1964) Osmotic and ionic regulation in animals. Pergamon Press

    Google Scholar 

  142. Whelton PK, He J, Cutler JA, Brancati FL, Appel LJ, Follmann D, Klag MJ (1997) Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA 277(20):1624–1632. https://doi.org/10.1001/jama.1997.03540440058033

    Article  PubMed  CAS  Google Scholar 

  143. Subramanya AR, Ellison DH (2014) Distal convoluted tubule. Clin J Am Soc Nephrol 9:2147–2163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Vitzthum H, Seniuk A, Schulte LH, Müller ML, Hetz H, Ehmke H (2014) Functional coupling of renal K+ and Na+ handling causes high blood pressure in Na+ replete mice. J Physiol 592:1139–1157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Gritter M, Rotmans JI, Hoorn EJ (2019) Role of dietary K+ in natriuresis, blood pressure reduction, cardiovascular protection, and renoprotection – brief review. Hypertension 73:15–23. https://doi.org/10.1161/HYPERTENSIONAHA.118.11209

    Article  PubMed  CAS  Google Scholar 

  146. Terker AS, Zhang C, McCormick JA, Lazelle RA, Zhang C, Meermeier NP, Siler DA, Park HJ, Fu Y, Cohen DM, Weinstein AM, Wang W, Yang C, Ellison DH (2015) Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metabol 21:39–50. https://doi.org/10.1016/j.cmet.2014.12.006

    Article  CAS  Google Scholar 

  147. Rengarajan S, Lee DH, Oh YT, Delpire E, Youn JH, McDonough AA (2014) Increasing plasma [K+] by intravenous potassium infusion reduces NCC phosphorylation and drives kaliuresis and natriuresis. Am J Physiol Renal Physiol 306:F1059–F1068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Sorensen MV, Grossmann S, Roesinger M, Gresko N, Todkar AP, Barmettler G, Ziegler U, Odermatt A, Loffing-Cueni D, Loffing J (2013) Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice. Kidney Int 83:811–824

    Article  PubMed  CAS  Google Scholar 

  149. van der Lubbe N, Moes AD, Rosenbaek LL, Schoep S, Meima ME, Danser AH, Fenton RA, Zietse R, Hoorn EJ (2013) K+-induced natriuresis is preserved during Na+ depletion and accompanied by inhibition of the Na+-Cl- cotransporter. Am J Physiol Renal Physiol 305:F1177–F1188. https://doi.org/10.1152/ajprenal.00201.2013

    Article  PubMed  CAS  Google Scholar 

  150. Shoda W, Nomura N, Ando F, Mori Y, Mori T, Sohara E, Rai T, Uchida S (2017) Calcineurin inhibitors block sodium-chloride cotransporter dephosphorylation in response to high potassium intake. Kidney Int 91:402–411. https://doi.org/10.1016/j.kint.2016.09.001

    Article  PubMed  CAS  Google Scholar 

  151. Mente A, O’Donnell MJ, Rangarajan S et al (2014) PURE Investigators. Association of urinary sodium and potassium excretion with blood pressure. N Engl J Med 371:601–611. https://doi.org/10.1056/NEJMoa1311989

    Article  PubMed  CAS  Google Scholar 

  152. Siani A, Strazzullo P, Giacco A, Pacioni D, Celentano E, Mancini M (1991) Increasing the dietary potassium intake reduces the need for antihypertensive medication. Ann Intern Med 115:753–759

    Article  PubMed  CAS  Google Scholar 

  153. Taddei S, Mattei P, Virdis A, Sudano I, Ghiadoni L, Salvetti A (1994) Effect of potassium on vasodilation to acetylcholine in essential hypertension. Hypertension 23:485–490

    Article  PubMed  CAS  Google Scholar 

  154. Zhou MS, Kosaka H, Yoneyama H (2000) Potassium augments vascular relaxation mediated by nitric oxide in the carotid arteries of hypertensive Dahl rats. Am J Hypertens 13(6 pt 1):666–672

    Article  PubMed  CAS  Google Scholar 

  155. Zicha J, Dobešová Z, Behuliak M, Kuneš J, Vaněčková I (2011) Preventive dietary potassium supplementation in young salt-sensitive Dahl rats attenuates development of salt hypertension by decreasing sympathetic vasoconstriction. Acta Physiol (Oxf) 202:29–38. https://doi.org/10.1111/j.1748-1716.2010.02248.x

    Article  PubMed  CAS  Google Scholar 

  156. Moore-Ede MC (1986) Physiology of the circadian timing system: predictive versus reactive homeostasis. Am J Physiol 250:R737–R752

    PubMed  CAS  Google Scholar 

  157. Abhinav G, Spertus JA, Gosch K, Venkitachalam L, Jones PG, Van den BG, Kosiborod M (2012) Serum potassium levels and mortality in acute myocardial infarction. JAMA 307(2):157–164. https://doi.org/10.1001/jama.2011.1967

    Article  Google Scholar 

  158. Smyth A, Dunkler D, Gao P et al (2014) The relationship between estimated sodium and potassium excretion and subsequent renal outcomes. Kidney Int 86(6):1205–1212. https://doi.org/10.1038/ki.2014.214

    Article  PubMed  CAS  Google Scholar 

  159. Du S, Batis C, Wang H, Zhang B, Zhang J, Popkin BM (2014) Understanding the patterns and trends of sodium intake, potassium intake, and sodium to potassium ratio and their effect on hypertension in China. Am J Clin Nutr 99:334–343

    Article  PubMed  CAS  Google Scholar 

  160. Clin Calc Drug Stats (2020) Drug usage statistics, United States (2013- 2020)- Potassium Chloride. ClinCalc.om, pharmacy. Retrieved from https://clincalc.com/DrugStats/Drugs/PotassiumChloride

  161. D’Elia L, Barba G, Cappuccio F, Strazzullo P (2011) Potassium intake, stroke, and cardiovascular disease: a meta-analysis of prospective studies. J Am Coll Cardiol 57(10):1210–1219. https://doi.org/10.1016/j.jacc.2010.09.070

    Article  PubMed  CAS  Google Scholar 

  162. He FJ, Marciniak M, Carney C, Markandu ND, Anand V, Fraser WD, Dalton RN, Kaski JC, MacGregor GA (2010) Effects of potassium chloride and potassium bicarbonate on endothelial function, cardiovascular risk factors, and bone turnover in mild hypertensives. Hypertension 55(3):681–688. https://doi.org/10.1161/HYPERTENSIONAHA.109.147488

    Article  PubMed  CAS  Google Scholar 

  163. Kurtz TW, DiCarlo SE, Pravenec M, Morris RC Jr (2017) The American Heart association scientific statement on salt sensitivity of blood pressure: prompting consideration of alternative conceptual frameworks for the pathogenesis of salt sensitivity? J Hypertens 35:2214–2225

    Article  PubMed  CAS  Google Scholar 

  164. Elijovich F, Weinberger MH, Anderson CA, Appel LJ, Bursztyn M, Cook NR, Dart RA, Newton-Cheh CH, Sacks FM, Laer CL et al (2016) Salt sensitivity of blood pressure: a scientific statement from the American Heart Association. Hypertension 68:e7–e46

    Article  PubMed  CAS  Google Scholar 

  165. National Academies of Sciences, Engineering and Medicine: Health and Medicine Division; Food and Nutrition Board (2005) In: Oria M, Harrison M, Stallings VA (eds) Committee to review the Dietary Reference Intakes for Water, Potassium, Sodium, Chloride and Sulfate. National Academies Press (US), Washington (DC)

    Google Scholar 

  166. National Academies of Sciences, Engineering and Medicine: Health and Medicine Division; Food and Nutrition Board (2019) In: Oria M, Harrison M, Stallings VA (eds) Committee to review the Dietary Reference Intakes for sodium and potassium. National Academies Press (US), Washington (DC)

    Google Scholar 

  167. National Academies of Sciences, Engineering and Medicine: Health and Medicine Division; Food and Nutrition Board (1997) In: Oria M, Harrison M, Stallings VA (eds) Committee to review the Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, Vitamin D and Fluoride. National Academies Press (US)., Washington (DC)

    Google Scholar 

  168. National Academies of Sciences, Engineering and Medicine: Health and Medicine Division; Food and Nutrition Board (2011) In: Oria M, Harrison M, Stallings VA (eds) Committee to review the Dietary Reference Intakes for Calcium and Vitamin D. National Academies Press (US), Washington (DC)

    Google Scholar 

  169. National Academies of Sciences, Engineering and Medicine: Health and Medicine Division; Food and Nutrition Board (2001) In: Oria M, Harrison M, Stallings VA (eds) Committee to review the Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc. National Academies Press (US), Washington (DC)

    Google Scholar 

  170. Vaskonen T, Mervaala E, Sumuvuori V, Seppänen-Laakso T, Karppanen H (2002) Effects of calcium and plant sterols on serum lipids in obese Zucker rats on a low-fat diet. Br J Nutr 87:239–245

    Article  PubMed  CAS  Google Scholar 

  171. Zemel MB, Shi H, Greer B, Dirienzo D, Zemel PC (2000) Regulation of adiposity by dietary calcium. FASEB J 14:1132–1138

    Article  PubMed  CAS  Google Scholar 

  172. de Wit NJ, Bosch-Vermeulen H, de Groot PJ, Hooiveld GJ, Bromhaar MM, Jansen J, Müller M, van der Meer R (2008) The role of the small intestine in the development of dietary fat-induced obesity and insulin resistance in C57BL/6J mice. BMC Med Genomics 1:14

    Article  PubMed  PubMed Central  Google Scholar 

  173. de Wit NJ, Bosch-Vermeulen H, Oosterink E, Müller M, van der Meer R (2011) Supplementary dietary calcium stimulates faecal fat and bile acid excretion, but does not protect against obesity and insulin resistance in C57BL/6J mice. Br J Nutr 105:1005–1011

    Article  PubMed  Google Scholar 

  174. van Meijl LE, Vrolix R, Mensink RP (2008) Dairy product consumption and the metabolic syndrome. Nutr Res Rev 21:148–157

    Article  PubMed  Google Scholar 

  175. Carlson LA, Olsson AG, Orö L, Rössner S (1971) Effects of oral calcium upon serum cholesterol and triglycerides in patients with hyperlipidemia. Atherosclerosis 14:391–400

    Article  PubMed  CAS  Google Scholar 

  176. Karanja N, Morris CD, Illingworth DR, McCarron DA (1987) Plasma lipids and hypertension: response to calcium supplementation. Am J Clin Nutr 45:60–65

    Article  PubMed  CAS  Google Scholar 

  177. De Bacquer D, De Henauw S, De Backer G, Kornitzer M (1994) Epidemiological evidence for an association between serum calcium and serum lipids. Atherosclerosis 108:193–200

    Article  PubMed  Google Scholar 

  178. Reid IR, Mason B, Horne A, Ames R, Clearwater J, Bava U, Orr-Walker B, Wu F, Evans MC, Gamble GD (2002) Effects of calcium supplementation on serum lipid concentrations in normal older women: a randomized controlled trial. Am J Med 112:343–347

    Article  PubMed  CAS  Google Scholar 

  179. Lorenzen JK, Nielsen S, Holst JJ, Tetens I, Rehfeld JF, Astrup A (2007) Effect of dairy calcium or supplementary calcium intake on postprandial fat metabolism, appetite, and subsequent energy intake. Am J Clin Nutr 85:678–687

    Article  PubMed  CAS  Google Scholar 

  180. Belizan JM, Villar J, Pineda O, Gonzalez AE, Sainz E, Garrera G, Sibrian R (1983) Reduction of blood pressure with calcium supplementation in young adults. J Am Med Assoc 249:1161–1165

    Article  CAS  Google Scholar 

  181. Cormick G, Ciapponi A, Caerata ML, Belizán JM (2015) Calcium supplementation for prevention of primary hypertension. Cochrane Database Syst Rev 30:CD010037

    Google Scholar 

  182. Dickinson HO, Nicolson DJ, Cook JV, Campbell F, Beyer FR, Ford GA, Mason J (2006) Calcium supplementation for the management of primary hypertension in adults. Cochrane Database Syst Rev 19(2):CD004639. https://doi.org/10.1002/14651858.CD004639

    Article  Google Scholar 

  183. McCarron DA, Morris CD, Henry HJ, Stanton JL (1984) Blood pressure and nutrient intake in the United States. Nutr Today 19:14–23

    Article  Google Scholar 

  184. Skowrońska-Jóźwiak E, Jaworski M, Lorenc R, Małgorzata Karbownik-Lewińska M, Lewiński A (2017) Low dairy calcium intake is associated with overweight and elevated blood pressure in Polish adults, notably in premenopausal women. Public Health Nutr 20(4):630–637. https://doi.org/10.1017/S1368980016002706

    Article  PubMed  Google Scholar 

  185. Schröder H, Schmelz E, Marrugat J (2002) Relationship between diet and blood pressure in a representative Mediterranean population. Eur J Nutr 41:161–167

    Article  PubMed  Google Scholar 

  186. Griffith LE, Guyatt GH, Cook RJ, Bucher HC, Cook DJ (1999) The influence of dietary and non-dietary calcium supplementation on blood pressure: an updated metaanalysis of randomized controlled trials. Am J Hypertens 12:84–92

    Article  PubMed  CAS  Google Scholar 

  187. van Mierlo LA, Arends LR, Streppel MT, Zeegers MP, Kok FJ, Grobbee DE, Geleijnse JM (2006) Blood pressure response to calcium supplementation: a meta-analysis of randomized controlled trials. J Hum Hypertens 20:571–580

    Article  PubMed  Google Scholar 

  188. Mi-Hyun K, So Young B, Mi-Kyeong C (2012) Daily calcium intake and its relation to blood pressure, blood lipids, and oxidative stress biomarkers in hypertensive and normotensive subjects. Nutr Res Pract 6(5):421–428

    Article  Google Scholar 

  189. Belizán JM, Villar J, Self S, Pineda O, González I, Sainz E (1984) The mediating role of the parathyroid gland in the effect of low calcium intake on blood pressure in the rat. Arch Latinoam Nutr 34:666–675

  190. Baksi SN, Abhold RH, Speth RC (1989) Low-calcium diet increases blood pressure and alters peripheral but not central angiotensin II binding sites in rats. J Hypertens 7:423–427

    Article  PubMed  CAS  Google Scholar 

  191. Takahashi N, Yuasa S, Shoji T, Miki S, Fujioka H, Uchida K, Sumikura T, Takamitsu Y, Yura T, Matsuo H (1996) Effect of low dietary calcium intake on blood pressure and pressure natriuresis response in rats: a possible role of the renin-angiotensin system. Blood Press 5:121–127

    Article  PubMed  Google Scholar 

  192. McCarron DA (1997) Role of adequate dietary calcium intake in the prevention and management of salt-sensitive hypertension. Am J Clin Nutr 65:712S–716S

    Article  PubMed  CAS  Google Scholar 

  193. Hjerpsted J, Leedo E, Tholstrup T (2011) Cheese intake in large amounts lowers LDL-cholesterol concentrations compared with butter intake of equal fat content. Am J Clin Nutr 94:1479–1484

    Article  PubMed  CAS  Google Scholar 

  194. Takagi Y, Fukase M, Takata S, Fujimi T, Fujita T (1991) Calcium treatment of essential hypertension in elderly patients evaluated by 24 h monitoring. Am J Hypertens 4:836–839

    Article  PubMed  CAS  Google Scholar 

  195. Kamycheva E, Sundsfjord J, Jorde R (2004) Serum parathyroid hormone levels predict coronary heart disease: the Tromsø Study. Eur J Prev Cardiol 11:69–74

    Article  Google Scholar 

  196. Jorde R, Sundsfjord J, Haug E, Bønaa KH (2000) Relation between low calcium intake, parathyroid hormone, and blood pressure. Blood Press 35:1154–1159

    CAS  Google Scholar 

  197. Van Ballegooijen AJ, Kestenbaum B, Sachs MC, de Boer IH, Siscovick DS, Hoofnagle AN, Ix JH, Visser M, Brouwer IA (2014) Association of 25-hydroxyvitamin D and parathyroid hormone with incident hypertension. J Am Coll Cardiol 63:1214–1222

    Article  PubMed  PubMed Central  Google Scholar 

  198. Tanaka H, Smogorzewski M, Koss M, Massry SG (1995) Pathways involved in PTH-induced rise in cytosolic Ca2+ concentration of rat renal proximal tubule. Am J Physiol Physiol 268:F330–F337

    Article  CAS  Google Scholar 

  199. Areco V, Rivoira MA, Rodriguez V, Marchionatti AM, Carpentieri A, De Talamoni NT (2015) Dietary and pharmacological compounds altering intestinal calcium absorption in humans and animals. Nutr Res Rev 28:83–99

    Article  PubMed  CAS  Google Scholar 

  200. Centeno V, Díaz De Barboza G, Marchionatti A, Rodríguez V, Tolosa De Talamoni N (2009) Molecular mechanisms triggered by low-calcium diets. Nutr Res Rev 22:163–174

    Article  PubMed  CAS  Google Scholar 

  201. Favus MJ, Walling MW, Kimberg DV (1974) Effects of dietary calcium restriction and chronic thyroparathyroidectomy on the metabolism of [3H] 25-hydroxyvitamin D3 and the active transport of calcium by rat intestine. J Clin Invest 53(4):1139–1148. https://doi.org/10.1172/JCI107652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Bukoski RD, Xue H, McCarron DA (1987) Effect of 1,25(OH)2 vitamin D3 and ionized Ca2+ on 45Ca uptake by primary cultures of aortic myocytes of spontaneously hypertensive and Wistar Kyoto normotensive rats. Biochem Biophys Res Commun 146:1330–1335

    Article  PubMed  CAS  Google Scholar 

  203. Inoue T, Kawashima H (1988) 1,25-Dihydroxyvitamin D3 stimulates 45Ca2+-uptake by cultured vascular smooth muscle cells derived from rat aorta. Biochem Biophys Res Commun 152:1388–1394

    Article  PubMed  CAS  Google Scholar 

  204. Xue H, Mccarron DA, Bukoski RD (1991) 1, 25 (OH)2 vitamin D3-induced 45CA uptake in vascular myocytes cultured from spontaneously hypertensive and normotensive rats. Life Sci 49:651–659

    Article  PubMed  CAS  Google Scholar 

  205. Li YC (2003) Vitamin D regulation of the renin-angiotensin system. J Cell Biochem 88:327–331

    Article  PubMed  CAS  Google Scholar 

  206. Resnick LM, Müller FB, Laragh JH (1986) Calcium-regulating hormones in essential hypertension: relation to plasma renin activity and sodium metabolism. Ann Intern Med 105:649–654

    Article  PubMed  CAS  Google Scholar 

  207. Müller J (1995) Aldosterone: the minority hormone of the adrenal cortex. Steroids 60:2–9

    Article  PubMed  Google Scholar 

  208. Rojas J, Olivar LC, Chavez Castillo M, Martinez MS, Wilches-Duran S, Graterol M, Contreras-Velasquez J, Cerda M, Riaño M, Bermudez V (2017) Hormona paratiroidea, aldosterona e hypertension arterial ¿una amenaza infravalorada? Rev Latinoam Hipertens 12:1–18

    Google Scholar 

  209. Villa-Etchegoyen C, Lombarte M, Matamoros N, Belizán JM, Cormick G (2019) Communication mechanisms involved in the relationship between low calcium intake and high blood pressure. Nutrients 11:1112. https://doi.org/10.3390/nu11051112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Hatton DC, McCarron DA (1994) Dietary calcium and blood pressure in experimental models of hypertension. Hypertens 4:513–530

    Article  Google Scholar 

  211. Hilpert KF, West SG, Bagshaw DM, Fishell V, Barnhart L, Lefevre M, Most MM, Zemel MB, Chow M, Hinderliter AL et al (2009) Effects of dairy products on intracellular calcium and blood pressure in adults with essential hypertension. J Am Coll Nutr 28:142–149

    Article  PubMed  CAS  Google Scholar 

  212. Sánchez M, de la Sierra A, Coca A, Poch E, Giner V, Urbano-Márquez A (1997) Oral calcium supplementation reduces intraplatelet free calcium concentration and insulin resistance in essential hypertensive patients. Hypertension 29:531–536

    Article  PubMed  Google Scholar 

  213. Li GY, Fan B, Zheng YC (2010) Calcium overload is a critical step in programmed necrosis of ARPE-19 cells induced by high concentration H2O2. Biomed Environ Sci 23:371–377

    Article  PubMed  CAS  Google Scholar 

  214. Mungai PT, Waypa GB, Jairaman A, Prakriya M, Dokic D, Ball MK, Schumacker PT (2011) Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release activated calcium channels. Mol Cell Biol 31:3531–3545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Dada LA, Sznajder JI (2011) Mitochondrial Ca2+ and ROS take center stage to orchestrate TNF-alpha-mediated inflammatory responses. J Clin Invest 121:1683–1685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Teegarden D, White KM, Lyle RM, Zemel MB, Van Loan MD, Matkovic V, Craig BA, Schoeller DA (2008) Calcium and dairy product modulation of lipid utilization and energy expenditure. Obesity (Silver Spring) 16:1566–1572

    Article  PubMed  CAS  Google Scholar 

  217. Fujita T, Ito Y, Ando K, Noda H, Ogata E (1990) Attenuated vasodilator responses to Mg2+ in young patients with borderline hypertension. Circulation 82:384–393

    Article  PubMed  CAS  Google Scholar 

  218. Laurant P, Hayoz D, Brunner HR, Berthelot A (1999) Effect of magnesium deficiency on blood pressure and mechanical properties of rat carotid artery. Hypertension 33:1105–1110

    Article  PubMed  CAS  Google Scholar 

  219. Laurant P, Kantelip JP, Berthelot A (1995) Dietary magnesium supplementation modifies blood pressure and cardiovascular function in mineralocorticoid salt hypertensive rats but not in normotensive rats. J Nutr 125:830–841

    PubMed  CAS  Google Scholar 

  220. Jelicks LA, Gupta RK (1991) Intracellular free magnesium and high energy phosphates in the perfused normotensive and spontaneously hypertensive rat heart. A 31P NMR study. Am J Hypertens 4(2 pt 1):131–136

    Article  PubMed  CAS  Google Scholar 

  221. Ayuk J, Gittoes NJ (2014) Contemporary view of the clinical relevance of magnesium homeostasis. Annals of Clinical Biochem 51(2):179–188. https://doi.org/10.1177/0004563213517628

    Article  Google Scholar 

  222. Rosanoff A, Weaver CM, Rude RK (2012) Suboptimal magnesium status in the United States: are the health consequences underestimated? (PDF). Nutr Rev 70(3):153–164. https://doi.org/10.1111/j.1753-4887.2011.00465.x

    Article  PubMed  Google Scholar 

  223. Bo S, Pisu E (2008) Role of dietary magnesium in cardiovascular disease prevention, insulin sensitivity and diabetes. Curr Opin Lipidol 19:50–56. https://doi.org/10.1097/MOL.0b013e3282f33ccc

  224. Chiuve SE, Sun Q, Curhan GC, Taylor EN, Spiegelman D, Willett WC, Manson JE, Rexrode KM, Albert CM (2013) Dietary and plasma magnesium and risk of coronary heart disease among women. J Am Heart Assoc 2:e000114. https://doi.org/10.1161/JAHA.113.000114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Laurant P, Touyz RM (2000) Physiological and pathophysiological role of magnesium in the cardiovascular system: implications in hypertension. J Hypertens 18:1177–1191

    Article  PubMed  CAS  Google Scholar 

  226. Altura BM, Altura BT, Carella A, Gebrewold A, Murakawa T, Nishio A (1987) Mg2+- Ca2+ interaction in contractility of vascular smooth muscle: Mg2+versus organic calcium channel blockers on myogenic tone and agonist-induced responsiveness of blood vessels. Can J Physiol Pharmacol 65:729–745

    Article  PubMed  CAS  Google Scholar 

  227. Kimura T, Yasue H, Sakaino N, Rokutanda M, Jougasaki M, Araki H (1989) Effects of magnesium on the tone of isolated human coronary arteries. Comparison with diltiazem and nitroglycerin. Circulation 79:1118–1124

  228. Perales AJ, Torregrosa G, Salom JB, Miranda FJ, Alabadí JA, Monleón J, Alborch E (1991) In vivo and in vitro effects of magnesium sulfate in the cerebrovascular bed of the goat. Am J Obstet Gynecol 165(5 pt 1):1534–1538

    PubMed  CAS  Google Scholar 

  229. Satake K, Lee JD, Shimizu H, Uzui H, Mitsuke Y, Yue H, Ueda T (2004) Effects of magnesium on prostacyclin synthesis and intracellular free calcium concentration in vascular cells. Magnes Res 17:20–27

    PubMed  CAS  Google Scholar 

  230. Schutten JC, Joosten MM, de Borst MH, Bakker SJL (2018) Magnesium and blood pressure: a physiology-based approach. Adv Chronic Kidney Dis 25(3):244–250

    Article  PubMed  Google Scholar 

  231. Rude R, Mannoogian C, Ehrlich L (1989) Mechanisms of blood pressure regulation by magnesium in man. Magnesium 8:266–273

    PubMed  CAS  Google Scholar 

  232. Satio K, Hattori K, Omatsu T (1988) Effects of oral magnesium on blood pressure and red cell sodium transport in patients receiving long-term thiazide diuretics for hypertension. Am J Hypertens 1:71S–74S

    Article  Google Scholar 

  233. Landau R, Scott JA, Smiley RM (2004) Magnesium-induced vasodilation in the dorsal hand vein. BJOG 111:446–451. https://doi.org/10.1111/j.1471-0528.2004.00114.x

    Article  PubMed  Google Scholar 

  234. Soltani N, Keshavarz M, Sohanaki H, Zahedi Asl S, Dehpour AR (2005) Relaxatory effect of magnesium on mesenteric vascular beds differs from normal and streptozotocin induced diabetic rats. Eur J Pharmacol 508:177–181. https://doi.org/10.1016/j.ejphar.2004.12.003

    Article  PubMed  CAS  Google Scholar 

  235. Touyz RM, Yao G (2003) Inhibitors of Na+/Mg2+ exchange activity attenuate the development of hypertension in angiotensin II-induced hypertensive rats. J Hypertens 21:337–344. https://doi.org/10.1097/01.hjh.0000052419.12292.99

    Article  PubMed  CAS  Google Scholar 

  236. Blache D, Devaux S, Joubert O, Loreau N, Schneider M, Durand P, Prost M, Gaume V, Adrian M, Laurant P, Berthelot A (2006) Long-term moderate magnesium-deficient diet shows relationships between blood pressure, inflammation and oxidant stress defense in aging rats. Free Radic Biol Med 41:277–284. https://doi.org/10.1016/j.freeradbiomed.2006.04.008

    Article  PubMed  CAS  Google Scholar 

  237. Weglicki WB, Phillips TM, Freedman AM, Cassidy MM, Dickens BF (1992) Magnesium-deficiency elevates circulating levels of inflammatory cytokines and endothelin. Mol Cell Biochem 110:169–173

    Article  PubMed  CAS  Google Scholar 

  238. Champagne CM (2008) Magnesium in hypertension, cardiovascular disease, metabolic syndrome and other conditions: a review. Nutr Clin Pract 23:142–151

    Article  PubMed  Google Scholar 

  239. Hadjistavri LS, Sarafidis PA, Georgianos PI et al (2010) Beneficial effects of oral magnesium supplementation on insulin sensitivity and serum lipid profile. Med Sci Monit 16:307–312

  240. Resnick L, Nicholson J, Laragh J (1985) Calcium metabolism and the rennin-aldosterone system in essential hypertension. J Cardiovasc Phamacol 7(6):S187–S193

    Article  Google Scholar 

  241. Altura BT, Altura BM (1987) Cardiovascular actions of magnesium. Magnesium Bull 9:6–21

    CAS  Google Scholar 

  242. Elliott P, Kesteloot H, Appel LJ, Dyer AR, Ueshima H, Chan Q, Brown IJ, Zhao L, Stamler J (2008) INTERMAP Cooperative Research Group. Dietary phosphorus and blood pressure: international study of macro- and micro-nutrients and blood pressure. Hypertension 51:669–675

    Article  PubMed  CAS  Google Scholar 

  243. Kozłowska-Wojciechowska M et al (2005) Nutritional factors in the prevention and treatment of hypertension. Terapia 7-8:17–22

    Google Scholar 

  244. Guerrero-Romero F, Rodriquez-Moran M (2009) The effect of lowering blood pressure by magnesium supplementation in diabetic hypertensive adults with low serum magnesium levels: a randomized, double-blind placebo-controlled clinical trial. J Hum Hypertens 23:245–251

    Article  PubMed  CAS  Google Scholar 

  245. Rosanoff A (2010) Magnesium supplements may enhance the effect of antihypertensive medication in stage 1 hypertensive subjects. Magnes Res 23:27–40

    Article  PubMed  CAS  Google Scholar 

  246. Wirell MP, Wester PO, Steqmayr BG (1994) Nutritional dose of magnesium in hypertensive patients on beta blockers lowers systolic blood pressure: a double-blind, cross-over study. J Intern Med 236:189–195

    Article  PubMed  CAS  Google Scholar 

  247. Rudnicki M, Frolich A, Pilagaard K et al (2000) Comparsion of magnesium and methyldopa for the control of blood pressure in pregnancies complicated with hypertension. Gynecol Obstet Invest 49:231–235

    Article  PubMed  CAS  Google Scholar 

  248. McCarty MF (1996) Complementary vascular-protective actions of magnesium and taurine: a rationale for magnesium taurate. Med Hypotheses 46:89–100

    Article  PubMed  CAS  Google Scholar 

  249. Yamori Y, Taquchi T, Mori H et al (2010) Low cardiovascular risks in the middle aged males and females excreting greater 24-hour urinary taurine and magnesium in 41 WHO-CARDIAC study populations in the world. J Biomed Sci 17(1):S21

    Article  PubMed  PubMed Central  Google Scholar 

  250. University of Maryl and Medical Center (2013) Magnesium. Retrieved from https://web.archive.org/web/20170216071418/; http://umm.edu/health/medical/altmed/supplement/magnesium. Accessed 16 Feb 2017

  251. Stevenson RN, Keywood C, Amadi A, Davies DJ (1991) Angiotensin converting enzyme inhibitors and conservation in patients with congestive heart failure. Br Heart J 66:19–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. Houston MC (2011) The importance of potassium in managing hypertension. Curr Hypertens Rep 13(4):309–317

    Article  PubMed  CAS  Google Scholar 

  253. Preuss HG (1997) Diet, genetics and hypertension. J Am Coll Nutr 16:296–305

    Article  PubMed  CAS  Google Scholar 

  254. Barbagallo M, Dominguez LJ, Galioto A et al (2010) Oral magnesium supplementation improves vascular function in elderly diabetic patients. Magnes Res 23:131–137

    PubMed  CAS  Google Scholar 

  255. Kozielec T, Michoń P (2000) Wpływ suplementacji preparatem Slow−Mag B6 na wybrane parametry laboratoryjne i kliniczne u pacjentów leczonych z powodu nadciśnienia tętniczego. Pol Med Rodz 2(4):71–75

    Google Scholar 

  256. Zhang X, Li Y, Del Gobbo LC, Rosanoff A, Wang J, Zhang W, Song Y (2016) Effects of magnesium supplementation on blood pressure: a meta-analysis of randomized double-blind placebo-controlled trials. Hypertension 68:324–333. https://doi.org/10.1161/HYPERTENSIONAHA.116.07664

    Article  PubMed  CAS  Google Scholar 

  257. Hatzistavri LS, Sarafidis PA, Georgianos PI et al (2001) Oral magnesium supplementation reduces ambulatory blood pressure in patients with mild hypertension. Am J Hypertens 22:1070–1075

    Article  Google Scholar 

  258. Kesteloot H, Tzoulaki I, Elliott P (2011) Relation of urinary calcium and magnesium excretion to blood pressure. Am J Epidem 174(1):44–51

    Article  Google Scholar 

  259. Goch A, Wlazłowski R, Goch J (2005) Magnesium in hair, plasma and 24h urine in hypertensive patients. Arterial Hypertension 9(5):344–349

    CAS  Google Scholar 

  260. Kisters K, Al-Tayar H, Nguyen MQ, Liebscher H, Wessels F, Büntzel J, Mióke O, Mücke R, Gremmler B, Hausberg M, Tokmak F (2011) Magnesium metabolism and cardiovascular diseases. Trace Elements Electr 28(1):70–73

    Article  CAS  Google Scholar 

  261. Lim R, Herzog W (1998) Magnesium for cardiac patients. Contemp Intern Med 10:6–9

    Google Scholar 

  262. Gilbert D’Angelo EK, Singer HA, Rembold CM (1992) Magnesium relaxes arterial smooth muscle by decreasing intracellular Ca++ without changing intracellular Mg++. J Clin Invest 89:1988–1994

    Article  Google Scholar 

  263. Das UN (2010) Delta 6 desaturase as the target of the beneficial actions of magnesium. Med Sci Monit 16:LE11–LE12

    PubMed  Google Scholar 

  264. Das UN (2006) Essential fatty acids: biochemistry, physiology and pathology. Biotechnol J 1:420–439

    Article  PubMed  CAS  Google Scholar 

  265. Das UN (1989) Nutrients, essential fatty acids and prostaglandins interact to augment immune responses and prevent genetic damage and cancer. Nutrition 5:106–110

    PubMed  CAS  Google Scholar 

  266. Haga H (1992) Effects of dietary magnesium supplementation on diurnal variations of blood pressure and plasma Na+, K+- ATPase activity in essential hypertension. Jpn Heart J 33:785–800

    Article  PubMed  CAS  Google Scholar 

  267. Sonita B, Touyz RM (2007) Magnesium transport in hypertension. Pathophysiology 14:205–211

    Article  Google Scholar 

  268. Kisters K, Gremmler B, Hausberg M (2008) Disturbed Mg++ transporters in hypertension. J Hypertens 26:2450–2451

    Article  PubMed  CAS  Google Scholar 

  269. Yogi A, Callera GE, Antuens TT et al (2010) Vascular biology of magnesium and its transporters in hypertension. Magnes Res 23:207–215

    Google Scholar 

  270. Yoga A, Callera GE, Antunes TT et al (2011) Transient receptor potential melastatin 7 (TRPM7) cation channels, magnesium and the vascular system in hypertension. Circ J 75:237–245

    Article  Google Scholar 

  271. Carla R, Oliviero O, Domenico G, Giovanni F, Maria LZ, Sara L, Roberto C (1998) Anti-oxidant status and lipid peroxidation in patients with essential hypertension. J Hypertens 16(9):1267–1271

    Article  Google Scholar 

  272. Klevay LM (1975) Coronary heart disease: the zinc/copper hypothesis. Am J Clin Nutr 28:764–774

  273. Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51(2):225–227. https://doi.org/10.1093/ajcn/51.2.225

    Article  PubMed  CAS  Google Scholar 

  274. Johnson AR, Munoz A, Gottlieb JL, Jarrard DF (2007) High dose zinc increases hospital admissions due to genitourinary complications. J Urol 177(2):639–643. https://doi.org/10.1016/j.juro.2006.09.047

    Article  PubMed  CAS  Google Scholar 

  275. Laura P, Lothar R, Hajo H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7(4):1342–1365. https://doi.org/10.3390/ijerph7041342

    Article  CAS  Google Scholar 

  276. Walravens PA (1980) Nutritional importance of copper and zinc in neonates and infants. Clin Chem 26:185–189

    Article  PubMed  CAS  Google Scholar 

  277. Mason KE (1979) A conspectus of research on copper metabolism and requirements of man. J Nutr 109:1979–2066

    Article  PubMed  CAS  Google Scholar 

  278. Stern BR (2010) Essentiality and toxicity in copper health risk assessment: overview, update and regulatory considerations. Toxicol Environ Health A 73(2):114–127

    Article  CAS  Google Scholar 

  279. Harvey LJ, McArdle HJ (2008) Biomarkers of copper status: a brief update. Br J Nutr 99(S3):S10–S13

    Article  PubMed  CAS  Google Scholar 

  280. Agency for Toxic Substances and Disease Registry (2002) Toxicological profile for copper. Centers for Disease Control, Atlanta, GA

    Google Scholar 

  281. Passwater RA, Cranton EM (1983) Trace elements, hair analysis and nutrition. CT: Keats Publishing, New Canaan. p 385

  282. Campbell JD (1993) Hair tissue mineral analysis. Townsend Letter for Doctors, p 436–444

  283. Odell BL (1982) Biochemical basis of the clinical effects of copper deficiency. Alan R Liss Inc, New York, pp 301–313

    Google Scholar 

  284. Pfeiffer CC (1972) Neurobiology of trace metals, zinc and copper. Int Rev of Neuro Biol, (1st ed), Academic Press

  285. Turnlund JR, Jacob RA, Keen CL, Strain JJ, Kelley DS, Domek JM et al (2004) Long-term high copper intake: effects on indexes of copper status, antioxidant status, and immune function in young men. Am J Clin Nutr 79:1037–1044

    Article  PubMed  CAS  Google Scholar 

  286. Watts DL (1989) The nutritional relationships of copper. J Orth Med R:99–108

    Google Scholar 

  287. Zalba G, San José G, Moreno MU, Fortuño MA, Fortuño A, Beaumont FJ, Díez J (2001) Oxidative stress in arterial hypertension, role of NAD(P)H oxidase. Hypertension 38:1395–1399. https://doi.org/10.1161/hy1201.099611

    Article  PubMed  CAS  Google Scholar 

  288. Touyz RM (2000) Oxidative stress and vascular damage in hypertension. Curr Hypertens Rep 2:98–105

    Article  PubMed  CAS  Google Scholar 

  289. Jun T, Ke-yan F, Catalano M (1996) Increased superoxide anion production in humans: a possible mechanism for the pathogenesis of hypertension. J Human Hypertens 10(5):305–309

    CAS  Google Scholar 

  290. Palmer M, Adami HO, Bergstrom R, Akerstrom G, Ljunghall S (1987) Mortality after surgery for primary hyperparathyroidism: a follow-up of 441 patients operated on from 1956 to 1979. Surgery 102(1):1–7

    PubMed  CAS  Google Scholar 

  291. Rubanyi GM, Vanhoutte PM (1986) Superoxide anions and hyperoxia inactivation endothelium-derived relaxing factor. Am J Physiol 250:H822–H827

    PubMed  CAS  Google Scholar 

  292. Yamada H, Yamada Y, Adachi T, Goto H, Omasawara N, Futenma A, Gitano M, Miyai H, Fukatsu A, Hirano K, Kakumu S (1997) Polymorphism of extracellular superoxide (EC-SOD) gene: relation to the mutation responsible for high EC-SOD level in serum. Jpn J Hum Genet 42:353–356

    Article  PubMed  CAS  Google Scholar 

  293. Marklund SL, Nilsson P, Israelsson K, Schampi I, Peltonen M, Asplund K (1997) Two variants of extracellular-superoxide dismutase: relationship to cardiovascular risk factors in and unselected middleaged population. J Intern Med 242:5–14

    Article  PubMed  CAS  Google Scholar 

  294. Beckman JS, Chen J, Ischiropoulos H, Crow JP (1994) Oxidative chemistry of peroxynitrite. In: Packer L (ed) Methods of enzymology. Academic, San Diego, CA, pp 229–240

    Google Scholar 

  295. Auch-Schwelk W, Katusic ZS, Vanhoutte PM (1989) Contractions to oxygen-derived free radicals are augmented in aorta of the spontaneously hypertensive rat. Hypertension 13:859–864

    Article  PubMed  CAS  Google Scholar 

  296. Cosentino F, Sill JC, Katusic ZS (1994) Role of superoxide anions in the mediation of endothelium dependent concentrations. Hypertension 23:229–235

    Article  PubMed  CAS  Google Scholar 

  297. Bakhle Y, Reynard A (1971) Characteristics of the angiotensin I converting enzyme from dog lung. Nature New Biol 229:187–189

    Article  PubMed  CAS  Google Scholar 

  298. Baudin B (2002) New aspects on angiotensin-converting enzyme: from gene to disease. Clin Chem Lab Med 40(3):256–265

    Article  PubMed  CAS  Google Scholar 

  299. Turner AJ, Hooper NM (2002) The angiotensin-converting enzyme gene family: genomics and pharmacology. Trends Pharmacol Sci 23(4):177–183

    Article  PubMed  CAS  Google Scholar 

  300. Corvol P, Michaud A, Soubrier F, Williams TA (1995) Recent advances in knowledge of the structure and function of the angiotensin–converting enzyme. J Hypertens 13(3):3–10

    Article  Google Scholar 

  301. McIntyre M, Bohr DF, Dominiczak AF (1999) Endothelial function in hypertension. Hypertension 34:539–545

    Article  PubMed  CAS  Google Scholar 

  302. Gekle M, Golenhofen N, Oberleithner H, Silbernagl S (1996) Rapid activation of Na+/H+ exchange by aldosterone in renal epithelial cells requires Ca+2 and stimulation of a plasma membrane proton conductance. Proc Natl Acad Sci USA 93:10500–10504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  303. Gekle M, Silbernagl S, Obserleithner H (1997) The mineralocorticoid aldosterone activates a proton conductance in cultured kidney cells. Am J Physiol Cell Physiol 273(42):C1673–C1678

    Article  CAS  Google Scholar 

  304. Anonymous (2005) Trace elements modify the activity of sodium transporting system in erythrocyte membrane in patients with essential hypertension—preliminary study. Nephrol Dial Transplant 20(2):469–471

    Article  Google Scholar 

  305. Ram B, Garg SP, Matharu SS (2005) Effect of contaminants in wastewater on soil and vegetables—a case study. Panjab Pollution Control Board, Panjab

    Google Scholar 

  306. Tubek S (2001) Increased absorption of zinc from alimentary tract in primary arterial hypertension. Biol Trace Elem Res 83(1):31–38

    Article  PubMed  CAS  Google Scholar 

  307. Begin-heick N, Daple-Scott M, Rowe J, Heick HMC (1985) Zinc supplementation attenuates insulin secretary activity in pancreatic islet of the ob/ob mouse. Diabetes 34:179–184

    Article  PubMed  CAS  Google Scholar 

  308. Semplicini A, Canessa M, Mozzato MG (1989) Red blood cell Na+/H and Li+/Na+ exchanges in patients with essential hypertension. Am J Hypertens 2:903–908

    Article  PubMed  CAS  Google Scholar 

  309. Bober J, Kdzierska K, Kwiatkowska E (2002) The erythrocyte sodium-proton exchanges activity in patients with primary hypertension. Pol Arch Med Wew 1:619–624

    Google Scholar 

  310. Vivoli G, Borella P, Bergomi M, Fantuzzi G (1987) Zinc and copper levels in serum, urine, and hair of humans in relation to blood pressure. Sci Total Environ 66:55–64

    Article  PubMed  CAS  Google Scholar 

  311. Fabris N, Mocchegiani E (1995) Zinc, human diseases and aging. Aging 7:77–93

    PubMed  CAS  Google Scholar 

  312. Subramanian R, Sukumar A (1988) Biological reference materials and analysis of toxic elements. Fresenius Z Anal Chem 332:623–629

    Article  CAS  Google Scholar 

  313. Prasad AS (2003) Zinc deficiency: Has been known of for 40 years but ignored by global health organisations. British Medical Journal 326(7386):409–410. https://doi.org/10.1136/bmj.326.7386.409

    Article  PubMed  PubMed Central  Google Scholar 

  314. Holden JM, Wolf WR, Mertz W (1979) Zinc and copper in self selected diets. J Am Diet Assoc 75(1):23–28

  315. Hambidge KM, Krebs NF (2007) Zinc deficiency: a special challenge. J Nutr 137(4):1101–1105

    Article  PubMed  CAS  Google Scholar 

  316. WHO (2007) The impact of zinc supplementation on childhood mortality and severe morbidity. World Health Organization. Retrieved from https://www.who.int/publications/m/item/the-impact-of-zinc-supplementation-on-childhood-mortality-and-severe-morbidity. Accessed 2 March 2009

  317. Shrimpton R, Gross R, Darnton-Hill I, Young M (2005) Zinc deficiency: what are the most appropriate interventions? Br Med J 330(7487):347–349. https://doi.org/10.1136/bmj.330.7487.347

    Article  Google Scholar 

  318. Bhargava P, Gupta N, Vats S, Goel R (2017) Health issues and heavy metals. Austin J Environ Toxicol 3(1):1018

    Google Scholar 

  319. Tarragó A (2012) Case Studies in Environmental Medicine (CSEM) Lead Toxicity (PDF). Agency for Toxic Substances and Disease Registry.

    Google Scholar 

  320. Assi MA, Hezmee MNM, Haron AW et al (2016) The detrimental effects of lead on human and animal health. Vet World 9(6):660–671. https://doi.org/10.14202/vetworld.2016.660-671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  321. Zuliani G, Perin G, Rausa G (1966) Determination of organic lead in presence of inorganic lead in the atmosphere surrounding fuel distributors. Med Lav 12:771–780

    Google Scholar 

  322. Hozharbi S (2002) Lead-based paint is a hazard to young children: implications for Pakistani children. J Pak Med Assoc 5:224–226

    Google Scholar 

  323. WHO (2011) Safety evaluation of certain food additives and contaminants. In: Seventy- Third Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). WHO, Geneva. http://www.inchem.org/documents/jecfa/jecmono/v64je01.pdf

    Google Scholar 

  324. Emsley J (2011) Nature’s building blocks: an A-Z guide to the elements. Oxford University Press

    Google Scholar 

  325. Luckey TD, Venugopal B (1979) Physiologic and chemical basis for metal toxicity. Plenum Press

    Google Scholar 

  326. Agency for Toxic Substances and Disease Registry (2007) Toxicological profile for Lead. U.S. Department of Health and Human Services, Public Health Service. Atlanta, GA. Retrieved from https://web.archive.org/web/20110606072913/; http://www.atsdr.cdc.gov/PHS/PHS.asp?id=92&tid=22. Accessed 6 June 2011

  327. Navas-Acien A (2007) Lead exposure and cardiovascular disease—a systematic review. Environ Health Persp 115(3):472–482. https://doi.org/10.1289/ehp.9785

    Article  CAS  Google Scholar 

  328. Nawrot TS, Thijs L, DenHond EM, Roels HA, Staessen JA (2002) An epidemiological re-appraisal of the association between blood pressure and blood lead: a meta-analysis. J Hum Hypertens 16:123–131

    Article  PubMed  CAS  Google Scholar 

  329. Skerfving S, Bergdahl I (2015) Lead. In: Nordberg GF, Fowler GF, Nordberg M (eds) Hand book on the toxicology of metals. Elsevier, Amsterdam, pp 911–967

    Chapter  Google Scholar 

  330. EFSA (2010) European Food Safety Authority. Scientific opinion on lead in food. EFSA J 1570:1–147 http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/1570.pdf

    Google Scholar 

  331. Flora SJS, Flora GJS, Saxena G (2006) Environmental occurrence, health effects and management of lead poisoning. In: Cascas SB, Sordo J (eds) Lead: chemistry, analytical aspects, environmental impacts and health effects. Elsevier Publication, Netherlands, pp 158–228

    Chapter  Google Scholar 

  332. Vaziri ND (2008) Mechanism of lead-induced hypertension and cardiovascular disease. Am J Physiol Heart Circ Physiol 295:H454–H465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  333. Koller LD (1980) Immunotoxicology of heavy metals. Int J Immunopharm 2:269–279

    Article  CAS  Google Scholar 

  334. Kasperczyk S, Birkner E, Kasperczyk A, Kasperczyk J (2005) Lipids, lipid peroxidation and 7-ketocholesterol in workers exposed to lead. Human Exp Toxicol 24(60):287–295

    Article  CAS  Google Scholar 

  335. Kim JY, Mukherjee S, Ngo LC, Christiani DC (2004) Urinary 8-hydroxy-2′ -deoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to fine particulates. Environ Health Perspect 112:666–671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  336. Mishra KP, Singh VK, Rani R, Yadav VS, Chandran V, Srivastava SP, Seth PK (2003) Effect of lead exposure on the immune response of some occupationally exposed individuals. Toxicology 188(2-3):251–259

    Article  PubMed  CAS  Google Scholar 

  337. Vaziri ND, Lin CY, Farmand F, Sindhu RK (2003) Superoxide dismutase, catalase, glutathione peroxidase and NADPH oxidase in lead-induced hypertension. Kidney Int 63(1):86–194

    Article  Google Scholar 

  338. Mordukhovich I, Wright RO, Hu H, Amarasiriwardena C, Baccarelli A, Litonjua A, Sparrow D, Vokonas P, Schwartz J (2012) Associations of toenail arsenic, cadmium, mercury, manganese and lead with blood pressure in the normotensive aging study. Environ Health Perspect 120(1):98–104

    Article  PubMed  CAS  Google Scholar 

  339. USEPA (2006) Air quality criteria for lead (final report, 2006). https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid158823, (accessed Feb 12, 2018).

    Google Scholar 

  340. Hu H (2000) Exposure to metals. Prim Care: Clinics Office Prac 27:983–996

    Article  CAS  Google Scholar 

  341. Rudolph AM, Rudolph CD, Hostetter MK et al (2003) Lead. In: Rudolph’s Pediatrics, 21st edn. McGraw-Hill Professional, p 369

    Google Scholar 

  342. Staessen JA, Roels H, Fagard R (1996) Lead exposure and conventional and ambulatory blood pressure: a prospective population study PheeCad Investigators. JAMA 275(20):1604–1606

    Article  Google Scholar 

  343. Mandal R, Kaur S, Kumar V, Joshi A (2021) Heavy metals controlling cardiovascular diseases risk factors in myocardial infarction patients in critically environmentally heavy metal polluted steel industrial town Mandi-Gobindgarh (India). Environmental Geochemistry and Health. Environ Geochem Health 44(10):3215–3238. https://doi.org/10.1007/s10653-021-01068-vw

    Article  PubMed  Google Scholar 

  344. Duchen MR (2000) Mitochondria and Ca2+ in cell physiology and patho-physiology. Cell Calcium 28(5-6):39–348

    Article  Google Scholar 

  345. Molero L, Carrasco C, Marques M, Vaziri ND, Mateos-Caceres PJ, Casado S, Macaya C, Barrientos A, Lopez-Farre AJ (2006) Involvement of endothelium and endothelin-1 in lead induced smooth muscle cell dysfunction in rats. Kidney Int 69:685–690

    Article  PubMed  CAS  Google Scholar 

  346. Kosnett MJ (2006) Lead. In: Olson KR, Poisoning and drug overdose, 5th edn. McGraw-Hill Professional, p 238

    Google Scholar 

  347. Hermes-Lima M, Pereira B, Bechara EJ (1991) Are free radicals involved in lead poisoning? Xenobiotica 8:1085–1090

    Article  Google Scholar 

  348. Wadhwa N, Mathew BB, Jatawa S, Tiwari A (2012) Lipid peroxidation: mechanism, models and significance. Int J Curr Sci 3:29–38

    Google Scholar 

  349. Mathew BB, Tiwari A, Jatawa SK (2011) Free radicals and antioxidants: a review. J Pharm Res 4(12):4340–4343

    Google Scholar 

  350. Papanikolaou NC, Hatzidaki EG, Belivanis S, Tzanakakis GN, Tsatsakis AM (2005) Lead toxicity update - a brief review. Med Sci Monitor 11(10):RA329-RA336

    CAS  Google Scholar 

  351. Pounds JG (1984) Effect of lead intoxication on calcium homeostasis and calcium-mediated cell function: a review. Neurotoxicology 5(3):295–331

    PubMed  CAS  Google Scholar 

  352. Agency for Toxic Substances and Disease Registry (1999) Toxicological profile for Lead. Public Health Service. U.S. Department of Health and Human Services; Atlanta, Georgia. Retrieved from https://scholar.google.com/scholar?q=ATSDR.+Toxicological+Profile+for+Lead+%28Update%29.+U.S.+Department+of+Health+and+Human+Services%2C+Public+Health+Service%2C+Agency+for+Toxic+Substances+and+Disease+Registry%2C+Atlanta%2C+Georgia%2C+1999b%2C+in+press

  353. Gonick HC, Ding Y, Bondy SC, Ni Z, Vaziri ND (1997) Lead-induced hypertension: interplay of nitric oxide and reactive oxygen species. Hypertension 30(6):1487–1492

    Article  PubMed  CAS  Google Scholar 

  354. Simons TJB (1996) Lead-calcium interactions in cellular lead toxicity. In: Proceedings of the 9th International Neurotoxicology Conference; October 1991, vol. 14 of Neurotoxicology. Little Rock, Ark, USA, pp 77–86

    Google Scholar 

  355. Goldstein GW (1993) Evidence that lead acts as a calcium substitute in second messenger metabolism. In: Proceedings of the 9th International Neurotoxicology Conference; October 1991, vol.14 of Neurotoxicology. Little Rock, Ark, USA, pp 97–101

    Google Scholar 

  356. Opie LH (1996) Mechanisms of cardiac contraction and relaxation. In: Braunwald E (ed) Heart disease: a textbook of cardiovascular medicine. WB Saunders, Philadelphia, pp 360–393

    Google Scholar 

  357. Solenkova NV, Newman JD, Berger JS, Thurston G, Hochman JS, Lamas GA (2014) Metal pollutants and cardiovascular disease: mechanisms and consequences of exposure. Am Heart J 168:812–822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  358. Staessen J, Sartor F, Roels H (1991) The association between blood pressure, calcium and other divalent cations: a population study. J Hum Hypertens 5:485–494

    PubMed  CAS  Google Scholar 

  359. Rodriguez-Iturbe B, Sindhu RK, Quiroz Y, Vaziri ND (2005) Chronic exposure to low doses of lead results in renal infiltration of immune cells, NF-kappa B activation, and over expression of tubulointerstitial angiotensin II. Antioxid Redox Signal 7:1269–1274

    Article  PubMed  CAS  Google Scholar 

  360. Toda N, Nakanishi S, Tanabe S (2013) Aldosterone affects blood flow and vascular tone regulated by endothelium-derived NO: Therapeutic implications. Br J Pharmacol 168:519–533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  361. Huda N, Hossain S, Rahman M, Karim MR, Islam K, Mamun AA et al (2014) Elevated levels of plasma uric acid and its relation to hypertension in arsenic-endemic human individuals in Bangladesh. Toxicol Appl Pharmacol 281:11–18

    Article  PubMed  CAS  Google Scholar 

  362. Rahman M, Tondel M, Ahmad SA, Chowdhury IA, Faruquee MH, Axelson O (1999) Hypertension and arsenic exposure in Bangladesh. Hypertension 33:74–78

    Article  PubMed  CAS  Google Scholar 

  363. Islam MS, Mohanto NC, Karim MR, Aktar S, Hoque MM, Rahman A et al (2015) Elevated concentrations of serum matrix metalloproteinase-2 and −9 and their associations with circulating markers of cardiovascular diseases in chronic arsenic-exposed individuals. Environ Health 14:92. https://doi.org/10.1186/s12940-015-0079-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  364. Karim MR, Salam KA, Hossain E, Islam K, Ali N, Haque A et al (2010) Interaction between chronic arsenic exposure via drinking water and plasma lactate dehydrogenase activity. Sci Total Environ 409:278–283

    Article  PubMed  CAS  Google Scholar 

  365. Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78(9):1093–1103

    PubMed  PubMed Central  CAS  Google Scholar 

  366. Baccarelli A, Wright R, Bollati V, Litonjua A, Zanobetti A, Tarantini L et al (2010) Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology 21:819–828

    Article  PubMed  PubMed Central  Google Scholar 

  367. Bae JM, Shin SH, Kwon HJ, Park SY, Kook MC, Kim YW et al (2012) ALU and LINE-1hypomethylations in multistep gastric carcinogenesis and their prognostic implications. Int J Cancer 131:1323–1331

    Article  PubMed  CAS  Google Scholar 

  368. Wei L, Liu S, Su Z, Cheng R, Bai X, Li X (2014) LINE-1 hypomethylation is associated with the risk of coronary heart disease in Chinese population. Arq Bras Cardiol 102:481–488

    PubMed  PubMed Central  Google Scholar 

  369. Chen Y, Factor-Litvak P, Howe GR, Graziano JH, Brandt-Rauf P, Parvez F, van Geen A, Ahsan H (2007) Arsenic exposure from drinking water, dietary intakes of B Vitamins and folate, and risk of high blood pressure in Bangladesh: a population-based, cross-sectional study. Am J Epidemiol 165:541–552

    Article  PubMed  Google Scholar 

  370. Zhang C, Mao G, He S, Yang Z, Yang W, Zhang X, Qiu W, Ta N, Cao L, Yang H et al (2013) Relationship between long-term exposure to low-level arsenic in drinking water and the prevalence of abnormal blood pressure. J Hazard Mater 262:1154–1158. https://doi.org/10.1016/j.hazmat.2012.09.045

    Article  PubMed  CAS  Google Scholar 

  371. Islam MR, Khan I, Attia J, Hassan SMN, McEvoy M, D’Este C, Azim S, Akhter A, Akter S, Shahidullah SM, Milton AH (2012) Association between hypertension and chronic arsenic exposure in drinking water: a cross-sectional study in Bangladesh. Int J Environ Res Public Health 9(12):4522–4536. https://doi.org/10.3390/ijerph9124522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  372. Barchowsky A, Roussel RR, Klei LR, James PE, Ganju N, Smith KR, Dudek EJ (1999) Low levels of arsenic trioxide stimulate proliferative signals in primary vascular cells without activating stress effector pathways. Toxicol Appl Pharmacol 159:65–75

    Article  PubMed  CAS  Google Scholar 

  373. Balarastaghi S, Rezaee R, Hayes AW, Yarmohammadi F, Karimi G (2022) Mechanisms of arsenic exposure-induced hypertension and atherosclerosis: an updated overview. Biol Trace Elem Res 201(1):98–113. https://doi.org/10.1007/s12011-022-03153-2

    Article  PubMed  CAS  Google Scholar 

  374. Rahaman S, Mise N, Ikegami A, Zong C, Ichihara G, Ichihara S (2023) The mechanism of low-level arsenic exposure-induced hypertension: inhibition of the activity of the angiotensin-converting enzyme 2. Chemosphere 318:137911. https://doi.org/10.1016/j.chemosphere.2023.137911

    Article  PubMed  CAS  Google Scholar 

  375. Carmignani M, Boscolo P, Castellino N (1985) Metabolic fate and cardiovascular effects of arsenic in rats and rabbits chronically exposed to trivalent and pentavalent arsenic. Arch Toxicol Suppl 8:452–455

    Article  PubMed  CAS  Google Scholar 

  376. WHO (2000) Air quality guidelines for Europe, 2nd edn. WHO regional publication, European Series, Copenhagen, Denmark, p 91

    Google Scholar 

  377. Chung JY, Yu SD, Hong YS (2014) Environment source of Arsenic exposure. J Prev Med Public Health 47(5):253–257

    Article  PubMed  PubMed Central  Google Scholar 

  378. Fergusson JE (1990) The heavy elements. In: Chemistry, environmental impact, and health effects. Pergamon press, Oxford (England), pp 362–365

    Google Scholar 

  379. Hayes JD, McLellan LI (1999) Glutathione and glutathione dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Rad Res 31(4):273–300

    Article  CAS  Google Scholar 

  380. Phillips S, Balge M (2007) Heavy Metal Toxicity. UTHSCSA Environmental Medicine Education Program and STEER Program. http://www.aoec.org/resources.htm

  381. Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208

    Article  PubMed  CAS  Google Scholar 

  382. Axelson O, Dahlgren E, Jansson CD, Rehnlund SO (1978) Arsenic exposure and mortality: a case - referent study from a Swedish copper smelter. Br J Indust Med 35(1):8–15

    CAS  Google Scholar 

  383. Mazumder DN (2008) Chronic arsenic toxicity and human health. Ind J Med Res 128(4):436–447

    Google Scholar 

  384. Tsai SM, Wang TN, Ko YC (1999) Mortality for certain diseases in areas with high levels of arsenic in drinking water. Arch Environ Health 54(3):186–193

    Article  PubMed  CAS  Google Scholar 

  385. Santra A, Maiti A, Das S, Lahiri S, Charkaborty SK, Mazumder DN (2000) Hepatic damage caused by chronic arsenic toxicity in experimental animals. J Toxicol Clin Toxicol 38(4):395–405

    Article  PubMed  CAS  Google Scholar 

  386. Wu MM, Chiou HY, Ho IC, Chen CJ, Lee TC (2003) Gene expression of inflammatory molecules in circulating lymphocytes from arsenic-exposed human subjects. Environ Health Persp 111(11):1429–1438

    Article  CAS  Google Scholar 

  387. SBU - Swedish agency for health technology assessment and assessment of social services (2017) Occupational health and safety - chemical exposure. http://www.sbu.se/261e

Download references

Acknowledgements

Thanks to all the authors of this article for reviewing it critically for intellectual content, critical statements and descriptions, and dietary elemental interventions for inducing or improving blood pressure in hypertensive patients worldwide.

Author information

Authors and Affiliations

Authors

Contributions

All authors including Dr. Reshu Mandal, Dr. Amit Joshi, Dr. Satish Kumar Taneja, and Dr. Sukhbir Kaur have contributed to the study concept, design, and preparation of this present review article. This review article has been written by Dr. Reshu Mandal and Dr. Amit Joshi. All authors are responsible for the correctness of the statements provided in this review article and have read and approved the final version for its submission to the journal for publication.

Corresponding author

Correspondence to Reshu Mandal.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, A., Kaur, S., Taneja, S.K. et al. Review Article on Molecular Mechanism of Regulation of Hypertension by Macro-elements (Na, K, Ca and Mg), Micro-elements/Trace Metals (Zn and Cu) and Toxic Elements (Pb and As). Biol Trace Elem Res 202, 1477–1502 (2024). https://doi.org/10.1007/s12011-023-03784-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03784-z

Keywords

Navigation