Skip to main content
Log in

Levels and Health Risk Assessment of Inorganic Arsenic, Methylmercury, and Heavy Metals in Edible Mushrooms Collected from Online Supermarket in China

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Chromium (Cr), total arsenic (As), inorganic arsenic (iAs), cadmium (Cd), mercury (Hg), methylmercury (MeHg), and lead (Pb) were analyzed in in Agaricus blazei, Tricholoma matsutake, Pholiota nameko, agrocybe aegirit, Boletus edulis, Auricularia auricula, and Lentinus edodes collected from online supermarket in China from 2015 to 2017. The order of mean concentrations for the five heavy metals in edible mushrooms was As > Cd > Cr > Pb > Hg. No positive correlation was found between total As and iAs, nor between total Hg and MeHg. The contents of iAs were at a low level except for A. blazei samples. The contents of MeHg were at a low level in all test mushroom samples. And Cr, Cd, and Pb pollution were common problems in the test mushroom samples. The comprehensive factor pollution index was between 0.569 (A. auricula) and 3.056 (B. edulis). The THQ values for the five heavy metals from P. nameko, A. auricula, A. aegirit, and L. edodes samples were less than 1. The hazard index (HI) values of A. blazei, T. matsutake, and B. edulis samples for adults and children were greater than 1, indicating significant health hazard to the adults and children consumers. The cancer risk (CR) values for iAs ranged from 3.82 × 10− 6 (T. matsutake) to 8.61 × 10− 5 (A. blazei), indicating no potential carcinogenic risk to the consumers. The order for carcinogenic risk of each edible mushroom species was A. blazei > L. edodes > P. nameko > A. aegirit > A. auricula > B. edulis > T. matsutake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information file.

References

  1. Valverde ME, Hernández-Pérez T, Paredes-López O (2015) Edible mushrooms: improving human health and promoting quality life. Int J Microbiol 2015:376387. https://doi.org/10.1155/2015/376387

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang XM, Zhang J, Wu LH, Zhao YL, Li T, Li JQ, Wang YZ, Liu HG (2014) A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chem 151:279–285. https://doi.org/10.1016/j.foodchem.2013.11.062

    Article  PubMed  CAS  Google Scholar 

  3. Anibal CD, Farenzena S, Rodríguez MS, Albertengo L (2015) Chemical composition and nutritional value of Argentine commercial edible mushrooms. J Consum Prot Food S 10:155–164. https://doi.org/10.1007/s00003-015-0937-9

    Article  CAS  Google Scholar 

  4. Mleczek M, Siwulski M, Budka A, Mleczek P, Budzyńska S, Szostek M, Kuczyńska-Kippen N, Kalač P, Niedzielski P, Gąsecka M, Goliński P, Magdziak Z, Rzymski P (2021) Toxicological risks and nutritional value of wild edible mushroom species -a half-century monitoring study. Chemosphere 263:128095. https://doi.org/10.1016/j.chemosphere.2020.128095

    Article  ADS  PubMed  CAS  Google Scholar 

  5. Keleş A, Koca I, Gençcelep H (2011) Antioxidant properties of wild edible mushrooms. J Food Process Technol 2:2–6. https://doi.org/10.4172/2157-7110.1000130

    Article  CAS  Google Scholar 

  6. Borchers AT, Stern JS, Hackman RM, Keen CL, Gershwin ME (1999) Mushrooms, tumors, immunity. Exp Biol Med 221:281–293. https://doi.org/10.1046/j.1525-1373.1999.d01-86.x

    Article  CAS  Google Scholar 

  7. Jeong SC, Jeong YT, Yang BK, Islam R, Koyyalamudi SR, Pang G, Cho KY, Song CH (2010) White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr Res 30:49–56. https://doi.org/10.1016/j. nutres.2009.12.003

    Article  PubMed  CAS  Google Scholar 

  8. Zhu F, Qu L, Fan W, Qiao M, Hao H, Wang X (2011) Assessment of heavy metals in some wild edible mushrooms collected from Yunnan Province, China. Environ Monit Assess 179:191–199. https://doi.org/10.1007/s10661-010-1728-5

    Article  PubMed  CAS  Google Scholar 

  9. Liu Y, Chen D, You Y, Zeng S, Li Y, Tang Q, Han G, Liu A, Feng C, Li C, Su Y, Su Z, Chen D (2016) Nutritional composition of boletus mushrooms from Southwest China and their antihyperglycemic and antioxidant activities. Food Chem 211:83–91. https://doi.org/10.1016/j.foodchem.2016.05.032

    Article  PubMed  CAS  Google Scholar 

  10. Sarikurkcu C, Popović-Djordjević J, Solak MH (2020) Wild edible mushrooms from Mediterranean region: metal concentrations and health risk assessment. Ecotoxicol Environ Saf 190:110058. https://doi.org/10.1016/j.ecoenv.2019.110058

    Article  PubMed  CAS  Google Scholar 

  11. Árvay J, Demková L, Hauptvogl M, Michalko M, Bajčan D, Stanovič R, Tomáš J, Hrstková M, Trebichalský P (2017) Assessment of environmental and health risks in former polymetallic ore mining and smelting area, Slovakia: spatial distribution and accumulation of mercury in four different ecosystems. Ecotoxicol Environ Saf 144:236–244. https://doi.org/10.1016/j.ecoenv.2017.06.020

    Article  PubMed  CAS  Google Scholar 

  12. Borovička J, Braeuer S, Sácký J, Kameník J, Goessler W, Trubač J, Strnad L, Rohovec J, Leonhardt T, Kotrba P (2019) Speciation analysis of elements accumulated in Cystoderma carcharias from clean and smelter-polluted sites. Sci Total Environ 648:1570–1581. https://doi.org/10.1016/j.scitotenv.2018.08.202

    Article  ADS  PubMed  CAS  Google Scholar 

  13. Barea-Sepúlveda M, Espada-Bellido E, Ferreiro-González M, Bouziane H, López-Castillo JG, Palma M, Barbero GF (2022) Exposure to essential and toxic elements via consumption of Agaricaceae, Amanitaceae, Boletaceae, and Russulaceae mushrooms from Southern Spain and Northern Morocco. J Fungi 8:545. https://doi.org/10.3390/jof8050545

    Article  CAS  Google Scholar 

  14. Chen BW, Hu LG, He B, Luan TG, Jiang GB (2020) Environmetallomics: Systematically investigating metals in environmentally relevant media. Trend Anal Chem 126:115875. https://doi.org/10.1016/j.trac.2020.115875, 2020

  15. Melgar MJ, Alonso J, García MA (2014) Total contents of arsenic and associated health risks in edible mushrooms, mushroom supplements and growth substrates from Galicia (NW Spain). Food Chem Toxicol 73:44–50. https://doi.org/10.1016/j.fct.2014.08.003

    Article  PubMed  CAS  Google Scholar 

  16. Fu Z, Liu G, Wang L (2020) Assessment of potential human health risk of trace element in wild edible mushroom species collected from Yunnan Province. China Environ Sci Pollut R 27:29218–29227. https://doi.org/10.1007/s11356-020-09242-w

    Article  CAS  Google Scholar 

  17. ATSDR (2012) Toxilogical Profile for Chromium. U. S. Department of Health and Human Services, Public Health Services, Atlanta, GA. https://www.atsdr.cdc.gov/ToxProfiles/tp7.pdf

    Google Scholar 

  18. ATSDR (2020) Toxilogical Profile for lead. U. S. Department of Health and Human Services, Public Health Services, Atlanta, GA. https://www.atsdr.cdc.gov/ToxProfiles/tp13.pdf

    Google Scholar 

  19. ATSDR (2012) Toxilogical Profile for Cadmium. U. S. Department of Health and Human Services, Public Health Services, Atlanta, GA. https://www.atsdr.cdc.gov/ToxProfiles/tp5.pdf

    Google Scholar 

  20. Young JL, Yan X, Xu J, Yin X, Zhang X, Arteel GE, Barnes GN, States JC, Watson WH, Kong M, Cai L, Freedman JH (2019) Cadmium and high-fat diet disrupt renal, cardiac and hepatic essential metals. Sci Rep 9:14675. https://doi.org/10.1038/s41598-019-50771-3

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16. https://doi.org/10.1016/s0378-4274(02)00084-x

    Article  PubMed  CAS  Google Scholar 

  22. ATSDR (2007) Toxicological Profile for Arsenic. U. S. Department of Health and Human Services, Public Health Services, Atlanta, GA. https://www.atsdr.cdc.gov/ToxProfiles/tp2.pdf

    Google Scholar 

  23. Cariccio VL, Samà A, Bramanti P, Mazzon E (2019) Mercury involvement in neuronal damage and in neurodegenerative diseases. Biol Trace Elem Res 187:341–356. https://doi.org/10.1007/s12011-018-1380-4

    Article  PubMed  CAS  Google Scholar 

  24. Chen S, Guo Q, Liu L (2017) Determination of arsenic species in edible mushrooms by high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. Food Anal Method 10:740–748. https://doi.org/10.1007/s12161-016-0629-9

    Article  Google Scholar 

  25. Zou H, Zhou C, Li Y, Yang X, Wen J, Li C, Song S, Sun C (2020) Speciation analysis of mercury in wild edible mushrooms by high-performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry. Anal Bioanal Chem 412:2829–2840. https://doi.org/10.1007/s00216-020-02515-w

    Article  PubMed  CAS  Google Scholar 

  26. Yu H, Shen X, Chen H, Dong H, Li Y (2021) Analysis of heavy metal content in Lentinula edodes and the main influencing factors. Food Control 130:108198. https://doi.org/10.1016/j.foodcont.2021.108198

    Article  CAS  Google Scholar 

  27. Nowakowski P, Markiewicz-Żukowska R, Soroczyńska J, PuścionJakubik A, Mielcarek K, Borawska MH, Socha K (2021) Evaluation of toxic element content and health risk assessment of edible wild mushrooms. J Food Compos Anal 96:103698. https://doi.org/10.1016/j.jfca.2020.103698

    Article  CAS  Google Scholar 

  28. USEPA (1989) Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual (Part A). United States Environmental Protection Agency, Washington DC. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=9100UGV0.txt

  29. Salihovic M, Pazalja M, Sapcanin A (2021) Element contents and health risk assessment in wild edible mushrooms of Bosnia and Herzegovina. Plant Soil Environ 67:668–677. https://doi.org/10.17221/423/2021-PSE

    Article  CAS  Google Scholar 

  30. Yin J, Wang L, Chen Y, Zhang D, Hegazy AM, Zhang X (2019) A comparison of accumulation and depuration effect of dissolved hexavalent chromium (Cr6+) in head and muscle of bighead carp (Aristichthys nobilis) and assessment of the potential health risk for consumers. Food Chem 286:388–394. https://doi.org/10.1016/j.foodchem.2019.01.186

    Article  ADS  PubMed  CAS  Google Scholar 

  31. Sharafi K, Yunesian M, Mahvi AH, Pirsaheb M, Nazmara S, Nodehi RN (2019) Advantages and disadvantages of different precooking and cooking methods in removal of essential and toxic metals from various rice types- human health risk assessment in Tehran households. Iran Ecotoxicol Environ Saf 175:128–137. https://doi.org/10.1016/j.ecoenv.2019.03.056

    Article  PubMed  CAS  Google Scholar 

  32. Luo XS, Ding J, Xu B, Wang YJ, Li HB, Yu S (2012) Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Sci Total Environ 424:88–96. https://doi.org/10.1016/j.scitotenv.2012.02.053

    Article  ADS  PubMed  CAS  Google Scholar 

  33. USEPA (2017) United States environmental protection agency. IRIS assessments. https://cfpub.epa.gov/ncea/iris2/atoz.cfm

  34. Shaheen N, Ahmed MK, Islam MS, Habibullah-Al-Mamun M, Tuku AB, Islam S, Abu AT (2016) Health risk assessment of trace elements via dietary intake of ‘non-piscine protein source’ foodstuffs (meat, milk and egg) in Bangladesh. Environ Sci Pollut Res 23:7794–7806. https://doi.org/10.1007/s11356-015-6013-2

    Article  CAS  Google Scholar 

  35. MHC (2022) Maximum levels of contaminants in foods, GB2762-2022. Ministry of Health of China, Beijing. http://down.foodmate.net/standard/yulan.php?itemid=123275

  36. Ouzouni PK, Petridis D, Koller W, Riganakos KA (2009) Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chem 115(4):1575–1580. https://doi.org/10.1016/j.foodchem.2009.02.014

    Article  CAS  Google Scholar 

  37. Tel-Çayan G, Ullah Z, Öztürk M, Yabanlı M, Aydın F, Duru ME (2018) Heavy metals, trace and major elements in 16 wild mushroom species determined by ICP-MS. At Spectrosc 39(1):29–37. https://doi.org/10.46770/AS.2018.01.004

    Article  Google Scholar 

  38. Nnorom IC, Eze SO, Ukaogo PO (2020) Mineral contents of three wild-grown edible mushrooms collected from forests of south eastern Nigeria: an evaluation of bioaccumulation potentials and dietary intake risks. Sci Afr 8:e00163. https://doi.org/10.1016/j.sciaf.2019.e00163

    Article  Google Scholar 

  39. Huang Q, Jia Y, Wan Y, Li H, Jiang R (2015) Market survey and risk assessment for trace metals in edible fungi and the substrate role in accumulation of heavy metals. J Food Sci 80(7–9):H1612–H1618. https://doi.org/10.1111/1750-3841.12923

    Article  PubMed  CAS  Google Scholar 

  40. An JM, Gu SY, Kim DJ, Shin HC, Kim YK (2020) Arsenic, cadmium, lead, and mercury contents of mushroom species in Korea and associated health risk. Int J Food Prop 23(1):992–998. https://doi.org/10.1080/10942912.2020.1770786

    Article  CAS  Google Scholar 

  41. Liu S, Fu Y, Shi M, Wang H, Guo J (2021) Pollution level and risk assessment of lead, cadmium, mercury, and arsenic in edible mushrooms from Jilin Province, China. J Food Sci 86(8):3374–3383. https://doi.org/10.1111/1750-3841.15849

    Article  PubMed  CAS  Google Scholar 

  42. Chen S, Yuan B, Xu J, Chen G, Hu Q, Zhao L (2018) Simultaneous separation and determination of six arsenic species in shiitake (Lentinus edodes) mushrooms: method development and applications. Food Chem 262:134–141. https://doi.org/10.1016/j.foodchem.2018.04.036

    Article  PubMed  CAS  Google Scholar 

  43. Zou H, Zhou C, Li Y, Yang X, Sun C (2020) Speciation analysis of arsenic in edible mushrooms by high-performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry. Food Chem 327:127033. https://doi.org/10.1016/j.foodchem.2020.127033

    Article  PubMed  CAS  Google Scholar 

  44. Sarikurkcu C, Yildiz D, Akata I, Tepe B (2021) Evaluation of the metal concentrations of wild mushroom species with their health risk assessments. Environ Sci Pollut R 28:21437–21454. https://doi.org/10.1007/s11356-020-11685-0

    Article  CAS  Google Scholar 

  45. Karami H, Shariatifar N, Nazmara S, Moazzen M, Khaneghah AM (2021) The concentration and probabilistic health risk of potentially toxic elements (PTEs) in edible mushrooms (wild and cultivated) samples collected from different cities of Iran. Biol Trace Elem Res 199(1):389–400. https://doi.org/10.1007/s12011-020-02130-x

    Article  PubMed  Google Scholar 

  46. Rashid MH, Rahman MM, Correll R, Naidu R (2018) Arsenic and other elemental concentrations in mushrooms from Bangladesh: Health risks. Int J Environ Res Public Health 15:919. https://doi.org/10.3390/ijerph15050919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Alaimo MG, Dongarrà G, La Rosa A, Tamburo E, Vasquez G, Varrica D (2018) Major and trace elements in Boletus aereus and clitopilus prunulus growing on volcanic and sedimentary soils of sicily (Italy). Ecotox and Environ Safe 157:182–190. https://doi.org/10.1016/j.ecoenv.2018.03.080

    Article  CAS  Google Scholar 

  48. Kokkoris V, Massas I, Polemis E, Koutrotsios G, Zervakis GI (2019) Accumulation of heavy metals by wild edible mushrooms with respect to soil substrates in the Athens metropolitan area (Greece). Sci Total Environ 685:280–296. https://doi.org/10.1016/j.scitotenv.2019.05.447

    Article  ADS  PubMed  CAS  Google Scholar 

  49. Pei D, Xie H, Song H, Xu H, Wu Y (2015) Bioconcentration factors and potential human health risks of heavy metals in cultivated Lentinus edodes in Chengdu, people’s Republic of China. J Food Protect 78(2):390–395. https://doi.org/10.4315/0362-028X.JFP-14-336

    Article  CAS  Google Scholar 

  50. Sun L, Chang W, Bao C, Zhuang Y (2017) Metal contents, bioaccumulation, and health risk assessment in wild edible Boletaceae mushrooms. J Food Sci 82(6):1500–1508. https://doi.org/10.1111/1750-3841.13698

    Article  PubMed  CAS  Google Scholar 

  51. Ahmed ASS, Sultana S, Habib A, Ullah H, Musa N, Hossain MB, Rahman MdM, Sarker MdSI (2019) Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than adults. PLoS ONE 14(10):e0219336. https://doi.org/10.1371/journal.pone.0219336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Feldmann J, Krupp EM (2011) Critical review or scientific opinion paper: arsenosugars-a class of benign arsenic species or justification for developing partly speciated arsenic fractionation in foodstuffs? Anal Bioanal Chem 399:1735–1741. https://doi.org/10.1007/s00216-010-4303-6

    Article  PubMed  CAS  Google Scholar 

  53. Nearing MM, Koch I, Reimer KJ (2014) Arsenic speciation in edible mushrooms. Environ Sci Technol 48:14203–14210. https://doi.org/10.1021/es5038

    Article  ADS  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the PreeKem Scientific Instruments Co.,Ltd., Shanghai, China, for their assistance and cooperation.

Funding

This study was supported by the Capital’s Funds for Health Improvement and Research (CFH 2022-2G-30113).

Author information

Authors and Affiliations

Authors

Contributions

Shaozhan Chen carried on the sample collection, element analysis, data processing, and wrote the main manuscript text. Qiaozhen Guo made a risk assessment of the data and revised the manuscript. Tianhui Zhou contributed to sample pretreatment and data analysis. Liu Liping designed experimental scheme and edited the original manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Liping Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Guo, Q., Zhou, T. et al. Levels and Health Risk Assessment of Inorganic Arsenic, Methylmercury, and Heavy Metals in Edible Mushrooms Collected from Online Supermarket in China. Biol Trace Elem Res 202, 1802–1815 (2024). https://doi.org/10.1007/s12011-023-03779-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03779-w

Keywords

Navigation