Skip to main content
Log in

Effect of Parenteral Supplementation of Minerals and Vitamins on Oxidative Stress Biomarkers and Hepatic Fatty Acid Metabolism in Dairy Cows During the Transition Period

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In the present work we aimed to study the effects of parenteral vitamin and mineral supplementation on hepatic fatty acid metabolism as well as on the oxidative stress biomarkers in biological samples of transition cows. The supplemented group (SG, n = 11) received a subcutaneous injection of 5 mL of vitamin A palmitate 35 mg/mL, vitamin E acetate 50 mg/mL plus other injection of 5 mL of copper edetate 10 mg/mL, zinc edetate 40 mg/mL, manganese edetate 10 mg/mL, and sodium selenite 5 mg/mL on days − 60, − 30, and 7 (± 3) relative to calving. The control group (CG, n = 11) received two subcutaneous injections of 5 mL of 9 mg/mL sodium chloride at the same times of the SG. Blood, urine, and liver biopsies were sampled 21 (± 3) days before the expected calving date and 7 and 21 (± 3) days after calving. Results revealed that supplemented animals had higher glutation peroxidase (GSH-Px) activity, lower and higher concentration of 3-nitrotyrosine (3-NT) in the liver and plasma, respectively, higher expression of the mitochondrial beta-oxidation enzyme carnitine palmitoyltransferase 1 in the liver, and lower content of hepatic triacylglycerol, mirroring plasma liver function parameters. No differences between groups were found in the superoxide dismutase activity, MDA concentrations, the protein abundance of peroxisomal acyl-CoA oxidase 1, diacylglycerol O-acyltransferase 1, and peroxisome proliferator-activated receptor alpha. These results suggest that the vitamin and mineral supplementation provided to dairy cows had a beneficial effect on GSH-Px activity, hepatic 3-NT concentration, and on the metabolic adaptation during the peripartum period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Li P, Li XB, Fu SX et al (2012) Alterations of fatty acid β-oxidation capability in the liver of ketotic cows. J Dairy Sci 95:1759–1766. https://doi.org/10.3168/jds.2011-4580

    Article  PubMed  CAS  Google Scholar 

  2. Angeli E, Rodríguez FM, Rey F et al (2019) Liver fatty acid metabolism associations with reproductive performance of dairy cattle. Anim Reprod Sci 208:106104. https://doi.org/10.1016/j.anireprosci.2019.06.016

    Article  PubMed  CAS  Google Scholar 

  3. Weidinger A, Kozlov AV (2015) Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules 5:472–484. https://doi.org/10.3390/biom5020472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Gracia-Sancho J, Laviña B, Rodríguez-Vilarrupla A et al (2008) Increased oxidative stress in cirrhotic rat livers: a potential mechanism contributing to reduced nitric oxide bioavailability. Hepatology 47:1248–1256. https://doi.org/10.1002/hep.22166

    Article  PubMed  CAS  Google Scholar 

  5. Ho E, Karimi Galougahi K, Liu C-C et al (2013) Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol 1:483–491. https://doi.org/10.1016/j.redox.2013.07.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Li X, Li S, Kellermann G (2015) A novel mixed-mode solid phase extraction coupled with LC-MS/MS for the re-evaluation of free 3-nitrotyrosine in human plasma as an oxidative stress biomarker. Talanta 140:45–51. https://doi.org/10.1016/j.talanta.2015.02.053

    Article  PubMed  CAS  Google Scholar 

  7. Barcarolo D, Angeli E, Adonna S et al (2019) Development and validation of a LC-MS/MS method to quantify plasma 3-nitrotyrosine in lactating dairy cows as a biomarker of oxidative stress. Med (LXIII Reun Científica Anu la Soc Argentina Investig Clínica -SAIC) 79:748

  8. Castillo C, Hernández J, Valverde I et al (2006) Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Res Vet Sci 80:133–139. https://doi.org/10.1016/j.rvsc.2005.06.003

    Article  PubMed  CAS  Google Scholar 

  9. Putman AK, Brown JL, Gandy JC et al (2018) Changes in biomarkers of nutrient metabolism, inflammation, and oxidative stress in dairy cows during the transition into the early dry period. J Dairy Sci 101:9350–9359. https://doi.org/10.3168/jds.2018-14591

    Article  PubMed  CAS  Google Scholar 

  10. Angeli E, Barcarolo D, Ribas LE et al (2023) Biomarkers of oxidative stress and liver function in early lactation and their relationship with the reproductive efficiency of multiparous grazing dairy cows in Argentina. A retrospective study. Vet Res Commun. https://doi.org/10.1007/S11259-023-10134-W

    Article  PubMed  Google Scholar 

  11. Zigo F, Elecko J, Vasil M et al (2019) The occurrence of mastitis and its effect on the milk malondialdehyde concentrations and blood enzymatic antioxidants in dairy cows. Vet Med (Praha) 64:423–432. https://doi.org/10.17221/67/2019-VETMED

    Article  CAS  Google Scholar 

  12. Lykkesfeldt J, Svendsen O (2007) Oxidants and antioxidants in disease: oxidative stress in farm animals. Vet J 173:502–511. https://doi.org/10.1016/j.tvjl.2006.06.005

    Article  PubMed  CAS  Google Scholar 

  13. Sordillo LM, Aitken SL (2009) Impact of oxidative stress on the health and immune function of dairy cattle. Vet Immunol Immunopathol 128:104–109. https://doi.org/10.1016/j.vetimm.2008.10.305

    Article  PubMed  CAS  Google Scholar 

  14. Furukawa S, Fujita T, Shimabukuro M et al (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761. https://doi.org/10.1172/JCI21625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Bernabucci U, Ronchi B, Lacetera N, Nardone A (2005) Influence of body condition score on relationships between metabolic status and oxidative stress in periparturient dairy cows. J Dairy Sci 88:2017–2026. https://doi.org/10.3168/jds.S0022-0302(05)72878-2

    Article  PubMed  CAS  Google Scholar 

  16. Schrader M, Fahimi HD (2006) Peroxisomes and oxidative stress. Biochim Biophys Acta 1763:1755–1766. https://doi.org/10.1016/j.bbamcr.2006.09.006

    Article  PubMed  CAS  Google Scholar 

  17. Abuelo A, Hernández J, Benedito JL, Castillo C (2015) The importance of the oxidative status of dairy cattle in the periparturient period: revisiting antioxidant supplementation. J Anim Physiol Anim Nutr (Berl) 99:1003–1016. https://doi.org/10.1111/jpn.12273

    Article  PubMed  CAS  Google Scholar 

  18. Bertoni G, Minuti A, Trevisi E (2015) Immune system, inflammation and nutrition in dairy cattle. Anim Prod Sci 55:943. https://doi.org/10.1071/AN14863

    Article  CAS  Google Scholar 

  19. Angeli E, Barcarolo D, Ribas L et al (2021) Relevant aspects of dietary n-3 polyunsaturated fatty acids in the adaptation of dairy cattle to the transition period. Livest Sci 244:104346. https://doi.org/10.1016/j.livsci.2020.104346

    Article  Google Scholar 

  20. Celi P (2011) Biomarkers of oxidative stress in ruminant medicine. Immunopharmacol Immunotoxicol 33:233–240. https://doi.org/10.3109/08923973.2010.514917

    Article  PubMed  Google Scholar 

  21. Zigo F, Farkašóvá Z, Elečko J et al (2014) Effect of parenteral administration of selenium and vitamin e on health status of mammary gland and on selected antioxidant indexes in blood of dairy cows. Pol J Vet Sci 17:217–223. https://doi.org/10.2478/PJVS-2014-0031

    Article  PubMed  CAS  Google Scholar 

  22. Pate RT, Cardoso FC (2018) Injectable trace minerals (selenium, copper, zinc, and manganese) alleviate inflammation and oxidative stress during an aflatoxin challenge in lactating multiparous Holstein cows. J Dairy Sci 101:8532–8543. https://doi.org/10.3168/jds.2018-14447

    Article  PubMed  CAS  Google Scholar 

  23. Ucar F, Sezer S, Erdogan S et al (2013) The relationship between oxidative stress and nonalcoholic fatty liver disease: its effects on the development of nonalcoholic steatohepatitis. Redox Rep 18:127–133. https://doi.org/10.1179/1351000213Y.0000000050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Cortinhas CS, Botaro BG, Sucupira MCA et al (2010) Antioxidant enzymes and somatic cell count in dairy cows fed with organic source of zinc, copper and selenium. Livest Sci 127:84–87. https://doi.org/10.1016/j.livsci.2009.09.001

    Article  Google Scholar 

  25. Machado VS, Bicalho MLS, Pereira RV et al (2013) Effect of an injectable trace mineral supplement containing selenium, copper, zinc, and manganese on the health and production of lactating Holstein cows. Vet J 197:451–456. https://doi.org/10.1016/j.tvjl.2013.02.022

    Article  PubMed  CAS  Google Scholar 

  26. Teixeira AGV, Lima FS, Bicalho MLS et al (2014) Effect of an injectable trace mineral supplement containing selenium, copper, zinc, and manganese on immunity, health, and growth of dairy calves. J Dairy Sci 97:4216–4226. https://doi.org/10.3168/jds.2013-7625

    Article  PubMed  CAS  Google Scholar 

  27. Xiao J, Khan MZ, Ma Y et al (2021) The antioxidant properties of selenium and vitamin E; their role in periparturient dairy cattle health regulation. Antioxidants (Basel, Switzerland) 10:. https://doi.org/10.3390/antiox10101555

  28. Angeli E, Trionfini V, Gareis NC et al (2019) Protein and gene expression of relevant enzymes and nuclear receptor of hepatic lipid metabolism in grazing dairy cattle during the transition period. Res Vet Sci 123:223–231. https://doi.org/10.1016/j.rvsc.2019.01.020

    Article  PubMed  CAS  Google Scholar 

  29. Vivekanandan-Giri A, Byun J, Pennathur S (2011) Quantitative analysis of amino acid oxidation markers by tandem mass spectrometry. Methods Enzymol 491:73–89. https://doi.org/10.1016/B978-0-12-385928-0.00005-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Iwersen M, Klein-Jöbstl D, Pichler M et al (2013) Comparison of 2 electronic cowside tests to detect subclinical ketosis in dairy cows and the influence of the temperature and type of blood sample on the test results. J Dairy Sci 96:7719–7730. https://doi.org/10.3168/jds.2013-7121

    Article  PubMed  CAS  Google Scholar 

  31. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    Article  PubMed  CAS  Google Scholar 

  32. Barcarolo D, Angeli E, Ribas LE et al (2022) Application of an optimized and validated LC–MS/MS method for the quantification of free 3-nitrotyrosine in plasma, urine and liver tissue of lactating dairy cows. Livest Sci 257:104852. https://doi.org/10.1016/j.livsci.2022.104852

    Article  Google Scholar 

  33. Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191. https://doi.org/10.3758/BF03193146

    Article  PubMed  Google Scholar 

  34. Roche JR, Meier S, Heiser A et al (2015) Effects of precalving body condition score and prepartum feeding level on production, reproduction, and health parameters in pasture-based transition dairy cows. J Dairy Sci 98:7164–7182. https://doi.org/10.3168/jds.2014-9269

    Article  PubMed  CAS  Google Scholar 

  35. Mann S, Leal Yepes FA, Wakshlag JJ et al (2018) The effect of different treatments for early-lactation hyperketonemia on liver triglycerides, glycogen, and expression of key metabolic enzymes in dairy cattle. J Dairy Sci 101:1626–1637. https://doi.org/10.3168/jds.2017-13360

    Article  PubMed  CAS  Google Scholar 

  36. Lopreiato V, Mezzetti M, Cattaneo L et al (2020) Role of nutraceuticals during the transition period of dairy cows: a review. J Anim Sci Biotechnol 11:1–18. https://doi.org/10.1186/s40104-020-00501-x

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gross JJ, Schwarz FJ, Eder K et al (2013) Liver fat content and lipid metabolism in dairy cows during early lactation and during a mid-lactation feed restriction. J Dairy Sci 96:5008–5017. https://doi.org/10.3168/jds.2012-6245

    Article  PubMed  CAS  Google Scholar 

  38. Esposito G, Irons PC, Webb EC, Chapwanya A (2014) Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim Reprod Sci 144:60–71. https://doi.org/10.1016/j.anireprosci.2013.11.007

    Article  PubMed  CAS  Google Scholar 

  39. Roche JR, Lee JM, Macdonald KA, Berry DP (2007) Relationships among body condition score, body weight, and milk production variables in pasture-based dairy cows. J Dairy Sci 90:3802–3815. https://doi.org/10.3168/jds.2006-740

    Article  PubMed  CAS  Google Scholar 

  40. Ospina PA, McArt JA, Overton TR et al (2013) Using nonesterified fatty acids and ??-hydroxybutyrate concentrations during the transition period for herd-level monitoring of increased risk of disease and decreased reproductive and milking performance. Vet Clin North Am - Food Anim Pract 29:387–412. https://doi.org/10.1016/j.cvfa.2013.04.003

    Article  PubMed  Google Scholar 

  41. Bicalho MLS, Marques EC, Gilbert RO, Bicalho RC (2017) The association of plasma glucose, BHBA, and NEFA with postpartum uterine diseases, fertility, and milk production of Holstein dairy cows. Theriogenology 88:270–282. https://doi.org/10.1016/j.theriogenology.2016.09.036

    Article  PubMed  CAS  Google Scholar 

  42. Hammon HM, Stürmer G, Schneider F et al (2009) Performance and metabolic and endocrine changes with emphasis on glucose metabolism in high-yielding dairy cows with high and low fat content in liver after calving. J Dairy Sci 92:1554–1566. https://doi.org/10.3168/jds.2008-1634

    Article  PubMed  CAS  Google Scholar 

  43. Bobe G, Young JW, Beitz DC (2004) Invited review: pathology, etiology, prevention, and treatment of fatty liver in dairy cows. J Dairy Sci 87:3105–3124. https://doi.org/10.3168/jds.S0022-0302(04)73446-3

    Article  PubMed  CAS  Google Scholar 

  44. Loor JJ, Dann HM, Guretzky NAJ et al (2006) Plane of nutrition prepartum alters hepatic gene expression and function in dairy cows as assessed by longitudinal transcript and metabolic profiling. Physiol Genomics 27:29–41. https://doi.org/10.1152/physiolgenomics.00036.2006

    Article  PubMed  CAS  Google Scholar 

  45. Cavestany D, Blanc JE, Kulcsar M et al (2005) Studies of the transition cow under a pasture-based milk production system: metabolic profiles. J Vet Med Ser A Physiol Pathol Clin Med 52:1–7. https://doi.org/10.1111/j.1439-0442.2004.00679.x

    Article  CAS  Google Scholar 

  46. Bertoni G, Trevisi E, Han X, Bionaz M (2008) Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows. J Dairy Sci 91:3300–3310. https://doi.org/10.3168/jds.2008-0995

    Article  PubMed  CAS  Google Scholar 

  47. Bionaz M, Trevisi E, Calamari L et al (2007) Plasma paraoxonase, health, inflammatory conditions, and liver function in transition dairy cows. J Dairy Sci 90:1740–1750. https://doi.org/10.3168/jds.2006-445

    Article  PubMed  CAS  Google Scholar 

  48. Bertoni G, Trevisi E (2013) Use of the liver activity index and other metabolic variables in the assessment of metabolic health in dairy herds. Vet Clin North Am - Food Anim Pract 29:413–431. https://doi.org/10.1016/j.cvfa.2013.04.004

    Article  PubMed  Google Scholar 

  49. Bradford BJ, Yuan K, Farney JK et al (2015) Invited review: inflammation during the transition to lactation: new adventures with an old flame. J Dairy Sci 98:6631–6650. https://doi.org/10.3168/jds.2015-9683

    Article  PubMed  CAS  Google Scholar 

  50. Sordillo LM, Mavangira V (2014) The nexus between nutrient metabolism, oxidative stress and inflammation in transition cows. Anim Prod Sci 54:1204–1214. https://doi.org/10.1071/AN14503

    Article  Google Scholar 

  51. Goff JP (2018) Invited review: Mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. J Dairy Sci 101:2763–2813. https://doi.org/10.3168/JDS.2017-13112

    Article  PubMed  CAS  Google Scholar 

  52. Vázquez-Añón M, Nocek J, Bowman G et al (2008) Effects of feeding a dietary antioxidant in diets with oxidized fat on lactation performance and antioxidant status of the cow. J Dairy Sci 91:3165–3172. https://doi.org/10.3168/JDS.2007-0737

    Article  PubMed  Google Scholar 

  53. Edmonson AJ, Lean IJ, Weaver LD et al (1989) A body condition scoring chart for Holstein dairy cows. J Dairy Sci 72:68–78. https://doi.org/10.3168/jds.S0022-0302(89)79081-0

    Article  Google Scholar 

  54. Bouwstra RJ, Goselink RMA, Dobbelaar P et al (2008) The relationship between oxidative damage and vitamin e concentration in blood, milk, and liver tissue from Vitamin e supplemented and nonsupplemented periparturient heifers. J Dairy Sci 91:977–987. https://doi.org/10.3168/jds.2007-0596

    Article  PubMed  CAS  Google Scholar 

  55. Weiss WP, Hogan JS, Todhunter DA, Smith KL (1997) Effect of vitamin E supplementation in diets with a low concentration of selenium on mammary gland health of dairy cows. J Dairy Sci 80:1728–1737. https://doi.org/10.3168/jds.S0022-0302(97)76105-8

    Article  PubMed  CAS  Google Scholar 

  56. LeBlanc SJ, Herdt TH, Seymour WM et al (2004) Peripartum serum vitamin E, retinol, and beta-carotene in dairy cattle and their associations with disease. J Dairy Sci 87:609–619. https://doi.org/10.3168/jds.S0022-0302(04)73203-8

    Article  PubMed  CAS  Google Scholar 

  57. Han van der Kolk JH, Gross JJ, Gerber V, Bruckmaier RM (2017) Disturbed bovine mitochondrial lipid metabolism: a review. Vet Q 37:262–273. https://doi.org/10.1080/01652176.2017.1354561

    Article  PubMed  CAS  Google Scholar 

  58. García-Roche M, Casal A, Mattiauda DA et al (2019) Impaired hepatic mitochondrial function during early lactation in dairy cows: association with protein lysine acetylation. PLoS One 14:1–24. https://doi.org/10.1371/journal.pone.0213780

    Article  CAS  Google Scholar 

  59. Li J-L, Wang Q-Y, Luan H-Y et al (2012) Effects of L-carnitine against oxidative stress in human hepatocytes: involvement of peroxisome proliferator-activated receptor alpha. J Biomed Sci 19:32. https://doi.org/10.1186/1423-0127-19-32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Xu C, Wang Z, Zhang R-H et al (2011) Effect of NEFA and glucose levels on CPT-I mRNA expression and translation in cultured bovine hepatocytes. J Vet Med Sci 73:97–101. https://doi.org/10.1292/jvms.10-0164

    Article  PubMed  CAS  Google Scholar 

  61. Varga T, Czimmerer Z, Nagy L (2011) PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta - Mol Basis Dis 1812:1007–1022. https://doi.org/10.1016/j.bbadis.2011.02.014

    Article  CAS  Google Scholar 

  62. Bougarne N, Weyers B, Desmet SJ et al (2018) Molecular actions of PPARα in lipid metabolism and inflammation. Endocr Rev 39:760–802. https://doi.org/10.1210/er.2018-00064

    Article  PubMed  Google Scholar 

  63. Kessler EC, Gross JJ, Bruckmaier RM, Albrecht C (2014) Cholesterol metabolism, transport, and hepatic regulation in dairy cows during transition and early lactation. J Dairy Sci 97:5481–5490. https://doi.org/10.3168/jds.2014-7926

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Guillermo Mattioli, Dr. Gabriel A. Hunzicker, and Med. Vet. Ernesto Quercia for their professional assistance, and BIOGENESIS BAGO S.A. for providing the products for this project. We also thank the staff members of the Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)- Universidad Nacional del Litoral, Santa Fe, Argentina.

Funding

This study was supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica of Argentina (ANPCyT; PICT 2016–0456), from CONICET (PIP 11220210100067CO), and Universidad Nacional del Litoral, Santa Fe, Argentina (CAI + D 2020, 50620190100044LI).

Author information

Authors and Affiliations

Authors

Contributions

Daiana Barcarolo and Emmanuel Angeli: Conceptualization, Methodology, Software, Data curation, Visualization, Investigation, Writing- Original draft preparation. Lucas E. Ribas and Lucas Etchevers: Conceptualization, Methodology, Software, Data curation, Writing- Original draft preparation. Valentina Matiller and Florencia Rey: Visualization, Investigation and Writing- Original draft preparation. Hugo H. Ortega and Gustavo J. Hein: Supervision- Writing- Reviewing and Editing.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

D. Barcarolo and E. Angeli contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barcarolo, D., Angeli, E., Etchevers, L. et al. Effect of Parenteral Supplementation of Minerals and Vitamins on Oxidative Stress Biomarkers and Hepatic Fatty Acid Metabolism in Dairy Cows During the Transition Period. Biol Trace Elem Res 202, 1582–1593 (2024). https://doi.org/10.1007/s12011-023-03776-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03776-z

Keywords

Navigation