Skip to main content
Log in

Effects of Zinc Oxide Nanoparticles Supplementation on Growth Performance, Meat Quality and Serum Biochemical Parameters in Broiler Chicks

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The zinc oxide nanoparticles (ZnONPs) have attracted exhilarating research interest due to their novel distinguishing characteristics such as size, shape, high surface activity, large surface area and biocompatibility. Being highly bioavailable and exerting a superior efficacy than conventional zinc sources, ZnONPs is emerging as an alternative feed supplement for poultry. The present study involves the synthesis of ZnONPs through a cost effective and eco-friendly method using planetary ball milling technique and characterized for its size, shape, optical property, functional group and elemental concentration using particle size analyzer, Transmission Electron Microscopy, X-Ray Diffraction analysis, Fourier Transform Infra-Red spectroscopy, UV-Vis spectroscopy and Inductively Coupled Plasma-Mass Spectroscopy. In vitro cytotoxicity study using Baby Hamster kidney (BHK-21) cells, Vero cells and primary chick liver culture cells revealed that ZnONPs can be safely incorporated in the broiler chick’s feed up to the concentration of 100 mg/kg. To investigate the effects of ZnONPs on production performances in broiler chicks, a feeding trial was carried out using 150-day-old broiler chicks randomly allotted in five treatment groups. The dietary treatment groups were: T1 (80 mg/kg of zinc oxide), T2 (60 mg/kg of zinc methionine) and T3, T4 and T5 received 60, 40 and 20 mg/kg of ZnONPs respectively. The results showed a significant improvement (p < 0.05) in the body weight gain and feed conversion ratio of broiler chicks supplemented with 20 and 40 mg/kg of ZnONPs. The ZnONPs supplementation significantly (p < 0.05) increased the dressing percentage in addition to significant (p < 0.05) reduction in the meat pH compared to inorganic and organic zinc supplementation. Overall, an eco-friendly method for ZnONPs synthesis was demonstrated and the optimum dietary level (20 mg/kg) of ZnONPs could enhance the growth, the meat quality and Zn uptake without any negative effects on selected serum biochemical parameters in the broiler chicks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data are available by the corresponding author upon a reasonable query.

Abbreviations

ALT:

Alanine transaminase

BHK-21 Cells:

Baby Hamster Kidney cells

BIS:

Bureau of Indian Standards

DLS:

Dynamic Light Scattering

DMSO:

Dimethyl sulfoxide

FCR:

Feed conversion ratio

FTIR:

Fourier Transform Infra-Red Spectroscopy

HR-TEM:

High Resolution - Transmission Electron Microscopy

ICP-MS:

Inductively Coupled Plasma Mass Spectrometry

MTT:

(3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide) dye

nm:

Nano meter

NP:

Nanoparticles

RPM:

Rotation per minute

SFV:

Shear Force Value

UV-Vis:

Ultra violet Visible

WHC:

Water Holding Capacity

XRD:

X-Ray Diffractogram

Zn:

Zinc

ZnONPs:

Zinc oxide nano particles

References

  1. Bortoluzzi C, Vieira BS, Applegate TJ (2020) Influence of dietary zinc, copper, and manganese on the intestinal health of broilers under Eimeria challenge. Front Vet Sci 7:13. https://doi.org/10.3389/fvets.2020.00013

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ramiah SK, Awad EA, Mookiah S, Idrus Z (2019) Effects of zinc oxide nanoparticles on growth performance and concentrations of malondialdehyde, zinc in tissues, and corticosterone in broiler chickens under heat stress conditions. Poult Sci 98(9):3828–3838. https://doi.org/10.3382/ps/pez093

    Article  CAS  PubMed  Google Scholar 

  3. Suttle NF (2022) Mineral nutrition of livestock. Cabi

  4. Ahmadi F, Ebrahimnezhad Y, Sis NM, Ghiasi J (2013) The effects of zinc oxide nanoparticles on performance, digestive organs and serum lipid concentrations in broiler chickens during starter period. Int J Biosci 3(7):23–29. https://doi.org/10.12692/ijb/3.7.23-29

    Article  CAS  Google Scholar 

  5. Jeevanandam J, Krishnan S, Hii YS, Pan S, Chan YS, Acquah C, Danquah MK, Rodrigues J (2022) Synthesis approach-dependent antiviral properties of silver nanoparticles and nanocomposites. J Nanostruct Chem 1–23. https://doi.org/10.1007/s40097-021-00465-y

  6. Thakur S, Thakur S, Kumar R (2018) Bio-nanotechnology and its role in agriculture and food industry. J Mol Genet Med 12(324):1747–0862. https://doi.org/10.4172/1747-0862.1000324

    Article  Google Scholar 

  7. Sizova E, Miroshnikov S, Ayasan T (2021) Efficiency and safety of using different sources of zinc in poultry nutrition. In IOP Conf Ser: Earth Environ Sci 624(1):012043. https://doi.org/10.1088/1755-1315/624/1/012043

  8. Swain PS, Rajendran D, Rao SBN, Dominic G (2015) Preparation and effects of nano mineral particle feeding in livestock: a review. Vet World 8(7):888. https://doi.org/10.1016/j.aninu.2016.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheng J, Kornegay ET, Schell T (1998) Influence of dietary lysine on the utilization of zinc from zinc sulfate and a zinclysine complex by young pigs. J Anim Sci 76:1064–1074. https://doi.org/10.2527/1998.7641064x

    Article  CAS  PubMed  Google Scholar 

  10. Krishnamoorthy R, Athinarayanan J, Periyasamy VS, Alshuniaber MA, Alshammari G, Hakeem MJ, Ahmed MA, Alshatwi AA (2022) Antibacterial mechanisms of zinc oxide nanoparticle against bacterial food pathogens resistant to beta-lactam antibiotics. Molecules 27(8):2489. https://doi.org/10.3390/molecules27082489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mittag A, Hoera C, Kämpfe A, Westermann M, Kuckelkorn J, Schneider T, Glei M (2021) Cellular uptake and toxicological effects of differently sized zinc oxide nanoparticles in intestinal cells. Toxics 9(5):96. https://doi.org/10.3390/toxics9050096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yedurkar S, Maurya C, Mahanwar P (2016) Biosynthesis of zinc oxide nanoparticles using ixora coccinea leaf extract—a green approach. Open J Synth Theor Appl 5(1):1–14. https://doi.org/10.4236/ojsta.2016.51001

    Article  CAS  Google Scholar 

  13. Ramana V, Rajeshkumar S, Jagadeesh K (2023) Review of the environmentally friendly production of zinc oxide nanoparticles and its anti-oxidant, anti-hyperlipidemic, and anti-diabetic properties. J Surv Fish Sci 10(1S):117–127. https://doi.org/10.17762/sfs.v10i1S.154

    Article  Google Scholar 

  14. Sherif RM, Talat D, Alaidaroos BA, Farsi RM, Hassoubah SA, Jaber FA, Azer TM, El-Masry RM, Abd El-Hack ME, Ibrahim MS, Elbestawy A (2023) Antimicrobial impacts of zinc oxide nanoparticles on Shiga toxin-producing Escherichia coli (serotype O26). Ann Anim Sci 23(2):461–471. https://doi.org/10.2478/aoas-2022-0088

    Article  CAS  Google Scholar 

  15. Kamal A, Haroon U, Manghwar H, Alamer KH, Alsudays IM, Althobaiti AT, Iqbal A, Akbar M, Farhana, Anar M, Nazish M (2022) Biological applications of ball-milled synthesized Biochar-Zinc Oxide Nanocomposite using Zea mays L. Molecules 27(16):5333. https://doi.org/10.3390/molecules27165333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Souza VGL, Rodrigues C, Valente S, Pimenta C, Pires JRA, Alves MM, Santos CF, Coelhoso IM, Fernando AL (2020) Eco-friendly ZnO/Chitosan bionanocomposites films for packaging of fresh poultry meat. Coatings 10(2):110. https://doi.org/10.3390/coatings10020110

    Article  CAS  Google Scholar 

  17. Zare M, Namratha K, Ilyas S, Sultana A, Hezam A, Surmeneva MA, Surmenev RA, Nayan MB, Ramakrishna S, Mathur S, Byrappa K (2022) Emerging trends for Zno nanoparticles and their applications in food packaging. ACS Food Sci Technol 2(5):763–781. https://doi.org/10.1021/acsfoodscitech.2c00043

    Article  CAS  Google Scholar 

  18. Nayak S, Chaudhari A, Vaidhun B (2020) A review of zinc oxide nanoparticles: an evaluation of their synthesis, characterization and ameliorative properties for use in the food, pharmaceutical and cosmetic industries. J Excipients Food Chem 11(4):79–92

  19. Habibullah G, Viktorova J, Ruml T (2021) Current strategies for noble metal nanoparticle synthesis. Nanoscale Res Lett 16(1):1–12. https://doi.org/10.1186/s11671-021-03480-8

    Article  CAS  Google Scholar 

  20. Lin L, Starostin SA, Li S, Hessel V (2018) Synthesis of metallic nanoparticles by microplasma. Phys Sci Rev 3(10). https://doi.org/10.1515/psr-2017-0121

  21. Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P (2018) Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16(1):1–24. https://doi.org/10.1186/s12951-018-0408-4

    Article  CAS  Google Scholar 

  22. Degefa A, Bekele B, Jule LT, Fikadu B, Ramaswamy S, Dwarampudi LP, Nagaprasad N, Ramaswamy K (2021) Green synthesis, characterization of zinc oxide nanoparticles, and examination of properties for dye-sensitive solar cells using various vegetable extracts. J Nanomater 1–9. https://doi.org/10.1155/2021/3941923

  23. Agarwal H, Shanmugam V (2020) A review on anti-inflammatory activity of green synthesized zinc oxide nanoparticle: mechanism-based approach. Bioorg Chem 94:103423. https://doi.org/10.1016/j.bioorg.2019.103423

    Article  CAS  PubMed  Google Scholar 

  24. Muddapur UM, Alshehri S, Ghoneim MM, Mahnashi MH, Alshahrani MA, Khan AA, Iqubal SS, Bahafi A, More SS, Shaikh IA, Mannasaheb BA (2022) Plant-based synthesis of gold nanoparticles and theranostic applications: a review. Molecules 27(4):1391. https://doi.org/10.3390/molecules27041391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG (2019) Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci Technol 53:101174. https://doi.org/10.1016/j.jddst.2019.101174

    Article  CAS  Google Scholar 

  26. Kaabipour S, Hemmati S (2021) A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. Beilstein J Nanotechnol 12(1):102–136. https://doi.org/10.3762/bjnano.12.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Giri PK, Bhattacharyya S, Singh DK, Kesavamoorthy R, Panigrahi BK, Nair KGM (2007) Correlation between microstructure and optical properties of ZnO nanoparticles synthesized by ball milling. J Appl Phys 102(9):093515. https://doi.org/10.1063/1.2804012

    Article  ADS  CAS  Google Scholar 

  28. Lee JS, Park K, Kang MI, Park IW, Kim SW, Cho WK, Han HS, Kim S (2003) ZnO nanomaterials synthesized from thermal evaporation of ball-milled ZnO powders. J Cryst Growth 254(3–4):423–431. https://doi.org/10.1016/S0022-0248(03)01197-7

    Article  ADS  CAS  Google Scholar 

  29. Hafez A, Hegazi SM, Bakr AA, Shishtawy HE (2017) Effect of zinc oxide nanoparticles on growth performance and absorptive capacity of the intestinal villi in broiler chickens. Life Sci 14(6):67–72. https://doi.org/10.7537/marslsj141117.18

    Article  CAS  Google Scholar 

  30. Khah MM, Ahmadi F, Amanlou H (2015) Influence of dietary different levels of zinc oxide nanoparticles on the yield and quality carcass of broiler chickens during starter stage. Indian J Anim Sci 85(3):287–290

    Article  Google Scholar 

  31. Karimi S, Ataie A, Nozari A (2012) Synthesis of zinc oxide nano-particles by mechano-thermal route. Am Inst of Phys Conf Proc 1476(1):335–338. https://doi.org/10.1063/1.4751623

    Article  ADS  CAS  Google Scholar 

  32. Talam S, Karumuri SR, Gunnam N (2012) Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. Int Sch Res Not (2012). https://doi.org/10.5402/2012/372505

  33. Saranya S, Vijayaranai K, Pavithra S, Raihana N, Kumanan K (2017) In vitro cytotoxicity of zinc oxide, iron oxide and copper nanopowders prepared by green synthesis. Toxicol Rep 4:427–430. https://doi.org/10.1016/j.toxrep.2017.07.005

    Article  CAS  Google Scholar 

  34. Kang T, Guan R, Chen X, Song Y, Jiang H, Zhao J (2013) In vitro toxicity of different-sized ZnO nanoparticles in Caco-2 cells. Nanoscale Res Lett 8(1):1–8. https://doi.org/10.1155/2020/4048706

    Article  CAS  Google Scholar 

  35. BIS (2007) Bureau of Indian Standards, Indian Standards for Poultry Feeds - Specifications. 5th ed. New Delhi

  36. Kishawy AT, Amer SA, Abd El-Hack ME, Saadeldin IM, Swelum AA (2019) The impact of linseed oil and pomegranate peel extract on growth, carcass traits, serum lipid profile, and meat fatty acid, phenol, and flavonoid contents. Asian-Australas J Anim Sci 32(8):1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Troutt ES, Hunt MC, Johnson DE, Claus JR, Kastner CL, Kropf DH (1992) Characteristics of low-fat ground beef containing texture‐modifying ingredients. J Food Sci 57(1):19–24. https://doi.org/10.1111/j.1365-2621.1992.tb05415.x

    Article  CAS  Google Scholar 

  38. Grau R, Hamm R (1957) About the water-binding capacity of the mammalian muscle. II. Commun Z Lebensm Unters Brisk 105:446

    Article  CAS  Google Scholar 

  39. Bratzler LJ (1954) Using the Warner-Bratzler Shear. In Proc Recip Meat Conf 7:154–160

  40. Salah N, Habib SS, Khan ZH, Memic A, Azam A, Alarfaj E, Zahed N, Al-Hamedi S (2011) High-energy ball milling technique for ZnO nanoparticles as antibacterial material. Int J Nanomed 6:863. https://doi.org/10.2147/IJN.S18267

    Article  CAS  Google Scholar 

  41. Akgul G, Akgul FA (2022) Impact of cobalt doping on structural and magnetic properties of zinc oxide nanocomposites synthesized by mechanical ball-milling method. Colloids Interface Sci Commun 48:100611. https://doi.org/10.1016/j.colcom.2022.100611

    Article  CAS  Google Scholar 

  42. Amirkhanlou S, Ketabchi M, Parvin N (2012) Nanocrystalline/nanoparticle ZnO synthesized by high energy ball milling process. Mater Lett 86:122–124. https://doi.org/10.1016/j.colcom.2022.100611

    Article  CAS  Google Scholar 

  43. Mahamuni PP, Patil PM, Dhanavade MJ, Badiger MV, Shadija PG, Lokhande AC, Bohara RA (2019) Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochem Biophys Rep 17:71–80. https://doi.org/10.1016/j.bbrep.2018.11.007

    Article  PubMed  Google Scholar 

  44. Ali KH, Ibraheem SA, Jabir MS, Ali KA, Taqi ZJ, Dan FM (2019) Zinc oxide nanoparticles induce apoptosis in human breast cancer cells via caspase-8 and P53 pathway. Nano Biomed Eng 11(1):35–43. https://doi.org/10.5101/nbe.v11i1.p35-43

    Article  CAS  Google Scholar 

  45. Kumar VP, Manikandan N, Nagaprasad N, LetaTesfaye J, Krishnaraj R (2022) Analysis of the performance characteristics of ZnO nanoparticles’ dispersed polyester oil. Adv Mater Sci Eng 2022. https://doi.org/10.1155/2022/4844979

  46. Modi S, Fulekar MH (2020) Green synthesis of zinc oxide nanoparticles using garlic skin extract and its characterization. J Nanostruct 10(1):20–27. https://doi.org/10.22052/JNS.2020.01.003

    Article  Google Scholar 

  47. Vimala K, Sundarraj S, Paulpandi M, Vengatesan S, Kannan S (2014) Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the bax and Bcl-2 expression in breast and colon carcinoma. Process Biochem 49(1):160–172. https://doi.org/10.1016/j.procbio.2013.10.007

    Article  CAS  Google Scholar 

  48. Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011) Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf B 82(1):152–159. https://doi.org/10.1016/j.procbio.2013.10.00

    Article  CAS  Google Scholar 

  49. Jamdagni P, Khatri P, Rana JS (2018) Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J King Saud Uni Sci 30(2):168–175. https://doi.org/10.1016/j.jksus.2016.10.002

    Article  Google Scholar 

  50. Azizi S, Mahdavi Shahri M, Mohamad R (2017) Green synthesis of zinc oxide nanoparticles for enhanced adsorption of lead ions from aqueous solutions: equilibrium, kinetic and thermodynamic studies. Molecules 22(6):831. https://doi.org/10.3390/molecules22020301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barzinjy AA, Azeez HH (2020) Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. SN Appl Sci 2(5):1–14. https://doi.org/10.1007/s42452-020-2813-1

  52. Rai H, Prashant, Kondal N (2021) A review on defect related emissions in undoped ZnO nanostructures. Mater Today: Proc 48(5):1320–1324. https://doi.org/10.1016/j.matpr.2021.08.343

  53. Bigdeli F, Morsali A, Retalleau P (2010) Synthesis and characterization of different zinc (II) Oxide Nano-Structures from Direct Thermal decomposition of ID Coordination Polymers. Polyhedron 29:801–806. https://doi.org/10.1016/j.poly.2009.10.027

    Article  CAS  Google Scholar 

  54. Selim YA, Azb MA, Ragab I, Abd El-Azim HM (2020) Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverratortuosa and their cytotoxic activities. Sci Rep 10(1):1–9. https://doi.org/10.1038/s41598-020-60541-1

    Article  CAS  Google Scholar 

  55. Jayarambabu N, Kumari BS, Rao KV, Prabhu YT (2014) Germination and growth characteristics of mungbean seeds (Vigna radiata L.) affected by synthesized zinc oxide nanoparticles. Int J Curr Eng Technol 4(5):3411–3416

    Google Scholar 

  56. Melk MM, El-Hawary SS, Melek FR, Saleh DO, Ali OM, El Raey MA, Selim NM (2021) Nano zinc oxide green-synthesized from plumbago auriculata lam alcoholic extract. Plants 10(11):2447. https://doi.org/10.3390/plants10112447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li CY, Zhang ZC, Mao JY, Shi LF, Zheng Y, Quan JL (2017) Preparation of Tradescantia pallida-mediated zinc oxide nanoparticles and their activity against cervical cancer cell lines. Trop J Pharmaceut Res 16(3):494–500. https://doi.org/10.4314/tjpr.v16i3.1

    Article  CAS  Google Scholar 

  58. Pranjali P, Meher MK, Raj R, Prasad N, Poluri KM, Kumar D, Guleria A (2019) Physicochemical and antibacterial properties of PEGylated zinc oxide nanoparticles dispersed in peritoneal dialysis fluid. ACS Omega 4(21):19255–19264. https://doi.org/10.1021/acsomega.9b02615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Alyamani AA, Albukhaty S, Aloufi S, AlMalki FA, Al-Karagoly H, Sulaiman GM (2021) Green fabrication of zinc oxide nanoparticles using phlomis leaf extract: characterization and in vitro evaluation of cytotoxicity and antibacterial properties. Molecules 26(20):6140. https://doi.org/10.3390/molecules26206140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Alwan RM, Kadhim QA, Sahan KM, Ali RA, Mahdi RJ, Kassim NA, Jassim AN (2015) Synthesis of zinc oxide nanoparticles via sol–gel route and their characterization. Nanosci Nanotechnol 5(1):1–6. https://doi.org/10.5923/j.nn.20150501.01

    Article  Google Scholar 

  61. Zeferino RS, Flores MB, Pal U (2011) Photoluminescence and Raman scattering in Ag-doped ZnO nanoparticles. J Appl Phys 109(1):014308. https://doi.org/10.1063/1.3530631

    Article  ADS  CAS  Google Scholar 

  62. Kermanizadeh A, Pojana. Gaiser BK, Birkedal R, Bilanicova D, Wallin H, Jensen KA, Sellergren B, Hutchison GR, Marcomini A, Stone V (2013) In vitro assessment of engineered nanomaterials using a hepatocyte cell line: cytotoxicity, proinflammatory cytokines and functional markers. Nanotoxicology 7(3):301–313. https://doi.org/10.1002/jcla.23577

    Article  CAS  PubMed  Google Scholar 

  63. ISO 10993-5 (2009) Biological evaluation of medical devices — part 5: tests for in vitro cytotoxicity. ISO

  64. Masud RA, Islam MS, Haque P, Khan MNI, Shahruzzaman M, Khan M, Takafuji M, Rahman MM (2020) Preparation of novel chitosan/poly (ethylene glycol)/ZnO bionanocomposite for wound healing application: effect of gentamicin loading. Materialia 12:100785. https://doi.org/10.1016/j.mtla.2020.100785

    Article  CAS  Google Scholar 

  65. Pathak SS, Reddy KV, Prasoon S (2016) Influence of different sources of zinc on growth performance of dual-purpose chicken. J Bio Innov 5:663–672

    CAS  Google Scholar 

  66. Ibrahim D, Ali HA, El-Mandrawy SA (2017) Effects of different zinc sources on performance, bio distribution of minerals and expression of genes related to metabolism of broiler chickens. Zagazig Vet J 45(3):292–304. https://doi.org/10.21608/zvjz.2017.7954

    Article  Google Scholar 

  67. Zhao CY, Tan SX, Xiao XY, Qiu XS, Pan JQ, Tang ZX (2014) Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biol Trace Elem Res 160(3):361–367. https://doi.org/10.1007/s12011-014-0052-2

    Article  CAS  PubMed  Google Scholar 

  68. Fathi M, Abdullah, Haydari M, Tanha T (2016) Effects of zinc oxide nanoparticles on antioxidant status, serum enzymes activities, biochemical parameters and performance in broiler chickens. J Livest Sci Technol 4(2):7–13. https://doi.org/10.22103/jlst.2016.1509

    Article  Google Scholar 

  69. Rajendran D, Thulasi A, Jash S, Selvaraju S, Rao S (2013) Synthesis and application of nano minerals in livestock industry. Animal Nutrition and Reproductive Physiology (recent concepts). Satish Serial Publishing House, Delhi, pp 517–530

    Google Scholar 

  70. Van Hoeck V, Sonawane M, Sanchez ALG, Van Dosselaer I, Buyens C, Morisset D (2020) Chromium propionate improves performance and carcass traits in broilers. Anim Nutr 6(4):480–487. https://doi.org/10.1016/j.aninu.2020.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  71. El-Katcha MI, Soltan MA, Arafa MM, Kawarei ESR (2018) Impact of Dietary replacement of Inorganic Zinc by Organic or Nano sources on productive performance, Immune Response and some blood biochemical constituents of laying hens. Alex J Vet Sci 59(1):48–59. https://doi.org/10.5455/ajvs.301885

    Article  Google Scholar 

  72. Akhavan-Salamat H, Ghasemi HA (2019) Effect of different sources and contents of zinc on growth performance, carcass characteristics, humoral immunity and antioxidant status of broiler chickens exposed to high environmental temperatures. Livest Sci 223:76–83. https://doi.org/10.1016/j.livsci.2019.03.008

    Article  Google Scholar 

  73. Allen CD, Russell SM, Fletcher DL (1997) The relationship of broiler breast meat color and pH to shelf-life and odor development. Poult Sci 76:1042–1046. https://doi.org/10.1093/ps/76.7.1042

    Article  CAS  PubMed  Google Scholar 

  74. Wen Y, Liu H, Liu K, Cao H, Mao H, Dong X, Yin Z (2020) Analysis of the physical meat quality in partridge (Alectoris chukar) and its relationship with intramuscular fat. Poult Sci 99(2):1225–1231. https://doi.org/10.1016/j.psj.2019.09.009

    Article  CAS  PubMed  Google Scholar 

  75. Hussan F, Krishna D, Preetam VC, Reddy PB, Gurram S (2022) Dietary supplementation of nano zinc oxide on performance, carcass, serum and meat quality parameters of commercial broilers. Biol Trace Elem Res 200(1):348–353. https://doi.org/10.1007/s12011-021-02635-z

    Article  CAS  PubMed  Google Scholar 

  76. Eskandani M, Janmohammadi H, Mirghelenj SA, Ebrahimi M, Kalanaky S (2021) Effects of zinc nanoparticles on growth performance, carcass characteristics, immunity, and meat quality of broiler chickens. Iran J Appl Anim Sci 11(1):135–146. https://ijas.rasht.iau.ir/article_680397.html

  77. Xie Z, Zhao Q, Wang H, Wen L, Li W, Zhang X, Lin W, Li H, Xie Q, Wang Y (2020) Effects of antibacterial peptide combinations on growth performance, intestinal health, and immune function of broiler chickens. Poult Sci 99(12):6481–6492. https://doi.org/10.1016/j.psj.2020.08.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Attia FM (2020) Efficacy of dietary zinc oxide nanoparticles supplementation on serum biochemical, nutrients retention and chemical composition of meat and tibia in broiler chickens. Egypt Poult Sci J 40(1):29–46. https://doi.org/10.21608/epsj.2020.78739

    Article  Google Scholar 

  79. Asheer M, Manwar SJ, Gole MA, Sirsat S, Wade MR, Khose KK, Ali SS (2018) Effect of dietary nano zinc oxide supplementation on performance and zinc bioavailability in broilers. Indian J Poult Sci 53(1):70–75. https://doi.org/10.5958/0974-8180.2018.00004.1

    Article  Google Scholar 

  80. El-Bahr SM, Shousha S, Albokhadaim I, Shehab A, Khattab W, Ahmed-Farid O, El-Garhy O, Abdelgawad A, El-Naggar M, Moustafa M, Badr (2020) Impact of dietary zinc oxide nanoparticles on selected serum biomarkers, lipid peroxidation and tissue gene expression of antioxidant enzymes and cytokines in japanese quail. BMC Vet Res 16(1):1–12. https://doi.org/10.1186/s12917-020-02482-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

V. Mozhiarasi: Optimization of ZnONPs Synthesis, Conducting the feeding trial, Growth, dressing percentage, meat quality, serum biochemistry, serum zinc concentration studies and statistical analysis, draft manuscript writing; R. Karunakaran: Conceptualization, design and supervision of complete study, fund mobilization, growth performance data analysis, manuscript reviewing editing and finalizing; P. Raja; Characterization and In vitro cytotoxicity assay of ZnONPs, manuscript correction; L. Radhakrishnan; Feed formulation, monitoring of feeding trial and manuscript reviewing and editing.

Corresponding author

Correspondence to R. Karunakaran.

Ethics declarations

Ethical Approval

The experimental procedures and animal handling were approved by the Institutional Animal Ethical Committee (IAEC) for the use and care of animals at Madras Veterinary College, TANUVAS, Chennai − 7 (Lr.No. 508/DFBS/IAEC/2022 dated on 05.05.2022).

Consent for Publication

All authors gave their consent and accredited this study for research publication.

Consent to Participate

All authors approved the final version of the manuscript.

Competing Interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozhiarasi, V., Karunakaran, R., Raja, P. et al. Effects of Zinc Oxide Nanoparticles Supplementation on Growth Performance, Meat Quality and Serum Biochemical Parameters in Broiler Chicks. Biol Trace Elem Res 202, 1683–1698 (2024). https://doi.org/10.1007/s12011-023-03759-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03759-0

Keywords

Navigation