Skip to main content

Advertisement

Log in

In Vitro Effects of Zirconia Nanoparticles: Uptake, Genotoxicity, and Mutagenicity in V-79 cells

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zirconia nanoparticles are used in various industrial and biomedical applications such as dental implants, thermal barrier sprays, and fuel cells. The interaction of nanoparticles with the environment and humans is inevitable. Despite the enormous application potential of these nanoparticles, there are still some gaps in the literature regarding potential toxicological mechanisms and the genotoxicity of zirconia nanoparticles. The lung is one of the main exposure routes to nanomaterials; therefore, the present study was designed to determine the genotoxic and mutagenic effect of zirconia NPs in V-79 lung cells. Zirconia nanoparticles showed significant internalization in cells at 100 μg/mL and 150 μg/mL concentrations. Zirconia nanoparticles showed low cytotoxicity and were found to generate ROS in V-79 cells. In alkaline comet assay, zirconia nanoparticles (10 μg/mL, 50 μg/mL, and 100 μg/mL) exposed cells exhibited significant DNA strand breaks, while the neutral comet assay, which was used for double-strand break assessment, only revealed significant damage at 100 μg/mL. Chromosomal aberration induced by zirconia nanoparticles mainly resulted in the generation of gaps, few fragments, and breaks which signifies the low clastogenic activity of these nanoparticles in the V-79 cell line. In MN assay, zirconia nanoparticles resulted in no significant micronuclei induction at any given concentration. In the HPRT mutation assay, the particle shows a dose-dependent increase in the mutant frequency. It is evident from the result that zirconia nanoparticles cause dose-dependent cytotoxicity and genotoxicity, but still, more studies are needed to evaluate the clastogenic potential and the possible mechanism involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Manicone P et al (2007) Biological considerations on the use of zirconia for dental devices. Inte J Immunopathol Pharmacol 20(1_suppl):9–12

    Article  CAS  Google Scholar 

  2. Hafezeqoran A, Koodaryan R (2017) Effect of zirconia dental implant surfaces on bone integration: a systematic review and meta-analysis. BioMed Res Int 2017:9246721

    Article  PubMed  PubMed Central  Google Scholar 

  3. Afzal A (2014) Implantable zirconia bioceramics for bone repair and replacement: a chronological review. Mater Express 4:1–12

    Article  CAS  Google Scholar 

  4. Maiti TK, Majhi J, Maiti SK et al (2022) Zirconia- and ceria-based electrolytes for fuel cell applications: critical advancements toward sustainable and clean energy production. Environ Sci Pollut Res 29:64489–64512 . https://doi.org/10.1007/s11356-022-22087-9

  5. Bakradze G (2011) Initial oxidation of zirconium: oxide-film growth kinetics and mechanisms

  6. Bartter T et al (1991) Zirconium compound-induced pulmonary fibrosis. Arch Intern Med 151(6):1197–1201

    Article  CAS  PubMed  Google Scholar 

  7. Tuomi T (1993) Hypersensitivity Pneumonitis and Exposure to Zirconium Silicate in a young ceramic nle worker. Am Rev Respir Dis 148:1089–1092

    Article  PubMed  Google Scholar 

  8. Shin SW, Song IH, Um SH (2015) Role of physicochemical properties in nanoparticle toxicity. Nanomaterials 5(3):1351–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yazdanian M et al (2022) The potential application of green-synthesized metal nanoparticles in dentistry: a comprehensive review. Bioinorg Chem Appl 2022:2311910

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tanzi MC, Farè S, Candiani G (2019) Foundations of biomaterials engineering. Academic Press

  11. Wang Z et al (2020) Oral intake of ZrO2 nanoparticles by pregnant mice results in nanoparticles’ deposition in fetal brains. Ecotoxicol Environ Saf 202:110884

    Article  CAS  PubMed  Google Scholar 

  12. Sun T et al (2021) Hepatic distribution and toxicity of zirconia nanoparticles in vivo and in vitro. Process Saf Environ Prot 147:134–145

    Article  CAS  Google Scholar 

  13. Shang Y et al (2021) Zirconia nanoparticles induce Hela cell death through mitochondrial apoptosis and autophagy pathways mediated by ROS. Front Chem 9:522708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Asadpour E et al (2016) Oxidative stress-mediated cytotoxicity of zirconia nanoparticles on PC12 and N2a cells. J Nanopart Res 18(1):1–13

    Article  CAS  Google Scholar 

  15. Ye M, Shi B (2018) Zirconia nanoparticles-induced toxic effects in osteoblast-like 3T3-E1 cells. Nanoscale Res Lett 13(1):1–12

    Article  Google Scholar 

  16. Mehdikhani H, Aqababa H, Sadeghi L (2020) Effect of zirconium oxide nanoparticle on serum level of testosterone and spermatogenesis in the rat: an experimental study. Int J Reprod BioMedicine 18(9):765

    CAS  Google Scholar 

  17. Atalay H, Çeli̇k A, Ayaz F (2018) Investigation of genotoxic and apoptotic effects of zirconium oxide nanoparticles (20 nm) on L929 mouse fibroblast cell line. Chem Biol Interact 296:98–104

    Article  CAS  PubMed  Google Scholar 

  18. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  PubMed  Google Scholar 

  19. Mosaddad SA et al (2020) Fabrication and properties of developed collagen/strontium-doped Bioglass scaffolds for bone tissue engineering. J Market Res 9(6):14799–14817

    CAS  Google Scholar 

  20. Repetto G, Del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3(7):1125–1131

    Article  CAS  PubMed  Google Scholar 

  21. Jain AK et al (2017) Impact of anatase titanium dioxide nanoparticles on mutagenic and genotoxic response in Chinese hamster lung fibroblast cells (V-79): the role of cellular uptake. Food Chem Toxicol 105:127–139

    Article  CAS  PubMed  Google Scholar 

  22. Nüsse M, Marx K (1997) Flow cytometric analysis of micronuclei in cell cultures and human lymphocytes: advantages and disadvantages. Mutat Res 392(1–2):109–115

    Article  PubMed  Google Scholar 

  23. Ghosh S, Sharma A, Talukder G (1992) Zirconium: an abnormal trace element in biology. Biol Trace Elem Res 35:247–271

    Article  CAS  PubMed  Google Scholar 

  24. Atik MD, Taylan A, Uçan ES (2022) Radiological findings in the case exposed to zirconium. Turk Thorac J 23(6):426

    Article  Google Scholar 

  25. Carlson C et al (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(43):13608–13619

    Article  CAS  PubMed  Google Scholar 

  26. Kose O et al (2020) Impact of the physicochemical features of TiO2 nanoparticles on their in vitro toxicity. Chem Res Toxicol 33(9):2324–2337

    Article  CAS  PubMed  Google Scholar 

  27. Behzadi S et al (2017) Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 46(14):4218–4244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuhn DA et al (2014) Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J Nanotechnol 5(1):1625–1636

    Article  PubMed  PubMed Central  Google Scholar 

  29. Busch W et al (2011) Internalisation of engineered nanoparticles into mammalian cells in vitro: influence of cell type and particle properties. J Nanopart Res 13:293–310

    Article  CAS  Google Scholar 

  30. Madhyastha H et al (2019) An opinion on nanomedicine and toxico-cellular crosstalk: considerations and caveats. Mater Today Proc 10:100–105

    Article  CAS  Google Scholar 

  31. Długosz O et al (2020) Methods for reducing the toxicity of metal and metal oxide NPs as biomedicine. Materials 13(2):279

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yazdanian M et al (2020) Fabrication and properties of βTCP/zeolite/gelatin scaffold as developed scaffold in bone regeneration: in vitro and in vivo studies. Biocybernetics Biomed Eng 40(4):1626–1637

    Article  Google Scholar 

  33. Fotakis G, Timbrell JA (2006) In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160(2):171–177

    Article  CAS  PubMed  Google Scholar 

  34. Cudazzo G et al (2019) Lysosomotropic-related limitations of the BALB/c 3T3 cell-based neutral red uptake assay and an alternative testing approach for assessing e-liquid cytotoxicity. Toxicol In Vitro 61:104647

    Article  CAS  PubMed  Google Scholar 

  35. Xu H, Ren D (2015) Lysosomal physiology. Annu Rev Physiol 77:57–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Anand SK et al (2020) Activation of autophagic flux via LKB1/AMPK/mTOR axis against xenoestrogen bisphenol-A exposure in primary rat hepatocytes. Food Chem Toxicol 141:111314

    Article  CAS  PubMed  Google Scholar 

  37. Palumbo P et al (2019) NOS2 inhibitor 1400W induces autophagic flux and influences extracellular vesicle profile in human glioblastoma U87MG cell line. Int J Mol Sci 20(12):3010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mei Y et al (2013) Endoplasmic reticulum stress and related pathological processes. J Pharmacol Biomed Anal 1(2):1000107

    PubMed  PubMed Central  Google Scholar 

  39. Musgrove C, Camps M (2012) Models for detection of genotoxicity in vivo: present and future. Mutagenesis. Rijeka, Croatia: InTech: p. 31–50

  40. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411(6835):366–374

    Article  CAS  PubMed  Google Scholar 

  41. Bocchi C et al (2016) Characterization of urban aerosol: seasonal variation of mutagenicity and genotoxicity of PM2. 5, PM1 and semi-volatile organic compounds. Mutat Res 809:16–23

    Article  CAS  Google Scholar 

  42. Bagatir G et al (2022) The effect of Anzer honey on X-ray induced genotoxicity in human lymphocytes: an in vitro study. Microsc Res Tech 85(6):2241–2250

    Article  CAS  PubMed  Google Scholar 

  43. Anderson D, Plewa MJ (1998) The international comet assay workshop. Oxford University Press and United Kingdom Environmental Mutagen Society

  44. Hansen MF, Cavenee WK (1988) Tumor suppressors: recessive mutations that lead to cancer. Cell 53(2):173–174

    Article  CAS  PubMed  Google Scholar 

  45. Hussain A, Tebyaniyan H, Khayatan D (2022) The role of epigenetic in dental and oral regenerative medicine by different types of dental stem cells: a comprehensive overview. Stem Cells Int 2022:5304860

    Article  PubMed  PubMed Central  Google Scholar 

  46. OECD (2016) Test No. 490: In vitro mammalian cell gene mutation tests using the thymidine kinase gene. OECD Publishing Paris, France

    Book  Google Scholar 

  47. Luzhna L, Kathiria P, Kovalchuk O (2013) Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond. Front Genet 4:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are greatly thankful to Mr. J. Shankar, Dr. P.N. Saxena, and Ms. Divya Singh for their assistance in TEM, SEM, and XRD studies, respectively.

Funding

The authors acknowledge CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, and Council of Scientific and Industrial Research (CSIR), New Delhi, India, for funding. DM acknowledges the CSIR for the JRF and SRF funding. The institutional manuscript number is IITR/SEC/MS/2023/38.

Author information

Authors and Affiliations

Authors

Contributions

The work presented in this paper was done in collaboration with all authors. DM and AKP conceived and designed the experiments used in the paper. DM performed the experiments with the aid of RM and KD and SJ. KD and SJ contributed in data analysis of the experiments. DM wrote the manuscript of the paper with the help of AKP. All authors gave critical feedback and helped in research, analysis, and manuscript. AKP defined the research theme and supervised the findings of this work. All authors discussed the results and finalize manuscript and contributed in the approval of the final manuscript.

Corresponding author

Correspondence to Alok Kumar Pandey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mourya, D., Dubey, K., Jha, S. et al. In Vitro Effects of Zirconia Nanoparticles: Uptake, Genotoxicity, and Mutagenicity in V-79 cells. Biol Trace Elem Res 202, 927–940 (2024). https://doi.org/10.1007/s12011-023-03739-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03739-4

Keywords

Navigation