Skip to main content

Advertisement

Log in

Enhanced Induction of Apoptosis and Cell Cycle Arrest in MCF-7 Breast Cancer and HT-29 Colon Cancer Cell Lines via Low-Dose Biosynthesis of Selenium Nanoparticles Utilizing Lactobacillus casei

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

As a leading global cause of mortality, cancer continues to pose a significant challenge. The shortcomings of prevalent cancer treatments, such as surgery, radiation therapy, and chemotherapy, necessitate the exploration of alternative therapeutic strategies. Selenium nanoparticles (SeNPs) have emerged as a promising solution, with their synthesis being widely researched due to their potential applications. Among the diverse synthesis methods for SeNPs, the green chemistry approach holds a distinctive position within nanotechnology. This research delves into the anti-proliferative and anticancer properties of green-synthesized SeNPs via the cell-free supernatant (CFS) of Lactobacillus casei (LC-SeNPs), with a specific focus on MCF-7 and HT-29 cancer cell lines. SeNPs were synthesized employing the supernatant of L. casei. The characterization of these green-synthesized SeNPs was performed using TEM, FE-SEM, XRD, FT-IR, UV–vis, energy-dispersive X-ray spectroscopy, and DLS. The biological impact of LC-SNPs on MCF-7 and HT-29 cancer cells was examined via MTT, flow cytometry, scratch tests, and qRT-PCR. Both FE-SEM and TEM images substantiated the spherical shape of the synthesized nanoparticles. The biosynthesized LC-SNPs reduced the survival of MCF-7 (by 20%) and HT-29 (by 30%) cells at a concentration of 100 μg/mL. Flow cytometry revealed that LC-SNPs were capable of inducing 28% and 23% apoptosis in MCF-7 and HT-29 cells, respectively. In addition, it was found that LC-SNPs treated MCF-7 and HT-29 cells were arrested in the sub-G1 phase. Gene expression analysis indicated that the expression levels of the CASP3, CASP9, and BAX genes were elevated after treating MCF-7 and HT-29 cells with LC-SNPs. Further, SeNPs were observed to inhibit migration and invasion of MCF-7 and HT-29 cancer cells. The SeNPs, produced via L. casei, demonstrated strong anticancer effects on MCF-7 and HT-29 cells, suggesting their potential as biological agents in cancer treatment following additional in vivo experiments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

SeNPs:

Selenium nanoparticles

CFS:

Cell-free supernatant

L. casei :

Lactobacillus casei

LC-SeNPs:

Green-synthesized SeNPs via the cell-free supernatant (CFS) of Lactobacillus casei

CRC:

Colorectal cancer

Se:

Selenium

ROS:

Reactive oxygen species

UV-vis:

Ultraviolet-visible spectroscopy

SEM:

Field emission scanning electron microscopy

EDX:

Energy-dispersive X-ray spectroscopy

TEM:

Transmission electron microscopy

XRD:

X-ray powder diffraction

FT-IR:

Fourier transform infrared spectroscopy

DLS:

Dynamic light scattering particle size distribution analysis

HFF:

Human foreskin fibroblasts

RT:

Reverse transcriptase

IC50 :

Half maximal inhibitory concentration

DAPI:

4′,6-Diamidino-2-phenylindole dihydrochloride

References

  1. Kocarnik JM et al (2022) Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: a systematic analysis for the global burden of disease study 2019. JAMA Oncol 8:420–444

    Article  PubMed  Google Scholar 

  2. Sung H et al (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  3. Łukasiewicz S et al (2021) Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—an updated review. Cancers 13:4287

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hailu HE, Mondul AM, Rozek LS, Geleta T (2020) Descriptive epidemiology of breast and gynecological cancers among patients attending Saint Paul’s Hospital Millennium Medical College, Ethiopia. PLoS ONE 15:e0230625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liang S, Deng X, Ma P, Cheng Z, Lin J (2020) Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy. Adv Mater 32:2003214

    Article  CAS  Google Scholar 

  6. Cordani M, Somoza Á (2019) Targeting autophagy using metallic nanoparticles: a promising strategy for cancer treatment. Cell Mol Life Sci 76:1215–1242

    Article  CAS  PubMed  Google Scholar 

  7. Tariq K, Ghias K (2016) Colorectal cancer carcinogenesis: a review of mechanisms. Cancer Biol Med 13:120–135. https://doi.org/10.28092/j.issn.2095-3941.2015.0103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuipers EJ et al (2015) Colorectal cancer. Nat Rev Dis Primers 1:15065. https://doi.org/10.1038/nrdp.2015.65

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hulla J, Sahu S, Hayes A (2015) Nanotechnology: history and future. Hum Exp Toxicol 34:1318–1321

    Article  CAS  PubMed  Google Scholar 

  10. Sabri MA, Umer A, Awan GH, Hassan MF, Hasnain A (2016) Selection of suitable biological method for the synthesis of silver nanoparticles. Nanomater Nanotechnol 6:29. https://doi.org/10.5772/62644

    Article  CAS  Google Scholar 

  11. Dikshit PK, Kumar J, Das AK, Sadhu S, Sharma S, Singh S, Gupta PK, Kim BS (2021) Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts 11(8):902

  12. Mohammadi Shivyari A, Tafvizi F, Noorbazargan H (2022) Anti-cancer effects of biosynthesized zinc oxide nanoparticles using Artemisia scoparia in Huh-7 liver cancer cells. Inorg Nano-Met Chem 52:375–386

    CAS  Google Scholar 

  13. Ahmed S, Ikram S (2016) Biosynthesis of gold nanoparticles: a green approach. J Photochem Photobiol, B 161:141–153

    Article  CAS  PubMed  Google Scholar 

  14. Faramarzi MA, Sadighi A (2013) Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv Coll Interface Sci 189:1–20

    Article  Google Scholar 

  15. Faramarzi MA, Forootanfar H (2011) Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile. Colloids Surf, B 87:23–27

    Article  CAS  Google Scholar 

  16. Yang J et al (2009) Interaction between antitumor drug and silver nanoparticles: combined fluorscence and surface enhanced Raman scattering study. Chin Opt Lett 7:894–897

    Article  CAS  Google Scholar 

  17. Banerjee K, Ravishankar Rai V (2018) A review on mycosynthesis, mechanism, and characterization of silver and gold nanoparticles. BioNanoScience 8:17–31

    Article  Google Scholar 

  18. Shirsat S, Kadam A, Naushad M, Mane RS (2015) Selenium nanostructures: microbial synthesis and applications. RSC Adv 5:92799–92811. https://doi.org/10.1039/C5RA17921A

    Article  CAS  Google Scholar 

  19. Radomska D, Czarnomysy R, Radomski D, Bielawska A, Bielawski K (2021) Selenium as a bioactive micronutrient in the human diet and its cancer chemopreventive activity. Nutrients 13:1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Drake E (2006) Cancer chemoprevention: selenium as a prooxidant, not an antioxidant. Med Hypotheses 67:318–322

    Article  CAS  PubMed  Google Scholar 

  21. Perumal S, Gopal Samy MV, Subramanian D (2021) Selenium nanoparticle synthesis from endangered medicinal herb (Enicostema axillare). Bioprocess Biosyst Eng 44:1853–1863

    Article  CAS  PubMed  Google Scholar 

  22. Böck A et al (1991) Selenocysteine: the 21st amino acid. Mol Microbiol 5:515–520

    Article  PubMed  Google Scholar 

  23. Hariharan S, Dharmaraj S (2020) Selenium and selenoproteins: it’s role in regulation of inflammation. Inflammopharmacology 28:667–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chaudhary S, Umar A, Mehta S (2016) Selenium nanomaterials: an overview of recent developments in synthesis, properties and potential applications. Prog Mater Sci 83:270–329

    Article  CAS  Google Scholar 

  25. Dawood MA et al (2021) Selenium nanoparticles as a natural antioxidant and metabolic regulator in aquaculture: a review. Antioxidants 10:1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Menon S, Agarwal H, Shanmugam VK (2021) Catalytical degradation of industrial dyes using biosynthesized selenium nanoparticles and evaluating its antimicrobial activities. Sustain Environ Res 31:1–12

    Article  Google Scholar 

  27. Abdel-Moneim AM, Shehata AM, Mohamed NG, Elbaz AM, Ibrahim NS (2021) Synergistic effect of Spirulina platensis and selenium nanoparticles on growth performance, serum metabolites, immune responses, and antioxidant capacity of heat-stressed broiler chickens. Biol Trace Elem Res 200(2):768–779

  28. Tang S et al (2019) Construction of arabinogalactans/selenium nanoparticles composites for enhancement of the antitumor activity. Int J Biol Macromol 128:444–451

    Article  CAS  PubMed  Google Scholar 

  29. Iqbal MS, Abbas K, Qadir MI (2022) Synthesis, characterization and evaluation of biological properties of selenium nanoparticles from Solanum lycopersicum. Arab J Chem 15:103901

    Article  Google Scholar 

  30. El-Zayat MM et al (2021) The antimicrobial, antioxidant, and anticancer activity of greenly synthesized selenium and zinc composite nanoparticles using Ephedra aphylla extract. Biomolecules 11. https://doi.org/10.3390/biom11030470

  31. Kojouri GA, Jahanabadi S, Shakibaie M, Ahadi AM, Shahverdi AR (2012) Effect of selenium supplementation with sodium selenite and selenium nanoparticles on iron homeostasis and transferrin gene expression in sheep: a preliminary study. Res Vet Sci 93:275–278. https://doi.org/10.1016/j.rvsc.2011.07.029

    Article  CAS  PubMed  Google Scholar 

  32. Shakibaie M et al (2013) Acute and subacute toxicity of novel biogenic selenium nanoparticles in mice. Pharm Biol 51:58–63

    Article  CAS  PubMed  Google Scholar 

  33. Zhao S et al (2017) Redox-responsive mesoporous selenium delivery of doxorubicin targets MCF-7 cells and synergistically enhances its anti-tumor activity. Acta Biomater 54:294–306

    Article  CAS  PubMed  Google Scholar 

  34. Li Y et al (2013) Functionalized selenium nanoparticles with nephroprotective activity, the important roles of ROS-mediated signaling pathways. J Mater Chem B 1:6365–6372

    Article  CAS  PubMed  Google Scholar 

  35. Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Peng Q, Baron M, Melcova M, Opatrilova R, Zidkova J, Sochor J (2018) Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomed 13:2107–2128

  36. Huang Y et al (2013) Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles. Biomaterials 34:7106–7116

    Article  CAS  PubMed  Google Scholar 

  37. Wang X, Sun K, Tan Y, Wu S, Zhang J (2014) Efficacy and safety of selenium nanoparticles administered intraperitoneally for the prevention of growth of cancer cells in the peritoneal cavity. Free Radical Biol Med 72:1–10

    Article  CAS  Google Scholar 

  38. Luo H, Wang F, Bai Y, Chen T, Zheng W (2012) Selenium nanoparticles inhibit the growth of HeLa and MDA-MB-231 cells through induction of S phase arrest. Colloids Surf, B 94:304–308

    Article  CAS  Google Scholar 

  39. Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C (2019) Therapeutic applications of selenium nanoparticles. Biomed Pharmacother 111:802–812

    Article  CAS  PubMed  Google Scholar 

  40. Xu C et al (2018) Biogenic synthesis of novel functionalized selenium nanoparticles by Lactobacillus casei ATCC 393 and its protective effects on intestinal barrier dysfunction caused by enterotoxigenic Escherichia coli K88. Front Microbiol 9:1129

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shahriary S, Tafvizi F, Khodarahmi P, Shaabanzadeh M (2022) Phyto-mediated synthesis of CuO nanoparticles using aqueous leaf extract of Artemisia deserti and their anticancer effects on A2780-CP cisplatin-resistant ovarian cancer cells. Biomass Conv Bioref 1–7

  42. Dehghani N, Tafvizi F, Jafari P (2021) Cell cycle arrest and anti-cancer potential of probiotic Lactobacillus rhamnosus against HT-29 cancer cells. Bioimpacts 11(4):245–252. https://doi.org/10.34172/bi.2021.32

  43. Rahimivand M, Tafvizi F, Noorbazargan H (2020) Synthesis and characterization of alginate nanocarrier encapsulating Artemisia ciniformis extract and evaluation of the cytotoxicity and apoptosis induction in AGS cell line. Int J Biol Macromol 158:338–357

    Article  CAS  PubMed  Google Scholar 

  44. Lalami ZA, Tafvizi F, Naseh V, Salehipour M (2022) Characterization and optimization of co-delivery Farnesol-Gingerol Niosomal formulation to enhance anticancer activities against breast cancer cells. J Drug Delivery Sci Technol 72:103371

    Article  CAS  Google Scholar 

  45. Mouritzen MV, Jenssen H (2018) Optimized scratch assay for in vitro testing of cell migration with an automated optical camera. JoVE (Journal of Visualized Experiments) (138):57691

  46. San Keskin NO, Akbal Vural O, Abaci S (2020) Biosynthesis of noble selenium nanoparticles from Lysinibacillus sp. NOSK for antimicrobial, antibiofilm activity, and biocompatibility. Geomicrobiol J 37:919–928

    Article  CAS  Google Scholar 

  47. Ramya S, Shanmugasundaram T, Balagurunathan R (2015) Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. J Trace Elem Med Biol 32:30–39

    Article  CAS  PubMed  Google Scholar 

  48. Kora AJ, Rastogi L (2016) Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: an approach for conversion of selenite. J Environ Manage 181:231–236

    Article  CAS  PubMed  Google Scholar 

  49. Lampis S et al (2014) Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions. Microb Cell Fact 13:1–14

    Article  Google Scholar 

  50. Zhang X, Yan H, Ma L, Zhang H, Ren DF (2020) Preparation and characterization of selenium nanoparticles decorated by Spirulina platensis polysaccharide. J Food Biochem 44:e13363

    Article  CAS  PubMed  Google Scholar 

  51. Cruz LY, Wang D, Liu J (2019) Biosynthesis of selenium nanoparticles, characterization and X-ray induced radiotherapy for the treatment of lung cancer with interstitial lung disease. J Photochem Photobiol, B 191:123–127

    Article  CAS  PubMed  Google Scholar 

  52. Ahmad MS, Yasser MM, Sholkamy EN, Ali AM, Mehanni MM (2015) Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1. Int J Nanomed 10:3389

    CAS  Google Scholar 

  53. El-Saadony MT et al (2021) Selenium nanoparticles from Lactobacillus paracasei HM1 capable of antagonizing animal pathogenic fungi as a new source from human breast milk. Saudi J Biol Sci 28:6782–6794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dhanjal S, Cameotra SS (2010) Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Fact 9:1–11

    Article  Google Scholar 

  55. Mosallam FM, El-Sayyad GS, Fathy RM, El-Batal AI (2018) Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microb Pathog 122:108–116

    Article  CAS  PubMed  Google Scholar 

  56. Srivastava P, Braganca JM, Kowshik M (2014) In vivo synthesis of selenium nanoparticles by Halococcus salifodinae BK18 and their anti-proliferative properties against HeLa cell line. Biotechnol Prog 30:1480–1487

    Article  CAS  PubMed  Google Scholar 

  57. Liao G et al (2020) Selenium nanoparticles (SeNPs) have potent antitumor activity against prostate cancer cells through the upregulation of miR-16. World J Surg Oncol 18:1–11

    Article  Google Scholar 

  58. Amiri H, Hashemy SI, Sabouri Z, Javid H, Darroudi M (2021) Green synthesized selenium nanoparticles for ovarian cancer cell apoptosis. Res Chem Intermed 47:2539–2556

    Article  CAS  Google Scholar 

  59. Nunes C, Mahendrasingam A, Suryanarayanan R (2005) Quantification of crystallinity in substantially amorphous materials by synchrotron X-ray powder diffractometry. Pharm Res 22:1942–1953

    Article  CAS  PubMed  Google Scholar 

  60. Alagesan V, Venugopal S (2019) Green synthesis of selenium nanoparticle using leaves extract of withania somnifera and its biological applications and photocatalytic activities. Bionanoscience 9:105–116

    Article  Google Scholar 

  61. Hassan HU et al (2022) Comparative study of antimicrobial and antioxidant potential of olea ferruginea fruit extract and its mediated selenium nanoparticles. Molecules 27:5194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ullah A et al (2021) Biosynthesis of selenium nanoparticles (via Bacillus subtilis BSN313), and their isolation, characterization, and bioactivities. Molecules 26:5559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang W et al (2011) Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila. Colloids Surf, B 88:196–201

    Article  CAS  Google Scholar 

  64. Saranya T, Ramya S, Kavithaa K, Paulpandi M, Cheon YP, Harysh Winster S, Balachandar V, Narayanasamy A (2022) Green synthesis of selenium nanoparticles using solanum nigrum fruit extract and its anti-cancer efficacy against triple negative breast cancer. J Clust Sci 1-1

  65. Ranjitha V, Muddegowda U, Ravishankar Rai V (2019) Potent activity of bioconjugated peptide and selenium nanoparticles against colorectal adenocarcinoma cells. Drug Dev Ind Pharm 45:1496–1505

    Article  CAS  PubMed  Google Scholar 

  66. Barabadi H et al (2019) Emerging theranostic biogenic silver nanomaterials for breast cancer: a systematic review. J Cluster Sci 30:259–279

    Article  CAS  Google Scholar 

  67. Zhao G et al (2018) Selenium nanoparticles are more efficient than sodium selenite in producing reactive oxygen species and hyper-accumulation of selenium nanoparticles in cancer cells generates potent therapeutic effects. Free Radical Biol Med 126:55–66

    Article  CAS  Google Scholar 

  68. Pi J et al (2013) Selenium nanoparticles induced membrane bio-mechanical property changes in MCF-7 cells by disturbing membrane molecules and F-actin. Bioorg Med Chem Lett 23:6296–6303

    Article  CAS  PubMed  Google Scholar 

  69. Tabibi M, Agaei SS, Amoozegar MA, Nazari R, Zolfaghari MR (2020) Antibacterial, antioxidant, and anticancer activities of biosynthesized selenium nanoparticles using two indigenous halophilic bacteria. Arch Hyg Sci 9:275–286

    Article  CAS  Google Scholar 

  70. Ranjitha V, Ravishankar V (2018) Extracellular synthesis of selenium nanoparticles from an actinomycetes streptomyces griseoruber and evaluation of its cytotoxicity on HT-29 cell line. Pharm Nanotechnol 6:61–68

    Article  CAS  PubMed  Google Scholar 

  71. Wadhwani SA et al (2017) Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: optimization, characterization and its anticancer activity in breast cancer cells. Int J Nanomed 12:6841

    Article  CAS  Google Scholar 

  72. Srivastava P, Kowshik M (2016) Anti-neoplastic selenium nanoparticles from Idiomarina sp. PR58–8. Enzym Microb Technol 95:192–200

    Article  CAS  Google Scholar 

  73. Forootanfar H et al (2014) Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide. J Trace Elem Med Biol 28:75–79

    Article  CAS  PubMed  Google Scholar 

  74. Pandey S et al (2021) Biogenic synthesis and characterization of selenium nanoparticles and their applications with special reference to antibacterial, antioxidant, anticancer and photocatalytic activity. Bioprocess Biosyst Eng 44:2679–2696

    Article  CAS  PubMed  Google Scholar 

  75. Xia Y, You P, Xu F, Liu J, Xing F (2015) Novel functionalized selenium nanoparticles for enhanced anti-hepatocarcinoma activity in vitro. Nanoscale Res Lett 10:1–14

    Article  Google Scholar 

  76. Koren E, Fuchs Y (2021) Modes of regulated cell death in cancer modes of regulated cell death in cancer. Cancer Discov 11:245–265

    Article  CAS  PubMed  Google Scholar 

  77. Yazdi MH, Sepehrizadeh Z, Mahdavi M, Shahverdi AR, Faramarzi MA (2016) Metal, metalloid, and oxide nanoparticles for therapeutic and diagnostic oncology. Nano Biomed Eng 8(4)

  78. Spyridopoulou K, Aindelis G, Pappa A, Chlichlia K (2021) Anticancer activity of biogenic selenium nanoparticles: apoptotic and immunogenic cell death markers in colon cancer cells. Cancers 13:5335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang J et al (2022) Role of endoplasmic reticulum stress in cadmium-induced hepatocyte apoptosis and the protective effect of quercetin. Ecotoxicol Environ Saf 241:113772

    Article  CAS  PubMed  Google Scholar 

  80. Ivanova D, Zhelev Z, Aoki I, Bakalova R, Higashi T (2016) Overproduction of reactive oxygen species-obligatory or not for induction of apoptosis by anticancer drugs. Chin J Cancer Res 28:383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G (2016) Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY) 8:603

    Article  CAS  PubMed  Google Scholar 

  82. O’Brien MA, Kirby R (2008) Apoptosis: A review of pro-apoptotic and anti-apoptotic pathways and dysregulation in disease. J Vet Emerg Crit Care 18:572–585

    Article  Google Scholar 

  83. Berg D et al (2007) Enforced covalent trimerization increases the activity of the TNF ligand family members TRAIL and CD95L. Cell Death Differ 14:2021–2034

    Article  CAS  PubMed  Google Scholar 

  84. Slee EA, Adrain C, Martin SJ (2001) Executioner caspase-3,-6, and-7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276:7320–7326

    Article  CAS  PubMed  Google Scholar 

  85. Zhou L et al (2022) Preparation, characterization, and antitumor activity of Chaenomeles speciosa polysaccharide-based selenium nanoparticles. Arab J Chem 15:103943

    Article  CAS  Google Scholar 

  86. Othman MS et al (2022) Green-synthetized selenium nanoparticles using berberine as a promising anticancer agent. J Integr Med 20:65–72

    Article  PubMed  Google Scholar 

  87. Pi J et al (2013) Pathway of cytotoxicity induced by folic acid modified selenium nanoparticles in MCF-7 cells. Appl Microbiol Biotechnol 97:1051–1062

    Article  CAS  PubMed  Google Scholar 

  88. Wang R, Ha K-Y, Dhandapani S, Kim Y-J (2022) Biologically synthesized black ginger-selenium nanoparticle induces apoptosis and autophagy of AGS gastric cancer cells by suppressing the PI3K/Akt/mTOR signaling pathway. J Nanobiotechnol 20:1–20

    Article  Google Scholar 

  89. Tian J, Wei X, Zhang W, Xu A (2020) Effects of selenium nanoparticles combined with radiotherapy on lung cancer cells. Front Bioeng Biotechnol 8:598997

    Article  PubMed  PubMed Central  Google Scholar 

  90. Jiang W et al (2014) Gracilaria lemaneiformis polysaccharide as integrin-targeting surface decorator of selenium nanoparticles to achieve enhanced anticancer efficacy. ACS Appl Mater Interfaces 6:13738–13748

    Article  CAS  PubMed  Google Scholar 

  91. Liu W et al (2012) Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism. ACS Nano 6:6578–6591

    Article  CAS  PubMed  Google Scholar 

  92. Fernandes AP, Gandin V (2015) Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta Gen Subj 1850:1642–1660

    Article  CAS  Google Scholar 

  93. Zhang Y et al (2013) Enhancement of cell permeabilization apoptosis-inducing activity of selenium nanoparticles by ATP surface decoration. Nanomed: Nanotechnol Biol Med 9:74–84

    Article  CAS  Google Scholar 

  94. Li Z, Meng J, Xu T, Qin X, Zhou X (2013) Sodium selenite induces apoptosis in colon cancer cells via Bax-dependent mitochondrial pathway. Eur Rev Med Pharmacol Sci 17:2166–2171

    CAS  PubMed  Google Scholar 

  95. Jiang C, Wang Z, Ganther H, Lu J (2002) Distinct effects of methylseleninic acid versus selenite on apoptosis, cell cycle, and protein kinase pathways in DU145 human prostate cancer cells. Mol Cancer Ther 1:1059–1066

    CAS  PubMed  Google Scholar 

  96. Shi K et al (2013) Sodium selenite alters microtubule assembly and induces apoptosis in vitro and in vivo. J Hematol Oncol 6:1–9

    Article  CAS  Google Scholar 

  97. Bidkar AP, Sanpui P, Ghosh SS (2017) Efficient induction of apoptosis in cancer cells by paclitaxel-loaded selenium nanoparticles. Nanomedicine 12:2641–2651

    Article  CAS  PubMed  Google Scholar 

  98. Lopez-Heras I et al (2014) Effect of chitosan-stabilized selenium nanoparticles on cell cycle arrest and invasiveness in hepatocarcinoma cells revealed by quantitative proteomics. J Nanomed Nanotechnol 5:1

    Article  Google Scholar 

  99. Ferro C, Florindo HF, Santos HA (2021) Selenium nanoparticles for biomedical applications: from development and characterization to therapeutics. Adv Healthcare Mater 10:2100598

    Article  CAS  Google Scholar 

  100. Sonkusre P, Cameotra SS (2017) Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation. J Nanobiotechnol 15:1–12

    Article  Google Scholar 

  101. Liu H-J et al (2020) Lentinan-functionalized selenium nanoparticles target tumor cell mitochondria via TLR4/TRAF3/MFN1 pathway. Theranostics 10:9083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lu W et al (2017) Long non-coding RNA linc00673 regulated non-small cell lung cancer proliferation, migration, invasion and epithelial mesenchymal transition by sponging miR-150-5p. Mol Cancer 16:118. https://doi.org/10.1186/s12943-017-0685-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li Y et al (2018) Multifunctional selenium nanoparticles with Galangin-induced HepG2 cell apoptosis through p38 and AKT signalling pathway. R Soc Open Sci 5:180509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Cellular and Molecular Research Center, Islamic Aazad University.

Author information

Authors and Affiliations

Authors

Contributions

Z. H. M. N.: data curation, formal analysis, methodology, writing — original draft. F. T.: methodology, project administration, data curation, supervision, writing — review and editing. K. A.: assisted in performing the cell culture experiments. N. KD.: assisted in performing the cell culture experiments. B. K.: assisted in performing the cell culture experiments. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Farzaneh Tafvizi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Informed Consent

All authors consent to the publication of this study.

Conflicts of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haji Mehdi Nouri, Z., Tafvizi, F., Amini, K. et al. Enhanced Induction of Apoptosis and Cell Cycle Arrest in MCF-7 Breast Cancer and HT-29 Colon Cancer Cell Lines via Low-Dose Biosynthesis of Selenium Nanoparticles Utilizing Lactobacillus casei. Biol Trace Elem Res 202, 1288–1304 (2024). https://doi.org/10.1007/s12011-023-03738-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03738-5

Keywords

Navigation