Skip to main content

Advertisement

Log in

Potential of green-synthesized selenium nanoparticles using apigenin in human breast cancer MCF-7 cells

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The utilization of novel compounds as cancer treatments offers enormous potential in this field. The advantages of nanomedicine-based therapy include efficient cellular uptake and selective cell targeting. In this study, we employ selenium nanoparticles’ green-synthesized by apigenin (SeNPs-apigenin) to treat breast cancer. We used various assays to show that SeNPs-apigenin can reduce MCF-7 cell viability and trigger apoptosis in vitro. Flow cytometry and PCR methods were used to detect apoptosis, while cell migration and invasion methods were used to quantify the possible effect of SeNPs-apigenin therapy on cell migration and invasion. According to cytotoxicity testing, the SeNPs-apigenin treatment can successfully limit MCF-7 cell proliferation and viability in a concentration-dependent manner. Flow cytometric and PCR analyses revealed that SeNPs-apigenin treatment induced apoptosis in MCF-7 cells, demonstrating that SeNPs-apigenin treatment could directly target Bcl-2, Bax, and caspase-3 and result in the discharge of cytochrome C from mitochondria into the cytosol, accompanied by the initiation of cell death, leading to permanent DNA damage and killing of MCF-7 cells. Furthermore, treatment with SeNPs-apigenin increased reactive oxygen species production and oxidative stress in MCF-7 cells. Our findings indicate that SeNPs-apigenin has cytotoxic potential in the treatment of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All relevant data are within the paper.

References

  • Seo HS et al. (2015) Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells. Biosci Rep 35. https://doi.org/10.1042/BSR20150165

  • Al-Brakati A et al (2021) Using green biosynthesized lycopene-coated selenium nanoparticles to rescue renal damage in glycerol-induced acute kidney injury in rats. Int J Nanomedicine 16:4335–4349. https://doi.org/10.2147/IJN.S306186

    Article  Google Scholar 

  • Ali F, Naz F, Jyoti S, Siddique YH (2017) Health functionality of apigenin: a review. Int J Food Prop 20:1197-1238.https://doi.org/10.1080/10942912.2016.1207188

  • Ansari L, Shiehzadeh F, Taherzadeh Z, Nikoofal-Sahlabadi S, Momtazi-borojeni AA, Sahebkar A, Eslami S (2017) The most prevalent side effects of pegylated liposomal doxorubicin monotherapy in women with metastatic breast cancer: a systematic review of clinical trials. Cancer Gene Ther 24:189–193. https://doi.org/10.1038/cgt.2017.9

    Article  CAS  Google Scholar 

  • Azab KS, Hanafy SM, Fateh NME, Badr N (2015) Antiangiogenic effects of the apigenin and/or selenium on Ehrlish bearing mice Res J Appl. Biotechnol 1:21–43. https://doi.org/10.21608/rjab.2015.53282

    Article  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 68:394–424

  • Buranrat B, Boontha S, Temkitthawon P, Chomchalao P (2020) Anticancer activities of Careya arborea Roxb on MCF-7 human breast cancer cells. Biologia 75:2359–2366. https://doi.org/10.2478/s11756-020-00535-6

    Article  CAS  Google Scholar 

  • Chan L et al (2017) Cancer-targeted selenium nanoparticles sensitize cancer cells to continuous γ radiation to achieve synergetic chemo-radiotherapy chemistry – an. Asian J 12:3053–3060. https://doi.org/10.1002/asia.201701227

    Article  CAS  Google Scholar 

  • Chen T, Wong Y-S, Zheng W, Bai Y, Huang L (2008) Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Colloids Surf B: Biointerf 67:26–31. https://doi.org/10.1016/j.colsurfb.2008.07.010

    Article  CAS  Google Scholar 

  • Chen YC, Prabhu KS, Mastro AM (2013) Is selenium a potential treatment for cancer metastasis? Nutrients 5:1149–1168. https://doi.org/10.3390/nu5041149

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

  • Ezhuthupurakkal PB et al (2018) Anticancer potential of ZnO nanoparticle-ferulic acid conjugate on Huh-7 and HepG2 cells and diethyl nitrosamine induced hepatocellular cancer on Wistar albino rat Nanomedicine: Nanotechnology. Biol Med 14:415–428

    Google Scholar 

  • Fang X, Wu X, Li C, Zhou B, Chen X, Chen T, Yang F (2017) Targeting selenium nanoparticles combined with baicalin to treat HBV-infected liver cancer. RSC Adv 7:8178–8185. https://doi.org/10.1039/c6ra28229f

    Article  CAS  Google Scholar 

  • Geretto M, Pulliero A, Rosano C, Zhabayeva D, Bersimbaev R, Izzotti AJAjocr (2017) Resistance to cancer chemotherapeutic drugs is determined by pivotal microRNA regulators. 7:1350

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  Google Scholar 

  • Horinaka M, Yoshida T, Shiraishi T, Nakata S, Wakada M, Sakai T (2006) The dietary flavonoid apigenin sensitizes malignant tumor cells to tumor necrosis factor-related apoptosis-inducing ligand. Mol Cancer Ther 5:945–951. https://doi.org/10.1158/1535-7163.MCT-05-0431

    Article  CAS  Google Scholar 

  • Javed Z et al (2021) Apigenin role as cell-signaling pathways modulator: implications in cancer prevention and treatment. Cancer Cell Int 21:189. https://doi.org/10.1186/s12935-021-01888-x

    Article  CAS  Google Scholar 

  • Johnson JL, de Mejia EG (2013) Flavonoid apigenin modified gene expression associated with inflammation and cancer and induced apoptosis in human pancreatic cancer cells through inhibition of GSK-3β/NF-κB signaling cascade. Mol Nutr Food Res 57:2112–2127. https://doi.org/10.1002/mnfr.201300307

    Article  CAS  Google Scholar 

  • Kaur P, Shukla S, Gupta S (2008) Plant flavonoid apigenin inactivates Akt to trigger apoptosis in human prostate cancer: an in vitro and in vivo study. Carcinogenesis 29:2210–2217. https://doi.org/10.1093/carcin/bgn201

    Article  CAS  Google Scholar 

  • Kayacan S, Yilancioglu K, Akdemir AS, Kaya-Dagistanli F, Melikoglu G, Ozturk M (2021) Synergistic effect of apigenin and curcumin on apoptosis, paraptosis and autophagy-related cell death in HeLa cells. Anticancer Res 41:1271. https://doi.org/10.21873/anticanres.14884

    Article  CAS  Google Scholar 

  • Khandelwal N et al (2020) Antiviral activity of apigenin against buffalopox: novel mechanistic insights and drug-resistance considerations. Antiviral Res 181:104870. https://doi.org/10.1016/j.antiviral.2020.104870

    Article  CAS  Google Scholar 

  • Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C (2019) Therapeutic applications of selenium nanoparticles. Biomed Pharmacother 111:802–812. https://doi.org/10.1016/j.biopha.2018.12.146

    Article  CAS  Google Scholar 

  • Kursvietiene L, Mongirdiene A, Bernatoniene J, Sulinskiene J, Staneviciene I (2020) Selenium anticancer properties and impact on cellular redox status antioxidants (Basel) 9. https://doi.org/10.3390/antiox9010080

  • Lee K, Lee H, Lee KW, Park TG (2011) Optical imaging of intracellular reactive oxygen species for the assessment of the cytotoxicity of nanoparticles. Biomaterials 32:2556–2565

    Article  CAS  Google Scholar 

  • Lee YM et al (2016) Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress. Int J Oncol 48:399–408. https://doi.org/10.3892/ijo.2015.3243

    Article  CAS  Google Scholar 

  • Li J et al (2017) AKR1B10 promotes breast cancer cell migration and invasion via activation of ERK signaling. Oncotarget 8:33694–33703. https://doi.org/10.18632/oncotarget.16624

    Article  Google Scholar 

  • Li Z et al. (2021) Neuroprotective effects of protocatechuic acid on sodium arsenate induced toxicity in mice: role of oxidative stress, inflammation, and apoptosis. Chemico-Biol Interact 109392

  • Liao G, Tang J, Wang D, Zuo H, Zhang Q, Liu Y, Xiong H (2020) Selenium nanoparticles (SeNPs) have potent antitumor activity against prostate cancer cells through the upregulation of miR-16. World J Surg Oncol 18

  • Long X, Fan M, Bigsby RM, Nephew KP (2008) Apigenin inhibits antiestrogen-resistant breast cancer cell growth through estrogen receptor-alpha-dependent and estrogen receptor-alpha-independent mechanisms. Mol Cancer Ther 7:2096–2108. https://doi.org/10.1158/1535-7163.MCT-07-2350

    Article  CAS  Google Scholar 

  • Luo H, Wang F, Bai Y, Chen T, Zheng W (2012) Selenium nanoparticles inhibit the growth of HeLa and MDA-MB-231 cells through induction of S phase arrest. Colloids Surf B Biointerfaces 94:304–308. https://doi.org/10.1016/j.colsurfb.2012.02.006

    Article  CAS  Google Scholar 

  • Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46:849–854

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  • Othman MS, Al-Bagawi AH, Obeidat ST, Fareid MA, Habotta OA, Moneim AEA (2021) Antitumor activity of zinc nanoparticles synthesized with berberine on human epithelial colorectal adenocarcinoma (Caco-2) cells through acting on Cox-2/NF-kB and p53 pathways. Anticancer Agents Med Chem. https://doi.org/10.2174/1871520621666211004115839

    Article  Google Scholar 

  • Othman MS, Obeidat ST, Al-Bagawi AH, Fareid MA, Fehaid A, Abdel Moneim AE (2021b) Green-synthetized selenium nanoparticles using berberine as a promising anticancer agent J. Integr Med. https://doi.org/10.1016/j.joim.2021.11.002

    Article  Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    CAS  Google Scholar 

  • Pan X, Yang Z, Zhou S, Zhang H, Zang L (2013) Effect of apigenin on proliferation and apoptosis of human lung cancer NCI-H460 cells. Nan Fang Yi Ke Da Xue Xue Bao 33:1137–1140

    CAS  Google Scholar 

  • Panicker NG et al (2020) Organic Extracts from Cleome Droserifolia Exhibit Effective Caspase-Dependent Anticancer Activity. BMC Complement Med Ther 20:74. https://doi.org/10.1186/s12906-020-2858-0

    Article  Google Scholar 

  • Rajeshkumar S, Kumar SV, Ramaiah A, Agarwal H, Lakshmi T, Roopan SM (2018) Biosynthesis of zinc oxide nanoparticles using Mangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzym Microb Technol 117:91–95

    Article  CAS  Google Scholar 

  • Razak NA et al (2019) Cytotoxicity of eupatorin in MCF-7 and MDA-MB-231 human breast cancer cells via cell cycle arrest, anti-angiogenesis and induction of apoptosis. Sci Rep 9:1514. https://doi.org/10.1038/s41598-018-37796-w

    Article  CAS  Google Scholar 

  • Salehi B et al (2019) The therapeutic potential of apigenin. Int J Mol Sci 20. https://doi.org/10.3390/ijms20061305

  • Shukla S, Bhaskaran N, Babcook MA, Fu P, Maclennan GT, Gupta S (2014) Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway. Carcinogenesis 35:452–460. https://doi.org/10.1093/carcin/bgt316

    Article  CAS  Google Scholar 

  • Singh P, Mishra SK, Noel S, Sharma S, Rath SK (2012) Acute Exposure of Apigenin Induces Hepatotoxicity in Swiss Mice. PLOS ONE 7:e31964. https://doi.org/10.1371/journal.pone.0031964

    Article  CAS  Google Scholar 

  • Song Y, Guan R, Lyu F, Kang T, Wu Y, Chen X (2014) In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells. Mutat Res/Fund Mol Mech Mutagen 769:113–118

    Article  CAS  Google Scholar 

  • Sonkusre P, Cameotra SS (2017) Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation. J Nanobiotechnol 15:43. https://doi.org/10.1186/s12951-017-0276-3

    Article  CAS  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 71:209–249 doi:https://doi.org/10.3322/caac.21660

  • Tian J, Wei X, Zhang W, Xu A (2020) Effects of selenium nanoparticles combined with radiotherapy on lung cancer cells. Front Bioeng Biotechnol 8. https://doi.org/10.3389/fbioe.2020.598997

  • Umar H, Kavaz D, Rizaner N (2019) Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int J Nanomed 14:87

  • Wang B, Zhao X-H (2017) Apigenin induces both intrinsic and extrinsic pathways of apoptosis in human colon carcinoma HCT-116 cells. Oncol Rep 37:1132–1140. https://doi.org/10.3892/or.2016.5303

    Article  CAS  Google Scholar 

  • Wang LS et al (2020) ZnO Nanoparticles induced caspase-dependent apoptosis in gingival squamous cell carcinoma through mitochondrial dysfunction and p70S6K signaling pathway. Int J Mol Sci 21. https://doi.org/10.3390/ijms21051612

  • Xu M, Wang S, Song YU, Yao J, Huang K, Zhu X (2016) Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/beta-catenin signaling pathway. Oncol Lett 11:3075–3080. https://doi.org/10.3892/ol.2016.4331

    Article  CAS  Google Scholar 

  • Yakubov E, Buchfelder M, Eyüpoglu IY, Savaskan NE (2014) Selenium action in neuro-oncology. Biol Trace Elem Res 161:246–254. https://doi.org/10.1007/s12011-014-0111-8

    Article  CAS  Google Scholar 

  • Yan X, Qi M, Li P, Zhan Y, Shao H (2017) Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell Biosci 7:50. https://doi.org/10.1186/s13578-017-0179-x

    Article  CAS  Google Scholar 

  • Yang Y, Zhang Z, Chen Q, You Y, Li X, Chen T (2021) Functionalized selenium nanoparticles synergizes with metformin to treat breast cancer cells through regulation of selenoproteins. Front Bioeng Biotechnol 9:758482. https://doi.org/10.3389/fbioe.2021.758482

    Article  Google Scholar 

  • Yuan X et al (2020) Selenium nanoparticles pre-treatment reverse behavioral, oxidative damage, neuronal loss and neurochemical alterations in pentylenetetrazole-induced epileptic seizures in mice. Int J Nanomed 15:6339–6353. https://doi.org/10.2147/IJN.S259134

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Deanship of Scientific Research at Princess Nourah Bint Abdulrahman University (Saudi Arabia), through the Research Funding Program (Grant No# FRP-1441–2).

Author information

Authors and Affiliations

Authors

Contributions

A. M. Al-Otaibi, R. S. Almeer, and A. E. Abdel Moneim designed the project. A. M. Al-Otaibi, A. S. Al-Gebaly, R. S. Almeer, G. Albasher, and W. S. Al-Qahtani performed the experiments. A. E. Abdel Moneim analyzed the data, interpreted the data, and drafted and edited the manuscript. A. M. Al-Otaibi, A. S. Al-Gebaly, R. S. Almeer, G. Albasher, and W. S. Al-Qahtani supplied the chemicals and reagents. All authors read and approved the final draft.

Corresponding author

Correspondence to Ahmed E. Abdel Moneim.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible editor: Lotfi Aleya

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Otaibi, A.M., Al-Gebaly, A.S., Almeer, R. et al. Potential of green-synthesized selenium nanoparticles using apigenin in human breast cancer MCF-7 cells. Environ Sci Pollut Res 29, 47539–47548 (2022). https://doi.org/10.1007/s11356-022-19166-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19166-2

Keywords

Navigation