Skip to main content
Log in

A study on the effectiveness of sodium selenite in treating cadmium and perfluoro octane sulfonic (PFOS) poisoned zebrafish (Danio rerio)

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Perfluoro octane sulfonate (PFOS) and cadmium (Cd) are toxic elements in the environment. As a micronutrient trace element, selenium (Se) can mitigate the adverse effects induced by PFOS and Cd. However, few studies have examined the correlation between Se, PFOS and Cd in fish. The present study focused on the antagonistic effects of Se on PFOS+Cd-induced accumulation in the liver of zebrafish. The fish was exposed to PFOS (0.08mg/L), Cd (1mg/L), PFOS+ Cd (0.08 mg/L PFOS+1 mg/L Cd), L-Se (0.07mg/L Sodium selenite +0.08mg/L PFOS+1mg/L Cd), M-Se (0.35mg/L Sodium selenite + 0.08mg/L PFOS+ 1 mg/L Cd), H-Se (1.75 mg/L Sodium selenite + 0.08 mg/L PFOS+ 1mg/L Cd) for 14d. The addition of selenium to fish exposed to PFOS and Cd has been found to have significant positive effects. Specifically, selenium treatments can alleviate the adverse effects of PFOS and Cd on fish growth, with a 23.10% improvement observed with the addition of T6 compared to T4. In addition, selenium can alleviate the negative effects of PFOS and Cd on antioxidant enzymes in zebrafish liver, thus reducing the liver toxicity caused by PFOS and Cd. Overall, the supplementation of selenium can reduce the health risks to fish and mitigate the injuries caused by PFOS and Cd in zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All the data used in the study is presented in the article.

References

  1. Asghar MS, Qureshi NA, Jabeen F, Khan MS, Shakeel M, Chaudhry AS (2018) Ameliorative Effects of Selenium in ZnO NP-Induced Oxidative Stress and Hematological Alterations in Catla catla. Biol Trace Elem Res 186:279–287. https://doi.org/10.1007/s12011-018-1299-9

    Article  CAS  PubMed  Google Scholar 

  2. Ates B, Orun I, Talas ZS, Durmaz G, Yilmaz I (2008) Effects of sodium selenite on some biochemical and hematological parameters of rainbow trout (Oncorhynchus mykiss Walbaum, 1792) exposed to Pb2+ and Cu2+. Fish Physiol Biochem 34:53–59

  3. Ben Amara I, Fetoui H, Guermazi F, Zeghal N (2009) Dietary selenium addition improves cerebrum and cerebellum impairments induced by methimazole in suckling rats. Int J Dev Neurosci 27:719–726. https://doi.org/10.1016/j.ijdevneu.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  4. Blum JL, Xiong JQ, Hoffman C, Zelikoff JT (2012) Cadmium associated with inhaled cadmium oxide nanoparticles impacts fetal and neonatal development and growth. Toxicol Sci 126:478–486. https://doi.org/10.1093/toxsci/kfs008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boffetta P (1993) Carcinogenicity of trace elements with reference to evaluations made by the International Agency for Research on Cancer. Scand J Work Environ Health:67–70

  6. Bonito LT, Hamdoun A, Sandin SA (2016) Evaluation of the global impacts of mitigation on persistent, bioaccumulative and toxic pollutants in marine fish. PeerJ 2016:e1573. https://doi.org/10.7717/peerj.1573

    Article  CAS  Google Scholar 

  7. Brase RA, Mullin EJ, Spink DC (2021) Legacy and emerging per-and polyfluoroalkyl substances: Analytical techniques, environmental fate, and health effects. Int J Mol Sci 22:1–30. https://doi.org/10.3390/ijms22030995

    Article  CAS  Google Scholar 

  8. Cheng J, Lv S, Nie S, Liu J, Tong S, Kang N et al (2016) Chronic perfluorooctane sulfonate (PFOS) exposure induces hepatic steatosis in zebrafish. Aquat Toxicol 176:45–52. https://doi.org/10.1016/j.aquatox.2016.04.013

    Article  CAS  PubMed  Google Scholar 

  9. Corsini E, Avogadro A, Galbiati V, dell’Agli M, Marinovich M, Galli CL et al (2011) In vitro evaluation of the immunotoxic potential of perfluorinated compounds (PFCs). Toxicol Appl Pharmacol 250:108–116. https://doi.org/10.1016/j.taap.2010.11.004

    Article  CAS  PubMed  Google Scholar 

  10. Corsini E, Sangiovanni E, Avogadro A, Galbiati V, Viviani B, Marinovich M et al (2012) In vitro characterization of the immunotoxic potential of several perfluorinated compounds (PFCs). Toxicol Appl Pharmacol 258:248–255. https://doi.org/10.1016/j.taap.2011.11.004

    Article  CAS  PubMed  Google Scholar 

  11. Dalton M, Finlayson G (2014) Psychobiological examination of liking and wanting for fat and sweet taste in trait binge eating females. Physiol Behav 136:128–134. https://doi.org/10.1016/j.physbeh.2014.03.019

    Article  CAS  PubMed  Google Scholar 

  12. Das B, Pal SC (2020) Assessment of groundwater recharge and its potential zone identification in groundwater-stressed Goghat-I block of Hugli District, West Bengal, India. Environ Dev Sustain. https://doi.org/10.1007/s10668-019-00457-7

  13. DeWitt JC, Blossom SJ, Schaider LA (2019) Exposure to per-fluoroalkyl and polyfluoroalkyl substances leads to immunotoxicity: epidemiological and toxicological evidence. J Expo Sci Environ Epidemiol 29:148–156. https://doi.org/10.1038/s41370-018-0097-y

    Article  CAS  PubMed  Google Scholar 

  14. Disler RT, Gallagher RD, Davidson PM, Sun S-W, Chen L-C, Zhou M et al (2019) Factors impairing the postural balance in COPD patients and its influence upon activities of daily living. Eur Respir J 15(1):142–148

    Google Scholar 

  15. Fan X, Wang Z, Li Y, Wang H, Fan W, Dong Z (2021) Estimating the dietary exposure and risk of persistent organic pollutants in China: A national analysis. Environ Pollut 288:117764. https://doi.org/10.1016/j.envpol.2021.117764

    Article  CAS  PubMed  Google Scholar 

  16. Guo J, Wu P, Cao J, Luo Y, Chen J, Wang G, Guo W, Wang T, He X (2019) The PFOS disturbed immunomodulatory functions via nuclear Factor-κB signaling in liver of zebrafish (Danio rerio). Fish Shellfish Immunol 91:87–98

    Article  CAS  PubMed  Google Scholar 

  17. Guo W, Xiang Q, Mao B, Tang X, Cui S, Li X, Zhao J, Zhang H, Chen W (2021) Protective effects of microbiome-derived inosine on lipopolysaccharide-induced acute liver damage and inflammation in mice via mediating the TLR4/NF-κB pathway. J Agric Food Chem 69(27):7619–7628

    Article  CAS  PubMed  Google Scholar 

  18. Hampton E (2016) Perfluorooctanoic acid (PFOA): Global occurrence, exposure and health effects. Perfluorooctanoic Acid (PFOA): Global Occurrence, Exposure and Health Effects, pp 1–150

    Google Scholar 

  19. He Y, Li Z, Xu T, Luo D, Chi Q, Zhang Y, Li S (2022) Polystyrene nanoplastics deteriorate LPS-modulated duodenal permeability and inflammation in mice via ROS drived-NF-κB/NLRP3 pathway. Chemosphere 307:135662

    Article  CAS  PubMed  Google Scholar 

  20. Hirao-Suzuki M, Takeda S, Sakai G, Waalkes MP, Sugihara N, Takiguchi M (2021) Cadmium-stimulated invasion of rat liver cells during malignant transformation: Evidence of the involvement of oxidative stress/TET1-sensitive machinery. Toxicology 447:152631. https://doi.org/10.1016/j.tox.2020.152631

    Article  CAS  PubMed  Google Scholar 

  21. Hurem S, Martín LM, Brede DA, Skjerve E, Nourizadeh-Lillabadi R, Lind OC et al (2017) Dose-dependent effects of gamma radiation on the early zebrafish development and gene expression. PloS One 12:e0179259. https://doi.org/10.1371/journal.pone.0179259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ibrahim ATA, Banaee M, Sureda A (2019) Selenium protection against mercury toxicity on the male reproductive system of Clarias gariepinus. Comp Biochem Physiol Part - C Toxicol Pharmacol 225. https://doi.org/10.1016/j.cbpc.2019.108583

  23. Jamwal A, Lemire D, Driessnack M, Naderi M, Niyogi S (2018) Interactive effects of chronic dietary selenomethionine and cadmium exposure in rainbow trout (Oncorhynchus mykiss): A preliminary study. Chemosphere 197:550–559. https://doi.org/10.1016/j.chemosphere.2018.01.087

    Article  CAS  PubMed  Google Scholar 

  24. Jelovcan S, Gutschi A, Kleinhappl B, Sedlmayr P, Barth S, Marth E (2003) Effects of low concentrations of cadmium on immunoglobulin E production by human B lymphocytes in vitro. Toxicology 188:35–48. https://doi.org/10.1016/S0300-483X(03)00044-1

    Article  CAS  PubMed  Google Scholar 

  25. Jin X, Jia T, Liu R, Xu S (2018) The antagonistic effect of selenium on cadmium-induced apoptosis via PPAR-Γ/PI3K/Akt pathway in chicken pancreas. J Hazard Mater 357:355–362. https://doi.org/10.1016/j.jhazmat.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  26. Kabir ER, Rahman MS, Rahman I (2015) A review on endocrine disruptors and their possible impacts on human health. Environ Toxicol Pharmacol 40:241–258. https://doi.org/10.1016/j.etap.2015.06.009

    Article  CAS  PubMed  Google Scholar 

  27. Kärrman A, Ericson I, VanBavel B, Ola Darnerud P, Aune M, Glynn A et al (2007) Exposure of perfluorinated chemicals through lactation: Levels of matched human milk and serum and a temporal trend, 1996-2004, in Sweden. Environ Health Perspect 115:226–230. https://doi.org/10.1289/ehp.9491

    Article  CAS  PubMed  Google Scholar 

  28. Keil DE (2015) Immunotoxicity of Perfluoroalkylated Compounds. Molecular and Integrative Toxicology:239–248. https://doi.org/10.1007/978-3-319-15518-0_10

  29. Khan KU, Zuberi A, Fernandes JBK, Ullah I, Sarwar H (2017) An overview of the ongoing insights in selenium research and its role in fish nutrition and fish health. Fish Physiol Biochem 43:1689–1705. https://doi.org/10.1007/s10695-017-0402-z

    Article  CAS  PubMed  Google Scholar 

  30. Khan KU, Zuberi A, Nazir S, Fernandes JBK, Jamil Z, Sarwar H (2016) Effects of dietary selenium nanoparticles on physiological andbiochemical aspects of juvenile Tor putitora. Turkish Journal of Zoology 40(5):704–712

    Article  CAS  Google Scholar 

  31. Kim JH, Barbagallo B, Annunziato K, Farias-Pereira R, Doherty JJ, Lee J et al (2021) Maternal preconception PFOS exposure of Drosophila melanogaster alters reproductive capacity, development, morphology and nutrient regulation. Food Chem Toxicol 151. https://doi.org/10.1016/j.fct.2021.112153

  32. Kumar N, Gupta SK, Chandan NK, Bhushan S, Singh DK, Kumar P et al (2020) Mitigation potential of selenium nanoparticles and riboflavin against arsenic and elevated temperature stress in Pangasianodon hypophthalmus. Sci Rep 10. https://doi.org/10.1038/s41598-020-74911-2

  33. Kumar N, Krishnani KK, Singh NP (2018a) Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish. Environ Sci Pollut Res 25:8914–8927

    Article  CAS  Google Scholar 

  34. Kumar N, Krishnani KK, Gupta SK, Sharma R, Baitha R, Singh DK et al (2018b) Immuno-protective role of biologically synthesized dietary selenium nanoparticles against multiple stressors in Pangasinodon hypophthalmus. Fish Shellfish Immunol 78:289–298. https://doi.org/10.1016/j.fsi.2018.04.051

    Article  CAS  PubMed  Google Scholar 

  35. Kumar N, Singh NP (2019) Effect of dietary selenium on immuno-biochemical plasticity and resistance against Aeromonas veronii biovar sobria in fish reared under multiple stressors. Fish Shellfish Immunol 84:38–47. https://doi.org/10.1016/j.fsi.2018.09.065

    Article  CAS  PubMed  Google Scholar 

  36. Letavayová L, Vlčková V, Brozmanová J (2006) Selenium: From cancer prevention to DNA damage. Toxicology 227:1–14. https://doi.org/10.1016/j.tox.2006.07.017

    Article  CAS  PubMed  Google Scholar 

  37. Li JL, Jiang CY, Li S, Xu SW (2013) Cadmium induced hepatotoxicity in chickens (Gallus domesticus) and ameliorative effect by selenium. Ecotoxicol Environ Saf 96:103–109. https://doi.org/10.1016/j.ecoenv.2013.07.007

    Article  CAS  PubMed  Google Scholar 

  38. Liang L, Pan Y, Bin L, Liu Y, Huang W, Li R et al (2022) Immunotoxicity mechanisms of perfluorinated compounds PFOA and PFOS. Chemosphere 291:132892. https://doi.org/10.1016/j.chemosphere.2021.132892

    Article  CAS  PubMed  Google Scholar 

  39. Liu C, Chang VWC, Gin KYH, Nguyen VT (2014) Genotoxicity of perfluorinated chemicals (PFCs) to the green mussel (Perna viridis). Sci Total Environ 487:117–122. https://doi.org/10.1016/j.scitotenv.2014.04.017

    Article  CAS  PubMed  Google Scholar 

  40. Liu G, Yu H, Wang C, Li P, Liu S, Zhang X et al (2021) Nano-selenium supplements in high-fat diets relieve hepatopancreas injury and improve survival of grass carp Ctenopharyngodon Idella by reducing lipid deposition. Aquaculture 538. https://doi.org/10.1016/j.aquaculture.2021.736580

  41. Liu J, Liu Y, Habeebu SM, Waalkes MP, Klaassen CD (2000) Chronic combined exposure to cadmium and arsenic exacerbates nephrotoxicity, particularly in metallothionein-I/II null mice. Toxicology 147:157–166. https://doi.org/10.1016/S0300-483X(00)00194-3

    Article  CAS  PubMed  Google Scholar 

  42. Martiniakova M, Omelka R, Jancova A, Formicki G, Stawarz R, Bauerova M (2012) Accumulation of risk elements in kidney, liver, testis, uterus and bone of free-living wild rodents from a polluted area in Slovakia. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng 47:1202–1206. https://doi.org/10.1080/10934529.2012.672062

    Article  CAS  Google Scholar 

  43. Miao X, Hao Y, Tang X, Xie Z, Liu L, Luo S et al (2020) Analysis and health risk assessment of toxic and essential elements of the wild fish caught by anglers in Liuzhou as a large industrial city of China. Chemosphere 243. https://doi.org/10.1016/j.chemosphere.2019.125337

  44. Miao Z, Miao Z, Wang S, Wu H, Xu S (2022) Exposure to imidacloprid induce oxidative stress, mitochondrial dysfunction, inflammation, apoptosis and mitophagy via NF-kappaB/JNK pathway in grass carp hepatocytes. Fish Shellfish Immunol 120:674–685

    Article  CAS  PubMed  Google Scholar 

  45. Midasch O, Schettgen T, Angerer J (2006) Pilot study on the perfluorooctanesulfonate and perfluorooctanoate exposure of the German general population. Int J Hyg Environ Health 209:489–496. https://doi.org/10.1016/j.ijheh.2006.06.002

    Article  CAS  PubMed  Google Scholar 

  46. Monikh FA, Chupani L, Smerkova K, Bosker T, Cizar P, Krzyzanek V et al (2020) Engineered nanoselenium supplemented fish diet: toxicity comparison with ionic selenium and stability against particle dissolution, aggregation and release. Environ Sci Nano 7:2325–2336. https://doi.org/10.1039/d0en00240b

    Article  CAS  Google Scholar 

  47. Muecke R, Schomburg L, Buentzel J, Kisters K, Micke O (2010) Selenium or no selenium-that is the question in tumor patients: A new controversy. Integr Cancer Ther 9:136–141. https://doi.org/10.1177/1534735410367648

    Article  CAS  PubMed  Google Scholar 

  48. Müller TE, Nunes ME, Menezes CC, Marins AT, Leitemperger J, Gressler ACL et al (2018) Sodium Selenite Prevents Paraquat-Induced Neurotoxicity in Zebrafish. Mol Neurobiol 55:1928–1941. https://doi.org/10.1007/s12035-017-0441-6

    Article  CAS  PubMed  Google Scholar 

  49. Nag R, O’Rourke SM, Cummins E (2022) Risk factors and assessment strategies for the evaluation of human or environmental risk from metal(loid)s – A focus on Ireland. Sci Total Environ 802. https://doi.org/10.1016/j.scitotenv.2021.149839

  50. Ojo AF, Peng C, Ng JC (2021) Assessing the human health risks of per- and polyfluoroalkyl substances: A need for greater focus on their interactions as mixtures. J Hazard Mater 407. https://doi.org/10.1016/j.jhazmat.2020.124863

  51. Oropeza-Moe M, Falk M, Vollset M, Wisløff H, Bernhoft A, Framstad T et al (2019) A descriptive report of the selenium distribution in tissues from pigs with mulberry heart disease (MHD). Porc Heal Manag 5. https://doi.org/10.1186/s40813-019-0124-y

  52. Orun I, Talas ZS, Ozdemir I, Alkan A, Erdogan K (2008) Antioxidative role of selenium on some tissues of (Cd2+), Cr3+)-induced rainbow trout. Ecotoxicol Environ Saf 71(1):71–5. https://doi.org/10.1016/j.ecoenv.2007.07.008

  53. Pal SC, Ruidas D, Saha A, Islam ARMT, Chowdhuri I (2022) Application of novel data-mining technique based nitrate concentration susceptibility prediction approach for coastal aquifers in India. J Clean Prod. https://doi.org/10.1016/j.jclepro.2022.131205

  54. Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: Synthesis, identity, and their role in human health. Antioxid Redox Signal 9:775–806. https://doi.org/10.1089/ars.2007.1528

    Article  CAS  PubMed  Google Scholar 

  55. Pecoraro BM, Leal DF, Frias-De-Diego A, Browning M, Odle J, Crisci E (2022) The health benefits of selenium in food animals: a review. J Anim Sci Biotechnol 13(1):1–11

    Article  Google Scholar 

  56. Peden-Adams MM, EuDaly JG, Dabra S, EuDaly A, Heesemann L, Smythe J et al (2007) Suppression of humoral immunity following exposure to the perfluorinated insecticide sulfluramid. J Toxicol Environ Heal - Part A 70:1130–1141. https://doi.org/10.1080/15287390701252733

    Article  CAS  Google Scholar 

  57. Pfohl M, Marques E, Auclair A, Barlock B, Jamwal R, Goedken M et al (2021) An ‘Omics approach to unraveling the paradoxical effect of diet on perfluorooctanesulfonic acid (PFOS) and perfluorononanoic acid (PFNA)-induced hepatic steatosis. Toxicol Sci 180:277–294. https://doi.org/10.1093/toxsci/kfaa172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Phelps DW, Fletcher AA, Rodriguez-Nunez I, Balik-Meisner MR, Tokarz DA, Reif DM et al (2020) In vivo assessment of respiratory burst inhibition by xenobiotic exposure using larval zebrafish. J Immunotoxicol 17:94–104. https://doi.org/10.1080/1547691X.2020.1748772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pieniak Z, Verbeke W, Scholderer J (2010) Health-related beliefs and consumer knowledge as determinants of fish consumption. J Hum Nutr Diet 23:480–488. https://doi.org/10.1111/j.1365-277X.2010.01045.x

    Article  CAS  PubMed  Google Scholar 

  60. Post GB, Louis JB, Lippincott RL, Procopio NA (2013) Occurrence of perfluorinated compounds in raw water from New Jersey public drinking water systems. Environ Sci Technol 47:13266–13275. https://doi.org/10.1021/es402884x

    Article  CAS  PubMed  Google Scholar 

  61. Praveen Kumar MK, Shyama SK, Kashif S, Dubey SK, Avelyno D, Sonaye BH et al (2017) Effects of gamma radiation on the early developmental stages of Zebrafish (Danio rerio). Ecotoxicol Environ Saf 142:95–101. https://doi.org/10.1016/j.ecoenv.2017.03.054

    Article  CAS  PubMed  Google Scholar 

  62. Qu R, Liu J, Wang L, Wang Z (2016) The toxic effect and bioaccumulation in aquatic oligochaete Limnodrilus hoffmeisteri after combined exposure to cadmium and perfluorooctane sulfonate at different pH values. Chemosphere 152:496–502. https://doi.org/10.1016/j.chemosphere.2016.03.024

    Article  CAS  PubMed  Google Scholar 

  63. Rathore SS, Murthy HS, Mamun MA, Al N, Rakesh K, Kumar BTN et al (2021) Nano-selenium Supplementation to Ameliorate Nutrition Physiology, Immune Response, Antioxidant System and Disease Resistance Against Aeromonas hydrophila in Monosex Nile Tilapia (Oreochromis niloticus). Biol Trace Elem Res 199:3073–3088. https://doi.org/10.1007/s12011-020-02416-0

    Article  CAS  PubMed  Google Scholar 

  64. Raza SHA, Abdelnour SA, Alotaibi MA, AlGabbani Q, Naiel MAE, Shokrollahi B et al (2022) MicroRNAs mediated environmental stress responses and toxicity signs in teleost fish species. Aquaculture. https://doi.org/10.1016/j.aquaculture.2021.737310

  65. Renieri EA, Sfakianakis DG, Alegakis AA, Safenkova IV, Buha A, Matović V, Tzardi M, Dzantiev BB, Divanach P, Kentouri M (2017) Nonlinear responses to waterborne cadmium exposure in zebrafish. An in vivo study. Environ Res 157:173–181

    Article  CAS  PubMed  Google Scholar 

  66. Rodea-Palomares I, Leganés F, Rosal R, Fernández-Piñas F (2012) Toxicological interactions of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) with selected pollutants. J Hazard Mater 201:209–218

    Article  PubMed  Google Scholar 

  67. Ruidas D, Chakrabortty R, Islam ARMT, Saha A, Pal SC (2022a) A novel hybrid of meta-optimization approach for flash flood-susceptibility assessment in a monsoon-dominated watershed, Eastern India. Environ Earth Sci. https://doi.org/10.1007/s12665-022-10269-0

  68. Ruidas D, Pal SC, Islam ARMT, Saha A (2021) Characterization of groundwater potential zones in water-scarce hardrock regions using data driven model. Environ Earth Sci. https://doi.org/10.1007/s12665-021-10116-8

  69. Ruidas D, Pal SC, Towfiqul Islam ARM, Saha A (2022b) Hydrogeochemical Evaluation of Groundwater Aquifers and Associated Health Hazard Risk Mapping Using Ensemble Data Driven Model in a Water Scares Plateau Region of Eastern India. Expo Heal. https://doi.org/10.1007/s12403-022-00480-6

  70. Sammi SR, Foguth RM, Nieves CS, De Perre C, Wipf P, Mcmurray CT et al (2019) Perfluorooctane Sulfonate (PFOS) Produces Dopaminergic Neuropathology in Caenorhabditis elegans. Toxicol Sci 172:417–434. https://doi.org/10.1093/toxsci/kfz191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sappington KG (2002) Development of aquatic life criteria for selenium: a regulatory perspective on critical issues and research needs. Aquat Toxicol 57(1-2):101–113

    Article  CAS  PubMed  Google Scholar 

  72. Shi X, Zhu W, Chen T, Cui W, Li X, Xu S (2022) Paraquat induces apoptosis, programmed necrosis, and immune dysfunction in CIK cells via the PTEN/PI3K/AKT axis. Fish Shellfish Immunol 130:309–316

    Article  CAS  PubMed  Google Scholar 

  73. Sheiha AM, Abdelnour SA, Abd El-Hack ME, Khafaga AF, Metwally KA, Ajarem JS et al (2020) Effects of dietary biological or chemical-synthesized nano-selenium supplementation on growing rabbits exposed to thermal stress. Animals. https://doi.org/10.3390/ani10030430

  74. Sørmo EG, Ciesielski TM, Øverjordet IB, Lierhagen S, Eggen GS, Berg T et al (2011) Selenium moderates mercury toxicity in free-ranging freshwater fish. Environ Sci Technol 45:6561–6566. https://doi.org/10.1021/es200478b

    Article  CAS  PubMed  Google Scholar 

  75. Taha HSA, Abdelnour SA, Alagawany M (2019) Growth performance, biochemical, cytological and molecular aspects of rabbits exposed to lead toxicity. J Anim Physiol Anim Nutr. https://doi.org/10.1111/jpn.13073

  76. Talia C, Connolly L, Fowler PA (2021) The insulin-like growth factor system: A target for endocrine disruptors? Environ Int 147. https://doi.org/10.1016/j.envint.2020.106311

  77. Urani C, Melchioretto P, Canevali C, Morazzoni F, Gribaldo L (2007) Metallothionein and hsp70 expression in HepG2 cells after prolonged cadmium exposure. Toxicol In Vitro 21:314–319. https://doi.org/10.1016/j.tiv.2006.08.014

    Article  CAS  PubMed  Google Scholar 

  78. Wan HT, Zhao YG, Leung PY, Wong CKC (2014) Perinatal exposure to perfluorooctane sulfonate affects glucose metabolism in adult offspring. PloS One 9:e87137. https://doi.org/10.1371/journal.pone.0087137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang L, Zhang X, Wu L, Liu Q, Zhang D, Yin J (2018) Expression of selenoprotein genes in muscle is crucial for the growth of rainbow trout (Oncorhynchus mykiss) fed diets supplemented with selenium yeast. Aquaculture 492:82–90. https://doi.org/10.1016/j.aquaculture.2018.03.054

    Article  CAS  Google Scholar 

  80. Wang X, Shen Z, Wang C, Li E, Qin JG, Chen L (2019) Dietary supplementation of selenium yeast enhances the antioxidant capacity and immune response of juvenile Eriocheir Sinensis under nitrite stress. Fish Shellfish Immunol 87:22–31. https://doi.org/10.1016/j.fsi.2018.12.076

    Article  CAS  PubMed  Google Scholar 

  81. Wrobel JK, Power R, Toborek M (2016) Biological activity of selenium: Revisited. IUBMB Life 68:97–105. https://doi.org/10.1002/iub.1466

    Article  CAS  PubMed  Google Scholar 

  82. Xu F, Liu Z, Cao Y, Qiu L, Feng J, Xu F et al (2017a) Assessment of heavy metal contamination in urban river sediments in the Jiaozhou Bay catchment, Qingdao, China. Catena 150:9–16. https://doi.org/10.1016/j.catena.2016.11.004

    Article  CAS  Google Scholar 

  83. Xu H, Dong X, Zhang Z, Yang M, Wu X, Liu H et al (2015) Assessment of immunotoxicity of dibutyl phthalate using live zebrafish embryos. Fish Shellfish Immunol 45:286–292. https://doi.org/10.1016/j.fsi.2015.04.033

    Article  CAS  PubMed  Google Scholar 

  84. Xu H, Zhang X, Li H, Li C, Huo XJ, Hou LP et al (2018) Immune response induced by major environmental pollutants through altering neutrophils in zebrafish larvae. Aquat Toxicol 201:99–108. https://doi.org/10.1016/j.aquatox.2018.06.002

    Article  CAS  PubMed  Google Scholar 

  85. Xu MY, Wang P, Sun YJ, Wu YJ (2017b) Metabolomic analysis for combined hepatotoxicity of chlorpyrifos and cadmium in rats. Toxicology 384:50–58. https://doi.org/10.1016/j.tox.2017.04.008

    Article  CAS  PubMed  Google Scholar 

  86. Xu T, Liu Q, Chen D, Liu Y (2022) Atrazine exposure induces necroptosis through the P450/ROS pathway and causes inflammation in the gill of common carp (Cyprinus carpio L.). Fish Shellfish Immunol 131:809–816

    Article  CAS  PubMed  Google Scholar 

  87. Yildiz A, Kaya Y, Tanriverdi O (2019) Effect of the Interaction Between Selenium and Zinc on DNA Repair in Association With Cancer Prevention. J Cancer Prev 24:146–154. https://doi.org/10.15430/jcp.2019.24.3.146

    Article  PubMed  PubMed Central  Google Scholar 

  88. Yin J, Wang L, Wang L, Huang T, Zhang X (2021) Pretreatment with selenium prevented the accumulation of hexavalent chromium in rainbow trout (Oncorhynchus mykiss) and reduced the potential health risk of fish consumption. Food Control 122. https://doi.org/10.1016/j.foodcont.2020.107817

  89. Zhang M, Li M, Li X, Qian Y, Wang R, Hong M (2020) The protective effects of selenium on chronic ammonia toxicity in yellow catfish (Pelteobagrus fulvidraco). Fish Shellfish Immunol 107:137–145. https://doi.org/10.1016/j.fsi.2020.10.004

    Article  CAS  PubMed  Google Scholar 

  90. Zhang T, Yao C, Hu Z, Li D, Tang R (2022) Protective Effect of Selenium on the Oxidative Damage of Kidney Cells Induced by Sodium Nitrite in Grass Carp (Ctenopharyngodon idellus). Biol Trace Elem Res 200:3876–3884. https://doi.org/10.1007/s12011-021-02982-x

    Article  CAS  PubMed  Google Scholar 

  91. Zhang YZ, Wang B, Wang W, Li WC, Huang J, Deng SB et al (2016) Occurrence and source apportionment of Per-and poly-fluorinated compounds (PFCs) in North Canal Basin. Beijing Sci Rep 6:36683. https://doi.org/10.1038/srep36683

    Article  CAS  PubMed  Google Scholar 

  92. Zhang Y, Zhou Y, Tang Q, Hu F, Feng L, Shen J et al (2018) The protective effects of selenium-enriched spirulina on the reproductive system of male zebrafish (Danio rerio) exposed to beta-cypermethrin. Food Funct 9:5791–5804. https://doi.org/10.1039/c8fo01527a

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was partially supported by The National Natural Science Foundation of China (NSFC-31860728); Hainan Province Science and Technology Special Fund (ZDYF2021SHFZ071); The specific research fund of The Innovation Platform for Academicians of Hainan Province (YSPTZX20212); Key R & D projects in Hainan Province (No. ZDYF2021XDNY185).

Author information

Authors and Affiliations

Authors

Contributions

Wang Lu and Waqas Ahmed mainly wrote the paper; Mohsin Mahmood, Ou Wenjie and Li Jiannan prepared Figs. 14; Wang He and Xu Wenxin prepared the figure, No.5-8; Fu Xiuxian, Zhao Hongwei, Liu Wenjie, and Sajid Mehmood, Li Weidong, supervised, and review the article.

All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Weidong Li or Sajid Mehmood.

Ethics declarations

Conflict of interest

There are no conflicts of interest reported by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Ahmed, W., Mahmood, M. et al. A study on the effectiveness of sodium selenite in treating cadmium and perfluoro octane sulfonic (PFOS) poisoned zebrafish (Danio rerio). Biol Trace Elem Res 202, 319–331 (2024). https://doi.org/10.1007/s12011-023-03654-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03654-8

Keywords

Navigation