Skip to main content
Log in

Insulin Receptor Substrates Regulation and Clinical Responses Following Vanadium-Enriched Yeast Supplementation in Obese Type 2 Diabetic Patients: a Randomized, Double-Blind, Placebo-Controlled Clinical Trial

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Increasing evidence suggests that organic vanadium compounds are bioavailable and safe therapeutic agents with insulin-mimetic and insulin-enhancing features. The objective of the current study was to examine the effect of vanadium-enriched yeast (VEY) supplementation on the gene expression level of insulin receptor substrates and clinical manifestations of obese type 2 diabetic mellitus (T2DM) patients. In this randomized, double-blind, placebo-controlled clinical trial, 44 obese T2DM patients were randomly allocated into either VEY (0.9 mg/day vanadium pentoxide) or placebo group for 12 weeks. The mRNA expression level of protein tyrosine phosphatase 1B (PTP1B), phosphatase and tensin homolog (PTEN), mitogen-activated protein kinase (MAPK), ribosomal protein S6 kinase (S6K), and nuclear factor kappa-light-chain-enhancer of activated B cells (NFƘB) genes in the peripheral blood mononuclear cells, serum levels of metabolic parameters, anthropometric indices, as well as the quality of life, and dietary intake were collected at pre- and post-intervention phases. Analysis of covariance was performed to obtain the corresponding effect size. Results showed that VEY administration significantly decreased anthropometric indices and glycemic parameters and increased insulin sensitivity after adjusting for potential covariates (p < 0.05), in comparison to the placebo group. Additionally, VEY supplementation was significantly effective on MAPK, PTP1B, and NFƘB gene expression level, compared to the placebo group. No significant changes were noticed for dietary intake, quality of life, and lipid profile in the VEY group, compared to the placebo group. Overall, VEY supplementation can be considered as a promising safe adjunct therapy for improving anthropometric indices and glycemic parameters in T2DM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article.

References

  1. Alberti KGMM, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabetic Med 15(7):539–53. https://doi.org/10.1002/(SICI)1096-9136(199807)15:7%3c539::AID-DIA668%3e3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  2. International Diabetes Federation (2021) IDF Diabetes Atlas, 10th edn. Brussels, Belgium

  3. Davies MJ, Aroda V, Collins B et al (2022) Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 45(11):2753–2786. https://doi.org/10.2337/dci22-00344

    Article  CAS  PubMed  Google Scholar 

  4. Król E, Krejpcio Z, Michalak S, Wójciak RW, Bogdański P (2012) Effects of combined dietary chromium (III) propionate complex and thiamine supplementation on insulin sensitivity, blood biochemical indices, and mineral levels in high-fructose-fed rats. Biol Trace Elem Res 150(1):350–359. https://doi.org/10.1007/s12011-012-9515-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mishra S, Kumar A, Chaturvedi RK, Pandeya SN (2012) Vanadium salts versus diabetes: an overview. Sys Rev Pharm 1(2):172–174. https://doi.org/10.4103/0975-8453.75073

    Article  CAS  Google Scholar 

  6. Treviño S, Diaz A (2020) Vanadium and insulin: partners in metabolic regulation. J Inorg Biochem 208:111094. https://doi.org/10.1016/j.jinorgbio.2020.111094

    Article  CAS  PubMed  Google Scholar 

  7. Liu J, Bao W, Jiang M, Zhang Y, Zhang X, Liu L (2012) Chromium, selenium, and zinc multimineral enriched yeast supplementation ameliorates diabetes symptom in streptozocin-induced mice. Biol Trace Elem Res 146(2):236–245. https://doi.org/10.1007/s12011-011-9248-x

    Article  CAS  PubMed  Google Scholar 

  8. Thompson KH, Liboiron BD, Sun Y, Bellman KD, Setyawati IA, Patrick BO et al (2003) Preparation and characterization of vanadyl complexes with bidentate maltol-type ligands; in vivo comparisons of anti-diabetic therapeutic potential. JBIC 8(1):66–74. https://doi.org/10.1007/s00775-002-0388-5

    Article  CAS  PubMed  Google Scholar 

  9. Thompson KH, Lichter J, LeBel C, Scaife MC, McNeill JH, Orvig C (2009) Vanadium treatment of type 2 diabetes: a view to the future. J Inorg Biochem 103(4):554–558. https://doi.org/10.1016/j.jinorgbio.2008.12.003

    Article  CAS  PubMed  Google Scholar 

  10. Thompson KHOC (2006) Vanadium in diabetes: 100 years from phase 0 to phase I. J Inorg Biochem 100:1925–35. https://doi.org/10.1016/j.jinorgbio.2006.08.016

    Article  CAS  PubMed  Google Scholar 

  11. Goc A (2006) Biological activity of vanadium compounds. Cent Eur J Biol 1(3):314–332. https://doi.org/10.2478/s11535-006-0029-z

    Article  CAS  Google Scholar 

  12. Salice VCC, DummCL G (1999) Etcheverry SB tyrosine phosphorylation and morphological transformation induced by four vanadium compounds on MC3T3E1 cells. Mol Cell Biochem 198:119–128. https://doi.org/10.1023/A:1006997830346

    Article  CAS  PubMed  Google Scholar 

  13. Goldfine AB, Simonson DC, Folli F, Patti M-E, Kahn CR (1995) Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus in vivo and in vitro studies. J Clin Endocrinol Metab 80(11):3311–3320. https://doi.org/10.1210/jcem.80.11.7593444

    Article  CAS  Google Scholar 

  14. Hei Y-j, Chen X, Pelech SL, Diamond J, McNeill JH (1995) Skeletal muscle mitogen-activated protein kinases and ribosomal S6 kinases: suppression in chronic diabetic rats and reversal by vanadium. Diabetes 44(10):1147–1155. https://doi.org/10.2337/diab.44.10.1147

    Article  CAS  PubMed  Google Scholar 

  15. Yong-jiang Hei SF, Chen X, Mary L, BaJH McNeill (1998) Stimulation of MAP kinase and S6 kinase by vanadium and selenium in rat adipocytes. Mol Cell Biochem 178:367–375. https://doi.org/10.1023/a:1006819906820

    Article  Google Scholar 

  16. Semiz S (2022) Vanadium as potential therapeutic agent for COVID-19: a focus on its antiviral, antiinflamatory, and antihyperglycemic effects. J Trace Elem Med Biol 69:126887. https://doi.org/10.1016/j.jtemb.2021.126887

    Article  CAS  PubMed  Google Scholar 

  17. Moreira LPD, Gomes JVP, Mattar JB et al (2019) Potential of trace elements as supplements for the metabolic control of type 2 diabetes mellitus: a systematic review. JFF 57:317–327. https://doi.org/10.1016/j.jff.2019.04.015

    Article  CAS  Google Scholar 

  18. Domingo JL, Gómez M (2016) Vanadium compounds for the treatment of human diabetes mellitus: a scientific curiosity? A review of thirty years of research. FCT 95:137–141. https://doi.org/10.1016/j.fct.2016.07.005

    Article  CAS  Google Scholar 

  19. Ghalichi F, Ostadrahimi A, Saghafi-Asl M (2022) Vanadium and diabetic dyslipidemia: a systematic review of animal studies. J Trace Elem Med Biol 71:1–20. https://doi.org/10.1016/j.jtemb.2022.126955

    Article  CAS  Google Scholar 

  20. Ghalichi F, Ostadrahimi A, Saghafi-Asl M (2022) Vanadium and biomarkers of inflammation and oxidative stress in diabetes: a systematic review of animal studies. HPP 12(2):122–130. https://doi.org/10.34172/hpp.2022.16

    Article  PubMed  PubMed Central  Google Scholar 

  21. Habtewolde (2012) Effects of vanadium compounds on glycemic control in type 2 diabetes mellitus: a meta-analysis of comparative study on rats. IJPSR 3(10):3717–3724. https://doi.org/10.13040/IJPSR.0975-8232.3(10).3717-24

    Article  Google Scholar 

  22. Nahas R, Moher M (2009) Complementary and alternative medicine for the treatment of type 2 diabetes. CFP 55(6):591–596

    PubMed  PubMed Central  Google Scholar 

  23. Smith DMP, Lewith GT (2008) A systematic review of vanadium oral supplements for glycaemic control in type 2 diabetes mellitus. QJM 101:351–358. https://doi.org/10.1093/qjmed/hcn003

    Article  CAS  PubMed  Google Scholar 

  24. Yeh G, Eisenberg D, Kaptchuk T et al (2003) Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care 26(4):1277–1294. https://doi.org/10.2337/diacare.26.4.1277

    Article  CAS  PubMed  Google Scholar 

  25. Ulbricht C, Chao W, Costa D et al (2012) An evidence-based systematic review of vanadium by the natural standard research collaboration. J Diet Suppl 9(3):223–251. https://doi.org/10.3109/19390211.2012.709365

    Article  CAS  PubMed  Google Scholar 

  26. Afkhami-Arekani M, Karimi M, Mohammadi Mohammad S, Nourani F (2008) Effect of sodium metavanadate supplementation on lipid and glucose metabolism biomarkers in type e diabetic patients. Malays J Nutr 14(1):113–119

    Google Scholar 

  27. Boden G, Chen X, Ruiz J, van Rossum GD, Turco S (1996) Effects of vanadyl sulfate on carbohydrate and lipid metabolism in patients with non—insulin-dependent diabetes mellitus. Metabolism 45(9):1130–1135. https://doi.org/10.1016/s0026-0495(96)90013-x

    Article  CAS  PubMed  Google Scholar 

  28. Cohen N, Halberstam M, Shlimovich P, Chang CJ, Shamoon H, Rossetti L (1995) Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J Clin Investig 95(6):2501–2509. https://doi.org/10.1172/JCI117951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cusi K, Cukier S, DeFronzo R, Torres M, Puchulu F, Redondo JP (2001) Vanadyl sulfate improves hepatic and muscle insulin sensitivity in type 2 diabetes. J Clin Endocrinol Metab 86(3):1410–1417. https://doi.org/10.1210/jcem.86.3.7337

    Article  CAS  PubMed  Google Scholar 

  30. Hamwi GJ (1964) Therapy: changing dietary concepts. Diabetes Mellitus: diagnosis and treatment 1:73–78

    Google Scholar 

  31. Soleimanzadeh H, Niaei A, Salari D, Tarjomannejad A, Penner S, Grünbacher M et al (2019) Modeling and optimization of V2O5/TiO2 nanocatalysts for NH3-selective catalytic reduction (SCR) of NOx by RSM and ANN techniques. J Environ Manage 238:360–367. https://doi.org/10.1016/j.jenvman.2019.03.018

    Article  CAS  PubMed  Google Scholar 

  32. Esmaeili S, Khosravi-Darani K, Pourahmad R, Nazemi L, Komeili R (2012) Production of selenium-enriched yeast using a Plackett-Burman design. Iran. J Nutr Sci 7(2):27–36. http://nsft.sbmu.ac.ir/article-1-767-en.html

  33. Zare H, Owlia P, Vahidi H, Khujin MH (2018) Simultaneous optimization of the production of organic selenium and cell biomass in Saccharomyces cerevisiae by Plackett-Burman and Box-Behnken Design. IJPR 17(3):1081. http://research.shahed.ac.ir/WSR/WebPages/Report/PaperView.aspx?PaperID=85741

  34. Pugazhenthi S, Khandelwal RL (1990) Insulinlike effects of vanadate on hepatic glycogen metabolism in nondiabetic and streptozocin-induced diabetic rats. Diabetes 39(7):821–827. https://doi.org/10.2337/diab.39.7.821

    Article  CAS  PubMed  Google Scholar 

  35. Burroughs TE, Desikan R, Waterman BM, Gilin D, McGill J (2004) Development and validation of the diabetes quality of life brief clinical inventory. Diabetes spectrum 17(1):41–49. https://doi.org/10.2337/diaspect.17.1.41

    Article  Google Scholar 

  36. Rzewnicki R, Auweele YV, De Bourdeaudhuij I (2003) Addressing overreporting on the International Physical Activity Questionnaire (IPAQ) telephone survey with a population sample. Public Health Nutr 6(3):299–305. https://doi.org/10.1079/PHN2002427

    Article  PubMed  Google Scholar 

  37. Majid H, Masood Q, Khan AH (2017) Homeostatic model assessment for insulin resistance (HOMA-IR): a better marker for evaluating insulin resistance than fasting insulin in women with polycystic ovarian syndrome. J Coll Physicians Surg Pak 27(3):123–126

    PubMed  Google Scholar 

  38. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G et al (2000) Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 85(7):2402–2410. https://doi.org/10.1210/jcem.85.7.6661

    Article  CAS  PubMed  Google Scholar 

  39. Karkhaneh A, Bagherieh M, Sadeghi S, Kheirollahi A (2019) Evaluation of eight formulas for LDL-C estimation in Iranian subjects with different metabolic health statuses. Lipids Health Dis 18(1):1–11. https://doi.org/10.1186/s12944-019-1178-1

    Article  Google Scholar 

  40. Mishra P, Pandey CM, Singh U, Gupta A, Sahu C, Keshri A (2019) Descriptive statistics and normality tests for statistical data. Ann Card Anaesth 22(1):67. https://doi.org/10.4103/aca.ACA_157_18

    Article  PubMed  PubMed Central  Google Scholar 

  41. Halberstam M, Cohen N, Shlimovich P, Rossetti L, Shamoon H (1996) Oral vanadyl sulfate improves insulin sensitivity in NIDDM but not in obese nondiabetic subjects. Diabetes 45(5):659–666. https://doi.org/10.2337/diab.45.5.659

    Article  CAS  PubMed  Google Scholar 

  42. Wu Y, Huang M, Zhao P, Yang X (2013) Vanadyl acetylacetonate upregulates PPARγ and adiponectin expression in differentiated rat adipocytes. JBIC 18(6):623–631. https://doi.org/10.1007/s00775-013-1007-3

    Article  CAS  PubMed  Google Scholar 

  43. Russell R, Beard JL, Cousins RJ et al (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. A report of the panel on micronutrients, subcommittees on upper reference levels of nutrients and of interpretation and uses of dietary reference intakes, and the standing committee on the scientific evaluation of dietary reference intakes. Food and Nutrition Board, Institute of Medicine. Washington, DC: National Academy Press

  44. Mohamed E, Mohamed M, Rashid FA (2004) Dyslipidaemic pattern of patients with type 2 diabetes mellitus. MJMS 11(1):44–51

    PubMed  PubMed Central  Google Scholar 

  45. Jacques-Camarena O, González-Ortiz M, Martínez-Abundis E, López-Madrueño JP, Medina-Santillán R (2008) Effect of vanadium on insulin sensitivity in patients with impaired glucose tolerance. Ann Nutr Metab 53(3–4):195–198. https://doi.org/10.1159/000175844

    Article  CAS  PubMed  Google Scholar 

  46. Mohammad A, Wang J, McNeill JH (2002) Bis(maltolato)oxovanadium(IV) inhibits the activity of PTP1B in Zucker rat skeletal muscle in vivo. Mol Cell Biochem 229(1):125–128. https://doi.org/10.1023/a:1017984930836

    Article  CAS  PubMed  Google Scholar 

  47. McNeill SSaJH (2002) Oral treatment with vanadium of Zucker fatty rats activates muscle glycogen synthesis and insulin-stimulated protein phosphatase-1 activity. Mol Cell Biochem 236:123–31. https://doi.org/10.1023/A:1016116700632

    Article  PubMed  Google Scholar 

  48. Wei D, Li M, Ding W (2007) Effect of vanadate on gene expression of the insulin signaling pathway in skeletal muscle of streptozotocin-induced diabetic rats. JBIC 12(8):1265–1273. https://doi.org/10.1007/s00775-007-0294-y

    Article  CAS  PubMed  Google Scholar 

  49. Stoker EIaAW (2017) Vanadium compounds as PTP inhibitors. Molecules 22(2269):5–19. https://doi.org/10.3390/molecules22122269

    Article  CAS  Google Scholar 

  50. Mao L-L, Hao D-L, Mao X-W, Xu Y-F, Huang T-T, Wu B-N, Wang L-H (2015) Neuroprotective effects of bisperoxovanadium on cerebral ischemia by inflammation inhibition. Neurosci Lett 602:120–5. https://doi.org/10.1016/j.neulet.2015.06.040

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the patient’s participation in this study. Our gratitude also goes to the vice chancellor for research (VCR) of Tabriz University of Medical Sciences (TBZMED) for their financial support. This study is based on the data obtained from a Ph.D. dissertation (Grant number: 67355) submitted to Tabriz University of Medical Sciences (Faezeh Ghalichi).

Author information

Authors and Affiliations

Authors

Contributions

FGH, AO, and MSA designed the research and contributed to the concept of the project, the development of the overall research plan, and study oversight. FGH drafted the manuscript, analyzed, and interpreted the data. AHF helped with analyzing the data and editing the manuscript. BK took part in the production of VEY capsules. AAN and MRJ were involved in the sampling and data collection. MSA edited the whole manuscript. All authors have given final approval of the version to be published.

Corresponding author

Correspondence to Alireza Ostadrahimi.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghalichi, F., Saghafi-Asl, M., Kafil, B. et al. Insulin Receptor Substrates Regulation and Clinical Responses Following Vanadium-Enriched Yeast Supplementation in Obese Type 2 Diabetic Patients: a Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Biol Trace Elem Res 201, 5169–5182 (2023). https://doi.org/10.1007/s12011-023-03604-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03604-4

Keywords

Navigation