Skip to main content

Advertisement

Log in

Chromium, Selenium, and Zinc Multimineral Enriched Yeast Supplementation Ameliorates Diabetes Symptom in Streptozocin-Induced Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Chromium, selenium, and zinc malnutrition has been implicated in the pathogenesis of diabetic mellitus. This study aims to investigate the effects of novel multiminerals-enriched yeast (MMEY) which are minerals supplementation containing elevated levels of chromium, selenium, and zinc simultaneously in a diabetic animal model. Streptozocin-induced diabetic male Balb/c mice (n = 80) were randomly divided into diabetes control group and three treatment groups. They were administrated oral gavages with low, medium, or high doses of MMEY, respectively. Meanwhile, healthy male Balb/c mice (n = 40) of the same body weight were randomly assigned into normal control group and high dose of MMEY control group. After 8 weeks duration of treatment, the animals were sacrificed by cervical dislocation. Serum glucose concentrations, lipid profiles, oxidative/antioxidant, and immunity status were determined. No significant adverse effects were observed in the high-dose MMEY control group. Treatment of the diabetic mice with medium- or high-dose MMEY significantly decreased serum glucose, triglyceride, total cholesterol, and malondialdehyde and increased high-density lipoprotein cholesterol, glutathione, and the activities of superoxide dismutase and glutathione peroxidase. In addition, MMEY ameliorated the pathological damage of the pancreatic islets, elevated the thymus or spleen coefficient, and increased the expressions of interleukin-2 and -4 in spleen lymphocytes compared with unsupplemented diabetic mice. In conclusion, these results indicate that supplemental MMEY inhibits hyperglycemia, abates oxidative stress, modulates disorders of lipid metabolism, and reduces the impairment of immune function in diabetic mice; especially notable are the protective effects of medium doses of MMEY on the islet cells of diabetic mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6

Similar content being viewed by others

Abbreviations

MMEY:

multiminerals-enriched yeast

Cr:

chromium

Se:

selenium

Zn:

zinc

STZ:

streptozocin

BSA:

bovine serum albumin

GLU:

glucose

TG:

triacylglycerol

TC:

total cholesterol

HDL:

high-density lipoprotein

MDA:

malondialdehyde

SOD:

superoxide dismutase

GSH:

glutathione

GPx:

glutathione peroxidase

IL-2:

interleukin-2

IL-4:

interleukin-4

TBARS:

thiobarbituric acid reactive substances

SD:

standard deviation

References

  1. International Diabetes Federation (2009) Diabetes atlas, 4th edn. IDF Executive Office, Brussels

    Google Scholar 

  2. Narayan KM, Gregg EW, Fagot-Campagna A, Engelgau MM, Vinicor F (2000) Diabetes—a common, growing, serious, costly, and potentially preventable public health problem. Diabetes Res Clin Pract 50:S77–S84

    Article  PubMed  Google Scholar 

  3. Meil I, Ward BP (1983) Trace element concentrations in blood plasma from diabetic patients and normal individuals. Biological Trace Element Research 6:469–487

    Google Scholar 

  4. Kazi TG, Afridi HI, Kazi N, Jamali MK, Arain MB, Jalbani N, Kandhro GA (2008) Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol Trace Elem Res 122:1–18

    Article  PubMed  CAS  Google Scholar 

  5. Ekmekcioglu C, Prohaska C, Pomazal K, Steffan I, Schernthaner G, Marktl W (2001) Concentrations of seven trace elements in different hematological matrices in patients with type 2 diabetes as compared to healthy controls. Biol Trace Elem Res 79:205–219

    Article  PubMed  CAS  Google Scholar 

  6. Kljai K, Runje R (2001) Selenium and glycogen levels in diabetic patients. Biol Trace Elem Res 83:223–229

    Article  PubMed  CAS  Google Scholar 

  7. Serdar MA, Bakir F, Haşimi A, Celik T, Akin O, Kenar L, Aykut O, Yildirimkaya M (2009) Trace and toxic element patterns in nonsmoker patients with noninsulin-dependent diabetes mellitus, impaired glucose tolerance, and fasting glucose. Int J Diabetes Dev Ctries 29:35–40

    Article  PubMed  Google Scholar 

  8. Nsonwu AC, Usoro CAO, Etukudo MH, Usoro IN (2006) Glycemic control and serum and urine levels of zinc and magnesium in diabetics in Calabar, Nigeria. Pakistan J Nutr 5:75–78

    Article  Google Scholar 

  9. Overbeck S, Rink L, Haase H (2008) Modulating the immune response by oral zinc supplementation: a single approach for multiple diseases. Arch Immunol Ther Exp (Warsz) 56:15–30

    Article  CAS  Google Scholar 

  10. Roussel AM, Andriollo-Sanchez M, Ferry M, Bryden NA, Anderson RA (2007) Food chromium content, dietary chromium intake and related biological variables in French free-living elderly. Br J Nutr 98:326–331

    Article  PubMed  CAS  Google Scholar 

  11. Mita Y, Ishihara K, Fukuchi Y, Fukuya Y, Yasumoto K (2005) Supplementation with chromium picolinate recovers renal Cr concentration and improves carbohydrate metabolism and renal function in type 2 diabetic mice. Biol Trace Elem Res 105:229–248

    Article  PubMed  CAS  Google Scholar 

  12. Can B, Ulusu NN, Kilinç K, Leyla Acan N, Saran Y, Turan B (2005) Selenium treatment protects diabetes-induced biochemical and ultrastructural alterations in liver tissue. Biol Trace Elem Res 105:135–150

    Article  PubMed  CAS  Google Scholar 

  13. de Sena KC, Arrais RF, das Graças Almeida M, de Araújo DM, dos Santos MM, de Lima VT, de Fãtima Campos Pedrosa L (2005) Effects of zinc supplementation in patients with type 1 diabetes. Biol Trace Elem Res 105:1–9

    Article  PubMed  Google Scholar 

  14. Vincent JB (2004) Recent developments in the biochemistry of chromium (III). Biol Trace Elem Res 99:1–16

    Article  PubMed  CAS  Google Scholar 

  15. Sheng XQ, Huang KX, Xu HB (2004) New experimental observation on the relationship of selenium and diabetes mellitus. Biol Trace Elem Res 99:241–253

    Article  PubMed  CAS  Google Scholar 

  16. Anderson RA, Roussel AM, Zouari N, Mahjoub S, Matheau JM, Kerkeni A (2001) Potential antioxidant effects of zinc and chromium supplementation in people with type 2 diabetes mellitus. J Am Coll Nutr 20:212–218

    PubMed  CAS  Google Scholar 

  17. Bartlett HE, Eperjesi F (2008) Nutritional supplementation for type 2 diabetes: a systematic review. Ophthalmic Physiol Opt 28:503–523

    Article  PubMed  Google Scholar 

  18. Racek J, Trefil L, Rajdl D, Mudrová V, Hunter D, Senft V (2006) Influence of chromium-enriched yeast on blood glucose and insulin variables, blood lipids, and markers of oxidative stress in subjects with type 2 diabetes mellitus. Biol Trace Elem Res 109:215–230

    Article  PubMed  CAS  Google Scholar 

  19. Agbor GA, Vinson JA, Patel S, Patel K, Scarpati J, Shiner D, Wardrop F, Tompkins TA (2007) Effect of selenium- and glutathione-enriched yeast supplementation on a combined atherosclerosis and diabetes hamster model. J Agric Food Chem 55:8731–8736

    Article  PubMed  CAS  Google Scholar 

  20. Tompkins TA, Renard NE, Kiuchi A (2007) Clinical evaluation of the bioavailability of zinc-enriched yeast and zinc gluconate in healthy volunteers. Biol Trace Elem Res 120:28–35

    Article  PubMed  CAS  Google Scholar 

  21. Vinson JA, Bose P (1981) Comparison of the bio-availabity of trace elements in inorgnic salts, amino acid chelates and yeast. Mineral Elements 80:615–621

    Google Scholar 

  22. Mazo VK, Gmoshinski IV, Zorin SN (2007) New food sources of essential trace elements produced by biotechnology facilities. Biotechnol J 2:1297–1305

    Article  PubMed  CAS  Google Scholar 

  23. Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF (1997) Special report: the 1996 guide for the care and use of laboratory animals. ILAR J 38:41–48

    PubMed  Google Scholar 

  24. Zeng J, Zhou J, Huang K (2009) Effect of selenium on pancreatic proinflammatory cytokines in streptozotocin-induced diabetic mice. J Nutr Biochem 20:530–536

    Article  PubMed  CAS  Google Scholar 

  25. Song F, Chen W, Jia W, Yao P, Nussler AK, Sun X, Liu L (2006) A natural sweetener, Momordica grosvenori, attenuates the imbalance of cellular immune functions in alloxan-induced diabetic mice. Phytother Res 20:552–560

    Article  PubMed  Google Scholar 

  26. Song F, Qi X, Chen W, Jia W, Yao P, Nussler AK, Sun X, Liu L (2007) Effect of Momordica grosvenori on oxidative stress pathways in renal mitochondria of normal and alloxan-induced diabetic mice. Involvement of heme oxygenase-1. Eur J Nutr 46:61–69

    Article  PubMed  Google Scholar 

  27. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  28. Asgary S, Sadeghi M, Naderi GH, Akhavan A (2006) A study of the antioxidant effect of Iranian captopril on patients with hypertension and heart failure. Arya J 1:256–260

    Google Scholar 

  29. Balaraman R, Bafna PA, Kolhapure SA (2004) Antioxidant activity of DHC-1—a herbal formulation. J Ethnopharmacol 94:135–141

    Article  PubMed  CAS  Google Scholar 

  30. Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195

    Article  PubMed  CAS  Google Scholar 

  31. Sazuka Y, Tanizawa H, Takino Y (1989) Effect of adriamycin on the activities of superoxide dismutase, glutathione peroxidase and catalase in tissues of mice. Jpn J Cancer Res 80:89–94

    Article  PubMed  CAS  Google Scholar 

  32. Zhang ZZ, Heng ZC, Zhao R, Liao Y (2001) The Establishment of comet assay for male reproductive cells in vitro. J Health Toxicol 15:99–101

    Google Scholar 

  33. Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115:1111–1119

    PubMed  CAS  Google Scholar 

  34. Shi YC, Liao JW, Pan TM (2011) Antihypertriglyceridemia and anti-inflammatory activities of monascus-fermented dioscorea in streptozotocin-induced diabetic rats. Exp Diabetes Res 15:1–11

    Google Scholar 

  35. Rapoport MJ, Jaramillo A, Zipris D, Lazarus AH, Serreze DV, Leiter EH, Cyopick P, Danska JS, Delovitch TL (1993) Interleukin 4 reverses T cell proliferative unresponsiveness and prevents the onset of diabetes in nonobese diabetic mice. J Exp Med 178:87–99

    Article  PubMed  CAS  Google Scholar 

  36. Serreze DV, Leiter EH (1988) Defective activation of T suppressor cell function in nonobese diabetic mice. Potential relation to cytokine deficiencies J Immunol 140:3801–3807

    CAS  Google Scholar 

  37. Ozturk Y, Atlan VM, Yildizoglu-Ari N (1996) Effects of experimental diabetes and insulin on smooth muscle functions. Pharmacol Rev 48:69–112

    PubMed  CAS  Google Scholar 

  38. Junod A, Lambert AE, Stauffacher W, Renold AE (1967) Diabetogenic action of streptozotocin. Proc Soc Exp Biol Med 126:201–205

    PubMed  CAS  Google Scholar 

  39. Bishnoi M, Bosgraaf CA, Abooj M, Zhong L, Premkumar LS (2011) Streptozotocin-induced early thermal hyperalgesia is independent of glycemic state of rats: role of Transient Receptor Potential Vanilloid 1(trpv1) and inflammatory mediators. Mol Pain 7:52

    Article  PubMed  Google Scholar 

  40. Rükgauer M, Zeyfang A (2002) Chromium determinations in blood cells: clinical relevance demonstrated in patients with diabetes mellitus type 2. Biol Trace Elem Res 86:193–202

    Article  PubMed  Google Scholar 

  41. Stapleton SR (2000) Selenium: an insulin-mimetic. Cell Mol Life Sci 57:1874–1879

    Article  PubMed  CAS  Google Scholar 

  42. Dodson G, Steiner D (1998) The role of assembly in insulin’s biosynthesis. Curr Opin Struct Biol 8:189–194

    Article  PubMed  CAS  Google Scholar 

  43. Ryan-Harshman M, Aldoori W (2005) The relevance of selenium to immunity, cancer, and infectious/inflammatory diseases. Can J Diet Pract Res 66:98–102

    Article  PubMed  Google Scholar 

  44. Hercberg S, Galan P, Preziosi P, Bertrais S, Mennen L, Malvy D, Roussel AM, Favier A, Briançon S (2004) The SU.VI.MAX Study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch Intern Med 164:2335–2242

    Article  PubMed  CAS  Google Scholar 

  45. Król E, Krejpcio Z, Byks H, Bogdański P, Pupek-Musialik D (2011) Effects of chromium brewer’s yeast supplementation on body mass, blood carbohydrates, and lipids and minerals in type 2 diabetic patients. Biol Trace Elem Res 143(2):726–737

    Article  PubMed  Google Scholar 

  46. Rains JL, Jain SK (2011) Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 50:567–575

    Article  PubMed  CAS  Google Scholar 

  47. Li LF, Li J (2007) Link between oxidative stress and insulin resistance. Chin Med Sci J 22:254–259

    PubMed  CAS  Google Scholar 

  48. West IC (2000) Radicals and oxidative stress in diabetes. Diabet Med 17:171–180

    Article  PubMed  CAS  Google Scholar 

  49. Lapolla A, Fedele D (1993) Oxidative stress and diabetes: role in the development of chronic complications. Minerva Endocrinol 18:99–108

    PubMed  CAS  Google Scholar 

  50. Singh PP, Mahadi F, Roy A, Sharma P (2009) Reactive oxygen species, reactive nitrogen species and antioxidants in etiopathogenesis of diabetes mellitus type-2. Ind J Clin Biochem 24:324–342

    Article  CAS  Google Scholar 

  51. Benov L, Batinic-Haberle I (2005) A manganese porphyrin suppresses oxidative stress and extends the life span of streptozotocin-diabetic rats. Free Radic Res 39:81–88

    Article  PubMed  CAS  Google Scholar 

  52. Dursun E, Timur M, Dursun B, Ozben T et al (2005) Protein oxidation in type 2 diabetic patients on hemodialysis. J Diabetes Complications 19:142–146

    Article  PubMed  CAS  Google Scholar 

  53. Kowluru RA, Odenbach S (2004) Role of interleukin-1 beta in the development of retinopathy in rats: effect of antioxidants. Invest Ophthalmol Vis Sci 5:4161–4166

    Article  Google Scholar 

  54. Suzuki S, Hinokio Y, Komatu K, Ohtomo M, Onoda M, Hirai S, Hirai M, Hirai A, Chiba M, Kasuga S, Akai H, Toyota T (1999) Oxidative damage to mitochondrial DNA and its relationship to diabetic nephropathy. Diabetes Res Clin Pract 45:161–168

    Article  PubMed  CAS  Google Scholar 

  55. Scivittaro V, Ganz MB, Weiss MF (2000) AGEs induce oxidative stress and activate protein kinase C-beta(II) in neonatal mesangial cells. Am J Physiol Renal Physiol 278:F676–F683

    PubMed  CAS  Google Scholar 

  56. Banba N, Nakamura T, Matsumura M, Kuroda H, Hattori Y, Kasai K (2000) Possible relationship of monocyte chemoattractant protein-1 with diabetic nephropathy. Kidney Int 58:684–690

    Article  PubMed  CAS  Google Scholar 

  57. Malik N, Biswas AK, Qureshi TA, Borana K, Virha R (2010) Bioaccumulation of heavy metals in fish tissues of a freshwater lake of Bhopal. Environ Monit Assess 160:267–276

    Article  PubMed  CAS  Google Scholar 

  58. Arinola OG, Olaniyi JA, Akiibinu MO (2008) Evaluation of antioxidant levels and trace element status in Nigerian sickle cell disease patients with Plasmodium parasitaemia. Pak J Nutr 7:766–769

    Article  CAS  Google Scholar 

  59. Aggett PJ (1991) The assessment of zinc status: a personal view. Proc Nutr Soc 50:9–17

    Article  PubMed  CAS  Google Scholar 

  60. Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    Article  PubMed  CAS  Google Scholar 

  61. Hönscheid A, Rink L, Haase H (2009) T-lymphocytes: a target for stimulatory and inhibitory effects of zinc ions. Endocr Metab Immune Disord Drug Targets 9:132–144

    Article  PubMed  Google Scholar 

  62. Mocchegiani E, Muzzioli M (2000) Therapeutic application of zinc in human immunodeficiency virus against opportunistic infections. J Nutr 130:1424S–1431S

    PubMed  CAS  Google Scholar 

  63. Tanaka Y, Shiozawa S, Morimoto I, Fujita T (1990) Role of zinc in interleukin 2 (IL-2)-mediated T-cell activation. Scand J Immunol 31:547–552

    Article  PubMed  CAS  Google Scholar 

  64. Gong FL (2003) Medical immunology, 1st edn. Science, Beijing, China, pp 238–252

    Google Scholar 

  65. Connie SC, Ellen ML, Kayt EF, Sijian W, Xipei Y, Stacey LB, Ray V (2011) The influence of interleukin-4 on ligament healing. Wound Repair Regen 19:426–435

    Article  Google Scholar 

  66. Jeschke MG, Einspanier R, Klein D, Jauch KW (2002) Insulin attenuates the systemic inflammatory response to thermal trauma. Mol Med 8:443–450

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Fangfang Song, Biyun Zhang, Dr. Di Wang, Shuang Rong, Wei Yang, and Ping Yao (Huazhong University of Science and Technology) for their support and guidance. The National Natural Science Foundation of China (NSFC-30872116) and the National High Technology Research and Development Program of China (863 Program, 2010AA023005) supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liegang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Bao, W., Jiang, M. et al. Chromium, Selenium, and Zinc Multimineral Enriched Yeast Supplementation Ameliorates Diabetes Symptom in Streptozocin-Induced Mice. Biol Trace Elem Res 146, 236–245 (2012). https://doi.org/10.1007/s12011-011-9248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9248-x

Keywords

Navigation