Skip to main content
Log in

Single and Combined Effects of Short-Term Selenium Deficiency and T-2 Toxin-Induced Kidney Pathological Injury Through the MMPs/TIMPs System

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The single and combined effects of short-term selenium (Se) deficiency and T-2 toxin-induced kidney pathological injury through the MMPs/TIMPs system were investigated. Forty-eight rats were randomly divided into control, 10 ng/g T-2 toxin, 100 ng/g T-2 toxin, Se-deficient, 10 ng/g T-2 toxin and Se deficiency combined, and 100 ng/g T-2 toxin and Se deficiency combined groups for a 4-week intervention. The kidney Se concentration was measured to evaluate the construction of animal models of Se deficiency. Kidney tissues were analyzed by hematoxylin–eosin staining, Masson staining, and transmission electron microscope to observe the pathological changes, the severity of kidney fibrosis, and ultrastructural changes, respectively. Meanwhile, quantitative polymerase chain reaction and immunohistochemical staining were used to analyze the gene and protein expression levels of matrix metallopeptidase 2/3 (MMP2/3) and tissue inhibitor of metalloproteinase 1 (TIMP1). The results showed that short-term Se deficiency and T-2 toxin exposure can cause kidney injury through tubular degeneration and even lead to kidney fibrosis. And the combination of T-2 toxin and Se deficiency had a synergistic effect on the kidney. A dose–response effect of the T-2 toxin was also observed. At the gene and protein levels, the expression of MMP2/3 in the intervention group increased, while the expression of TIMP1 decreased compared with the control group. In conclusion, short-term Se deficiency and T-2 toxin exposure might lead to injury and even the development of fibrosis in the kidneys, and combined intervention can increase the severity with a dose-dependent trend. MMP2/3 and TIMP1 likely play a significant role in the development of kidney fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang LDY, Chen YZ, Xu JY, Wang B, Qin LQ (2020) New progress of selenium and hepatic injury. Modern Preventive Medicine 47(22):4218–4220

    Google Scholar 

  2. Kvícala J (1999) Selenium and the organism. Cas Lek Cesk 138(4):99–106

    PubMed  Google Scholar 

  3. Rayman MP (2000) The importance of selenium to human health. The Lancet 356(9225):233–241

    Article  CAS  Google Scholar 

  4. Qiao L, Lin X, Zhao Y, Wang Q, Liu H, You M, Yuan Q, Yang Z, Bian W, Liu J, Guo Z and Han J (2022) Shortterm dietary selenium deficiency induced liver fibrosis by inhibiting the Akt/mTOR signaling pathway in rats. Biol Trace Elem Res

  5. Tan LC, Nancharaiah YV, van Hullebusch ED, Lens PNL (2016) Selenium: environmental significance, pollution, and biological treatment technologies. Biotechnol Adv 34(5):886–907

    Article  CAS  PubMed  Google Scholar 

  6. Fang W, Wu P, Hu R, Huang Z (2003) Environmental Se–Mo–B deficiency and its possible effects on crops and Keshan-Beck disease (KBD) in the Chousang Area, Yao County, Shaanxi Province. Chin Environ Geochem Health 25(2):267–280

    Article  CAS  Google Scholar 

  7. Yan C, Luo R, Li F, Liu M, Li J, Hua W, Li X (2021) The epidemiological status, environmental and genetic factors in the etiology of Keshan disease. Cardiovasc Endocrinol Metab 10(1):14–21

    Article  CAS  PubMed  Google Scholar 

  8. Qiao L, Guo Z, Liu H, Liu J, Lin X, Deng H, Liu X, Zhao Y, Xiao X, Lei J, Han J (2022) Protective effect of mitophagy regulated by mTOR signaling pathway in liver fibrosis associated with selenium. Nutrients 14(12):2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lai H, Nie T, Zhang Y, Chen Y, Tao J, Lin T, Ge T, Li F, Li H (2021) Selenium deficiency-induced damage and altered expression of mitochondrial biogenesis markers in the kidneys of mice. Biol Trace Elem Res 199(1):185–196

    Article  CAS  PubMed  Google Scholar 

  10. Han J, Liang H, Yi J, Tan W, He S, Wu X, Shi X, Ma J, Guo X (2016) Selenium deficiency induced damages and altered expressions of metalloproteinases and their inhibitors (MMP1/3, TIMP1/3) in the kidneys of growing rats. J Trace Elem Med Biol 34:1–9

    Article  CAS  PubMed  Google Scholar 

  11. Pu G, Liu A, Huang D, Wu Q, Yuan Z (2018) Brain damage and neurological symptoms induced by T-2 toxin in rat brain. Toxicol Lett 286:96–107

    Article  Google Scholar 

  12. Yang X, Liu P, Cui Y, Xiao B, Li Y (2020) Review of the reproductive toxicity of T-2 toxin. J Agric Food Chem 68(3):727–734

    Article  CAS  PubMed  Google Scholar 

  13. Liu Y, Dong R, Yang Y, Xie H, Zhang Z (2021) Protective effect of organic selenium on oxidative damage and inflammatory reaction of rabbit kidney induced by T-2 toxin. Biol Trace Elem Res 199(5):1833–1842

    Article  CAS  PubMed  Google Scholar 

  14. Zhang X, Wang Y, Yang X, Liu M, Huang W, Zhang J, Song M, Shao B, Li Y (2021) The nephrotoxicity of T-2 toxin in mice caused by oxidative stress-mediated apoptosis is related to Nrf2 pathway. Food Chem Toxicol 149:112027

    Article  CAS  PubMed  Google Scholar 

  15. Rahman S, Sharma AK, Singh ND, Prawez S (2016) T-2 toxin induced nephrotoxicity in Wistar rats. Indian Journal of Veterinary Pathology 40(4):320

    Article  Google Scholar 

  16. Xu J, Pan S, Gan F, Hao S, Liu D, Xu H, Huang K (2018) Selenium deficiency aggravates T-2 toxin-induced injury of primary neonatal rat cardiomyocytes through ER stress. Chem Biol Interact 285:96–105

    Article  CAS  PubMed  Google Scholar 

  17. Deng H, Chilufya MM, Liu J, Qiao L, Xiao X, Zhao Y, Guo Z, Lv Y, Wang W, Zhang J, Han J (2021) Effect of low nutrition and T-2 toxin on C28/I2 chondrocytes cell line and chondroitin sulfate-modifying sulfotransferases. Cartilage 13(2):818S-825S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yao YF, Kang PD, Li XB, Yang J, Shen B, Zhou ZK, Pei FX (2010) Study on the effect of T-2 toxin combined with low nutrition diet on rat epiphyseal plate growth and development. Int Orthop 34(8):1351–1356

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rao VH, Lees GE, Kashtan CE, Nemori R, Singh RK, Meehan DT, Rodgers K, Berridge BR, Bhattacharya G, Cosgrove D (2003) Increased expression of MMP-2, MMP-9 (type IV collagenases/gelatinases), and MT1-MMP in canine X-linked Alport syndrome (XLAS). Kidney Int 63(5):1736–1748

    Article  CAS  PubMed  Google Scholar 

  20. Brew K, Nagase H (2010) The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta 1803(1):55–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123(11):1939–1951

    Article  CAS  PubMed  Google Scholar 

  22. Fr S, Wang S, HS, HL, (2007) The state of mycotoxin maximum limit of grain. Science and Technology of Cereals, Oils and Foods 6:57–59

    Google Scholar 

  23. Zhang G, Chen Y, Bilalwaqar A, Han L, Jia M, Xu C, Yu Q (2015) Quantitative analysis of rabbit coronary atherosclerosis. Practical techniques utilizing open-source software. Anal Quant Cytopathol Histpathol 37(2):115–122

    PubMed  Google Scholar 

  24. Brunner HR, Laragh JH, Baer L, Newton MA, Goodwin FT, Krakoff LR, Bard RH, Bühler FR (1972) Essential hypertension: renin and aldosterone, heart attack and stroke. N Engl J Med 286(9):441–449

    Article  CAS  PubMed  Google Scholar 

  25. Seely JC, Hard GC, Blankenship B (2018) Kidney. In: Boorman’s Pathology of the Rat, pp 125–166

  26. Janik E, Niemcewicz M, Podogrocki M, Ceremuga M, Stela M, Bijak M (2021) T-2 toxin-the most toxic trichothecene mycotoxin: metabolism, toxicity, and decontamination strategies. Molecules 26(22):6868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Korbut AI, Taskaeva IS, Bgatova NP, Muraleva NA, Orlov NB, Dashkin MV, Khotskina AS, Zavyalov EL, Konenkov VI, Klein T, Klimontov VV (2020) SGLT2 inhibitor empagliflozin and DPP4 inhibitor linagliptin reactivate glomerular autophagy in db/db mice, a model of type 2 diabetes. Int J Mol Sci 21(8):2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wiggins RC (2007) The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int 71(12):1205–1214

    Article  CAS  PubMed  Google Scholar 

  29. Patschan D, Plotkin M, Goligorsky MS (2006) Therapeutic use of stem and endothelial progenitor cells in acute renal injury: ca ira. Curr Opin Pharmacol 6(2):176–183

    Article  CAS  PubMed  Google Scholar 

  30. Garg P (2018) A review of podocyte biology. Am J Nephrol 47(Suppl 1):3–13

    Article  CAS  PubMed  Google Scholar 

  31. Kriz W, Shirato I, Nagata M, LeHir M, Lemley KV (2013) The podocyte’s response to stress: the enigma of foot process effacement. Am J Physiol Renal Physiol 304(4):F333–F347

    Article  CAS  PubMed  Google Scholar 

  32. Tyagi I, Agrawal U, Amitabh V, Jain AK, Saxena S (2008) Thickness of glomerular and tubular basement membranes in preclinical and clinical stages of diabetic nephropathy. Indian J Nephrol 18(2):64–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tervaert TW, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, Ferrario F, Fogo AB, Haas M, de Heer E, Joh K, Noel LH, Radhakrishnan J, Seshan SV, Bajema IM, Bruijn JA, Renal Pathology S (2010) Pathologic classification of diabetic nephropathy. J Am Soc Nephrol 21(4):556–563

    Article  PubMed  Google Scholar 

  34. Panizo S, Martinez-Arias L, Alonso-Montes C, Cannata P, Martin-Carro B, Fernandez-Martin JL, Naves-Diaz M, Carrillo-Lopez N, Cannata-Andia JB (2021) Fibrosis in chronic kidney disease: pathogenesis and consequences. Int J Mol Sci 22(1):408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen X, Mu P, Zhu L, Mao X, Chen S, Zhong H, Deng Y (2021) T-2 toxin induces oxidative stress at low doses via Atf3DeltaZip2a/2b-mediated ubiquitination and degradation of Nrf2. Int J Mol Sci 22(15):7936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu X, Wang Z, Wang X, Yan X, He Q, Liu S, Ye M, Li X, Yuan Z, Wu J, Yi J, Wen L, Li R (2021) Involvement of endoplasmic reticulum stress-activated PERK-eIF2alpha-ATF4 signaling pathway in T-2 toxin-induced apoptosis of porcine renal epithelial cells. Toxicol Appl Pharmacol 432:115753

    Article  CAS  PubMed  Google Scholar 

  37. Zhou X, Yang H, Guan F, Xue S, Song D, Chen J, Wang Z (2016) T-2 toxin alters the levels of collagen II and its regulatory enzymes MMPs/TIMP-1 in a low-selenium rat model of Kashin-Beck disease. Biol Trace Elem Res 169(2):237–246

    Article  CAS  PubMed  Google Scholar 

  38. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69(3):562–573

    Article  CAS  PubMed  Google Scholar 

  39. Chen QK, Lee K, Radisky DC, Nelson CM (2013) Extracellular matrix proteins regulate epithelial-mesenchymal transition in mammary epithelial cells. Differentiation 86(3):126–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Catania JM, Chen G, Parrish AR (2007) Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol 292(3):F905–F911

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all study participants.

Funding

This study was supported by the National Natural Science Foundation of China (No. 81872567).

Author information

Authors and Affiliations

Authors

Contributions

Study design: Jing Han and Ziwei Guo. Animal experiments: Ziwei Guo, Mumba mulutula Chilufya, Huan Deng, and Lichun Qiao. Data collection: Jiaxin Liu, Xiang Xiao, and Yan Zhao. Statistical analysis: Xue Lin and Haobiao Liu. Figure preparation: Mumba mulutula Chilufya, Xue Lin, and Rongqi Xiang. Manuscript preparation: Ziwei Guo and Jing Han. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jing Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval

The animal study protocol was approved by the Medical Animal Research Ethics Committee of Xi’an Jiaotong University (protocol code 2018.263 and 6 March 2018 of approval).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Chilufya, M.m., Deng, H. et al. Single and Combined Effects of Short-Term Selenium Deficiency and T-2 Toxin-Induced Kidney Pathological Injury Through the MMPs/TIMPs System. Biol Trace Elem Res 201, 4850–4860 (2023). https://doi.org/10.1007/s12011-023-03566-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03566-7

Keywords

Navigation