Skip to main content
Log in

Enzyme PTP-1B Inhibition Studies by Vanadium Metal Complexes: a Kinetic Approach

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The medical field now needs more novel drugs to treat obesity and type-2 diabetes mellitus (T2D) than ever before. Obesity and T2D are both characterized by resistance to the hormones leptin and insulin. PTP-1B is a promising target for drug growth, as strong genetic, pharmacological, and biochemical evidence points to the possibility of treating diabetes and obesity by blocking the PTP-1B enzyme. Studies have also found that PTP-1B is overexpressed in patients with diabetes and obesity, suggesting that inhibiting PTP-1B may be a useful technique in their care. There are no clinically used PTP-1B inhibitors, despite the fact that numerous naturally occurring PTP-1B inhibitors have demonstrated great therapeutic promise. This is most likely due to their low activity or lack of selectivity. It is still important to look for more effective and focused PTP-1B inhibitors. A few organovanadium metal complexes were synthesized and characterized, and binding studies on vanadium complexes with PTP-B were also performed using fluorescence emission spectroscopy. Additionally, we theoretically (molecular modeling) and experimentally (enzyme kinetics) examined the PTP-1B inhibitory effects of these vanadium metal complexes and found that they have excellent PTP-1B inhibitory properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. John H, Mc N, Violet G, Yuen SD, Orvig C (1995) Increased potency of vanadium using organic ligands. Mol Cell Biochem 153:175–180. https://doi.org/10.1007/BF01075935

    Article  Google Scholar 

  2. Sanchez-Gonzalez C, Bermudez-Peña C, Guerrero-Romero F, Trenzado CE, Montes-Bayon M, Sanz-Medel A, Llopis J (2011) Effect of bis(maltolato)oxovanadium (IV) (BMOV) on selenium nutritional status in diabetic streptozotocin rats. Br J Nutr 108(5):893–899. https://doi.org/10.1017/S0007114511006131

    Article  CAS  PubMed  Google Scholar 

  3. Ding F, Zhao GY, Huang JL, Zhang L (2009) Fluorescence spectroscopic investigation of the interaction between chloramphenicol and lysozyme. Eur. J. Med. Chem 44:4083–4089. https://doi.org/10.1016/j.ejmech.2009.04.047

    Article  CAS  PubMed  Google Scholar 

  4. Huyer G, Liu S, Kelly J, Moffat J, Payette P, Kennedy B, Tsaprailis G, Gresser MJ, Ramachandran C (1997) Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem 272:843–851. https://doi.org/10.1074/jbc.272.2.843

    Article  CAS  PubMed  Google Scholar 

  5. Elisa B, Kshetrimayum BS, Alberto M, Christer H (2016) The metal face of protein tyrosine phosphatase 1B. Coord Chem Rev 327:70–83. https://doi.org/10.1016/j.ccr.2016.07.002

    Article  CAS  Google Scholar 

  6. Marzban L, McNeill JH (2003) Insulin-like actions of vanadium: potential as a therapeutic agent. J Trace Elem Exp Med 16:253–267. https://doi.org/10.1002/jtra.10034

    Article  CAS  Google Scholar 

  7. Belinda S, Connell O (2001) Select vitamins and minerals in the management of diabetes. Diabetes Spectrum 14(3):133–148. https://doi.org/10.2337/diaspect.14.3.133

    Article  Google Scholar 

  8. Boden G, Chen X, Ruiz J, van Rossum GD, Turco S (1996) Effects of vanadyl sulfate on carbohydrate and lipid metabolism in patients with non-insulin-dependent diabetes mellitus. Metabolism 45(9):1130–1133. https://doi.org/10.1016/s0026-0495(96)90013-x

    Article  CAS  PubMed  Google Scholar 

  9. Cohen N, Halberstam M, Shlimovich P, Chang CJ, Shamoon H, Rossetti L (1995) Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 95(6):2501–2509. https://doi.org/10.1172/JCI117951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Halberstam M, Cohen N, Shlimovich P, Rossetti L, Shamoon H (1996) Oral vanadyl sulfate improves insulin sensitivity in NIDDM but not in obese nondiabetic subjects. Diabetes 45(5):659–666. https://doi.org/10.2337/diab.45.5.659

    Article  CAS  PubMed  Google Scholar 

  11. Goldfine AB, Simonson DC, Folli F, PattiM E, Kahn CR (1995) Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus in vivo and in vitro studies. J Clin Endocrinol Metab 80(11):3311–3320. https://doi.org/10.1210/jcem.80.11.7593444

    Article  CAS  PubMed  Google Scholar 

  12. Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D (2012) Biochemical and medical importance of vanadium compounds. Acta Biochim Pol 59(2):195–200 PMID: 22693688

    Article  CAS  PubMed  Google Scholar 

  13. Liping L, Wang S, Zhu M, Liu Z, Guo M, Shu Xing Xueqi F (2010) Inhibition protein tyrosine phosphatases by an oxovanadium glutamate complex, Na2[VO(Glu)2(CH3OH)](Glu = glutamate). BioMetals 23(6):1139–1147. https://doi.org/10.1007/s10534-010-9363-8

    Article  CAS  Google Scholar 

  14. Kathleen A, Kenner EA, Jerrold M, Olefsky JK (1996) Protein-tyrosine phosphatase 1B is a negative regulator of insulin- and insulin-like growth factor-I-stimulated signaling. J Biol Chem 271:19810–19816. https://doi.org/10.1074/jbc.271.33.19810

    Article  Google Scholar 

  15. Byon JC, Kusari AB, Kusari J (1998) Protein-tyrosine phosphatase-1B acts as a negative regulator of insulin signal transduction. Mol Cell Biochem. 182(1-2):101–108

    Article  CAS  PubMed  Google Scholar 

  16. Trevino S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E (2019) Vanadium in biological action: chemical, pharmacological aspects, and metabolic implications in diabetes mellitus. Biol Trace Elem Res 188(1):68–98. https://doi.org/10.1007/s12011-018-1540-6

    Article  CAS  PubMed  Google Scholar 

  17. Trevino S, Diaz A (2020) Vanadium and insulin: partners in metabolic regulation. J Inorg Biochem 208:111094. https://doi.org/10.1016/j.jinorgbio.2020.111094

    Article  CAS  PubMed  Google Scholar 

  18. Sharfalddin AA, Al-Younis IM, Mohammed HH, Dhahri M, Mouffouk F, Abu Ali H, Emwas AH (2022) Therapeutic properties of vanadium complexes. Inorganics 10(12):244

    Article  CAS  Google Scholar 

  19. Sk A, Vani K, Rambabu A, Vijjulatha M, Sree Kanth S, Deva Das M (2021) Interaction of vanadium metal complexes with protein tyrosine phosphatase-1B enzyme along with identification of the active site of the enzyme by molecular modeling. Inorg. Chem. Commun. 126:108499. https://doi.org/10.1016/j.inoche.2021.108499

    Article  CAS  Google Scholar 

  20. Ayub S, Vani K, Rambabu A, Vemulapalli L, Das M (2022) Vanadium metal complexes’ inhibition studies on enzyme PTP-1B and antidiabetic activity studies on Wistar rats. Appl Organomet Chem 36(7):e6710. https://doi.org/10.1002/aoc.6710

    Article  CAS  Google Scholar 

  21. Anjomshoa M, Fatemi SJ, Torkzadeh-Mahani M, Hadadzadeh H (2014) DNA- and BSA-binding studies and anticancer activity against human breast cancer cells (MCF-7) of the zinc(II) complex coordinated by 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine. Spectrochim Acta A Mol Biomol Spectrosc 127:511–520. https://doi.org/10.1016/j.saa.2014.02.048

    Article  CAS  PubMed  Google Scholar 

  22. Jhonsi MA, Kathiravan A, Renganathan R (2009) Spectroscopic studies on the interaction of colloidal capped CdS nanoparticles with bovine serum albumin. Colloids Surf B Biointerface 72:167–172. https://doi.org/10.1016/j.colsurfb.2009.03.030

    Article  CAS  Google Scholar 

  23. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  24. Thompson KH, Lichter J, LeBel C, Scaife MC, JH MN, Orvig C (2009) Vanadium treatment of type 2 diabetes: a view to the future. J Inorg Biochem 103:554–558

    Article  CAS  PubMed  Google Scholar 

  25. LipingLu, Sulian Wang, Miaoli Zhu, Zhiwei Liu, Maolin Guo, Shu Xing, Xueqi Fu (2010) Inhibition protein tyrosine phosphatases by an oxovanadium glutamate complex, Na2[VO(Glu)2(CH3OH )](Glu 5 glutamate). Biometals 23:1139–1147. https://doi.org/10.1007/s10534-010-9363-8

  26. Wang HY, Zhang M, Lu QL, Yue NN, Gong B (2009) Spectrochim. Acta, Part A 7:682

    Article  Google Scholar 

  27. Wang Q, Liping L, Yuan C, Pei K, Liu Z, Guo M, Zhu M (2010) Potent inhibition of protein tyrosine phosphatase 1B by copper complexes: implications for copper toxicity in biological systems. Chem Commun 46:3547–3549

    Article  CAS  Google Scholar 

  28. Yuan C, Lu L, Gao X, Wu Y, Zhu M (2009) Ternary oxovanadium(IV) complexes of ONO-donor Schiff base and polypyridyl derivatives as protein tyrosine phosphatase inhibitors: synthesis, characterization, and biological activities Caixia. J Biol Inorg Chem 14:841–851. https://doi.org/10.1007/s00775-009-0496-6

    Article  CAS  PubMed  Google Scholar 

  29. Lakowic JR (1999) Principle of fluorescence spectroscopy, 3rd edn. Springer, New York.

    Book  Google Scholar 

  30. Sathyadevi P, Krishnamoorthy P, Butorac RR, Cowley AH, Bhuvanesh NS, Dharmaraj N (2011) Effect of substitution and planarity of the ligand on DNA/BSA interaction, free radical scavenging and cytotoxicity of diamagnetic Ni(II) complexes: a systematic investigation. Dalton Trans. 40(38):9690–9702. https://doi.org/10.1039/c1dt10767d

    Article  CAS  PubMed  Google Scholar 

  31. Montalibet J, Skorey KI, Kennedy BP (2005) Protein tyrosine phosphatase: enzymatic assays. Methods. 35:2–8. https://doi.org/10.1016/j.ymeth.2004.07.002

    Article  CAS  PubMed  Google Scholar 

  32. Ranaldi F, Vanni P, Giachetti E (2010) what students must know about the determination of enzyme kinetic parameters. Biochem. Educ. 27:87–91. https://doi.org/10.1016/S0307-4412(98)00301-X

    Article  Google Scholar 

  33. Whiteley CG (2010) Enzyme kinetics: partial and complete uncompetitive inhibition. Biochem. Educ. 28:144–147. https://doi.org/10.1111/j.1539-3429.2000.tb00050.x

    Article  Google Scholar 

  34. Qiong-You W, Jiang L-L, Yang S-G, Zuo Y, Wang Z-F, Yang ZXG-F (2014) Hexahydrophthalimide–benzothiazole hybrids as a new class of protoporphyrinogen oxidase inhibitors: synthesis, structure–activity relationship, and DFT calculations. New J. Chem 38:4510–4518. https://doi.org/10.1039/C4NJ00636D

    Article  CAS  Google Scholar 

  35. Berg JM, Tymoczko JL, Stryer L Biochemistry, 5th edn ISBN-10:0-7167-3051-0

  36. Engelking LR (2015) Enzyme Kinetics. In: Veterinary Physiological Chemistry, pp 32–38

    Google Scholar 

  37. Rajeshwari K, Vasantha P, Sathish Kumar B, Anantha Lakshmi PV (2022) Nickel–metformin ternary complexes: geometrical, thermal, DNA binding, and molecular docking studies. Biol Trace Elem Res 200:5351–5364. https://doi.org/10.1007/s12011-022-03100-1

    Article  CAS  PubMed  Google Scholar 

  38. Sk A, Vani K, Rambabu A, Deva Das M (2022) Studies on the serum glucose reducing effect of vanadium metal complexes on Wistar rats. J Mol Struct 1261:132825. https://doi.org/10.1016/j.molstruc.2022.132825

    Article  CAS  Google Scholar 

  39. Shaik A, Thumma V, Kotha AK, Kramadhati S, Pochampally J, Bandi S (2016) Molecular docking analysis of UniProtKB nitrate reductase enzyme with known natural flavonoids. Bioinformation 12(12):425–429. https://doi.org/10.6026/97320630012425

    Article  PubMed  PubMed Central  Google Scholar 

  40. Krishnan N, Krishnan K, Connors CR, Choy MS, Page R, Peti W, Van Aelst L, Shea SD, Tonks NK (2015) PTP1B inhibition suggests a therapeutic strategy for Rett syndrome. J Clin Invest. 125(8):3163–3177. https://doi.org/10.1172/JCI80323

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sanner MF (1999) Python: a programming language for software integration and development. J Mol Graphics Mod 17:57–61

    CAS  Google Scholar 

  42. Van Montfort RL, Congreve M, Tisi D, Carr R, Jhoti H (2003) Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature. 423(6941):773–777. https://doi.org/10.1038/nature01681

    Article  CAS  PubMed  Google Scholar 

  43. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Head of the Chemistry Department at Osmania University in India for providing the resources required to conduct the current study, as well as DST in India for financial assistance. We are grateful to the University Grants Commission, India, for funding under the Basic Scientific Research Fellowship (BSR) scheme with file number F.4-1/2006(BSR)11-38/2008(BSR)/2013-2014/01.

Author information

Authors and Affiliations

Authors

Contributions

AyubShaik: validation, investigation—formal analysis, writing—original draft, and data curation. Vani Kondaparthy: data curation and formal analysis. Aliya Begum: writing—review and editing. Ameena Husain: investigation and methodology. Deva Das Manwal: conceptualization, methodology, validation, resources, and supervision.

Corresponding author

Correspondence to Ayub Shaik.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1:

The data that supports the findings of this study can be found in the article’s Supplementary Information. (DOCX 5046 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaik, A., Kondaparthy, V., Begum, A. et al. Enzyme PTP-1B Inhibition Studies by Vanadium Metal Complexes: a Kinetic Approach. Biol Trace Elem Res 201, 5037–5052 (2023). https://doi.org/10.1007/s12011-023-03557-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03557-8

Keywords

Navigation