Skip to main content
Log in

Evaluation of blood serum iron concentration as an alternative biomarker for inflammation in dairy cows

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study aimed to clarify the relationship between acute phase protein (APP) concentrations and serum Fe concentrations to determine whether serum iron (Fe) can be clinically applied as a substitute for APPs in cows. One hundred five Holstein–Friesian breed lactating dairy cows were enrolled in this study. Cows with inflammatory diseases were 16 subclinical, and 15 severe mastitis cows, in addition to 15 mild and 16 severe sole ulcer cows. The plasma haptoglobin (HPT), alpha-1 acid glycoprotein (AGP), SAA, serum Fe levels, and other biochemical parameters in the cows were measured. The two-sample t-tests and multiple logistic regression analysis were used to compare the control and inflammatory disease groups. ROC analysis was used to evaluate the ability to diagnose inflammation disease. From the results, the proposed diagnostic cutoff value for plasma SAA and serum Fe concentrations to identify dairy cows with inflammatory diseases based on analyses of ROC curves were set at > 3.65 mg/l and < 120.50 µg/dl, respectively. Therefore, instead of using expensive inflammatory markers to evaluate the inflammatory state at the first treatment day for inflammatory diseases in cow, it shows the useful for screening with serum Fe concentration that can be measured easily and inexpensively as alternative inflammatory biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Otsuka M, Sugiyama M, Ito T, Tsukano K, Oikawa S, Suzuki K (2021) Diagnostic utility of measuring serum amyloid A with a latex agglutination turbidimetric immunoassay in bovine mastitis: Comparison with haptoglobin and alpha 1 acid glycoprotein. J Vet Med Sci 83:329–332. https://doi.org/10.1292/jvms.20-0550

    Article  CAS  PubMed  Google Scholar 

  2. Langova L, Novotna I, Nemcova P, Machacek M, Havlicek Z, Zemanova M, Chrast V (2020) Impact of Nutrients on the Hoof Health in Cattle. Animals (Basel) 10. https://doi.org/10.3390/ani10101824

  3. Mandhwani R, Bhardwaz A, Kumar S, Shivhare M, Aich R (2017) Insights into bovine endometritis with special reference to phytotherapy. Vet World 10:1529–1532. https://doi.org/10.14202/vetworld.2017.1529-1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Panciera RJ, Confer AW (2010) Pathogenesis and pathology of bovine pneumonia. Vet Clin North Am Food Anim Pract 26:191–214. https://doi.org/10.1016/j.cvfa.2010.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  5. Miles DG (2009) Overview of the North American beef cattle industry and the incidence of bovine respiratory disease (BRD). Anim Health Res Rev 10:101–103. https://doi.org/10.1017/S1466252309990090

    Article  PubMed  Google Scholar 

  6. Kandasamy S, Green BB, Benjamin AL, Kerr DE (2011) Between-cow variation in dermal fibroblast response to lipopolysaccharide reflected in resolution of inflammation during Escherichia coli mastitis. J Dairy Sci 94:5963–5975. https://doi.org/10.3168/jds.2011-4288

    Article  CAS  PubMed  Google Scholar 

  7. Kerro Dego O, Oliver SP, Almeida RA (2012) Host-pathogen gene expression profiles during infection of primary bovine mammary epithelial cells with Escherichia coli strains associated with acute or persistent bovine mastitis. Vet Microbiol 155:291–297. https://doi.org/10.1016/j.vetmic.2011.08.016

    Article  CAS  PubMed  Google Scholar 

  8. Hilton WM (2014) BRD in 2014: where have we been, where are we now, and where do we want to go? Anim Health Res Rev 15:120–122. https://doi.org/10.1017/S1466252314000115

    Article  PubMed  Google Scholar 

  9. Thiry J, González-Martín JV, Elvira L, Pagot E, Voisin F, Lequeux G, Weingarten A, de Haas V (2014) Treatment of naturally occurring bovine respiratory disease in juvenile calves with a single administration of a florfenicol plus flunixin meglumine formulation. Vet Rec 174:430. https://doi.org/10.1136/vr.102017

    Article  CAS  PubMed  Google Scholar 

  10. Hogan J, Larry Smith K (2003) Coliform mastitis. Vet Res 34:507–519. https://doi.org/10.1051/vetres:2003022

    Article  PubMed  Google Scholar 

  11. Pascottini OB, Van Schyndel SJ, Spricigo JFW, Carvalho MR, Mion B, Ribeiro ES, LeBlanc SJ (2020) Effect of anti-inflammatory treatment on systemic inflammation, immune function, and endometrial health in postpartum dairy cows. Sci Rep 10:5236. https://doi.org/10.1038/s41598-020-62103-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Walker CCF, Brester JL, Sordillo LM (2021) Flunixin Meglumine Reduces Milk Isoprostane Concentrations in Holstein Dairy Cattle Suffering from Acute Coliform Mastitis. Antioxidants (Basel) 10. https://doi.org/10.3390/antiox10060834

  13. Cray C (2012) Acute phase proteins in animals. Prog Mol Biol Transl Sci 105:113–150. https://doi.org/10.1016/B978-0-12-394596-9.00005-6

    Article  CAS  PubMed  Google Scholar 

  14. Eckersall PD, Bell R (2010) Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet J 185:23–27. https://doi.org/10.1016/j.tvjl.2010.04.009

    Article  CAS  PubMed  Google Scholar 

  15. Thomas FC, Santana AM, Waterston M, Haining H, Eckersall PD (2016) Effect of pre-analytical treatments on bovine milk acute phase proteins. BMC Vet Res 12:151. https://doi.org/10.1186/s12917-016-0769-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Akerstedt M, Bjorck L, Persson Waller K, Sternesjo A (2006) Biosensor assay for determination of haptoglobin in bovine milk. J Dairy Res 73:299–305. https://doi.org/10.1017/S0022029906001774

    Article  CAS  PubMed  Google Scholar 

  17. Shimamori T, Tsukano K, Sera K, Noda J, Suzuki K (2019) Sequential changes in serum zinc concentrations in calves with experimentally induced endotoxin shock measured by the particle-induced X-ray emission method. J Vet Med Sci 81:165–168. https://doi.org/10.1292/jvms.18-0527

    Article  CAS  PubMed  Google Scholar 

  18. Cherayil BJ (2011) The role of iron in the immune response to bacterial infection. Immunol Res 50:1–9. https://doi.org/10.1007/s12026-010-8199-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kali A, Charles MV, Seetharam RS (2015) Hepcidin - A novel biomarker with changing trends. Pharmacogn Rev 9:35–40. https://doi.org/10.4103/0973-7847.156333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nairz M, Weiss G (2020) Iron in infection and immunity. Mol Aspects Med 75:100864. https://doi.org/10.1016/j.mam.2020.100864

    Article  CAS  PubMed  Google Scholar 

  21. Tsukano K, Fukuda T, Ikeda K, Sato K, Suzuki K (2021) Serum iron concentration is candidate inflammatory marker for respiratory diseases in beef cows. J Vet Med Sci 83:824–828. https://doi.org/10.1292/jvms.21-0051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tsukano K, Shimamori T, Fukuda T, Nishi Y, Otsuka M, Kitade Y, Suzuki K (2019) Serum iron concentration as a marker of inflammation in young cows that underwent dehorning operation. J Vet Med Sci 81:626–628. https://doi.org/10.1292/jvms.19-0002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ruegg PL (2017) A 100-Year Review: Mastitis detection, management, and prevention. J Dairy Sci 100:10381–10397. https://doi.org/10.3168/jds.2017-13023

    Article  CAS  PubMed  Google Scholar 

  24. O’Connor AH, Bokkers EAM, de Boer IJM, Hogeveen H, Sayers R, Byrne N, Ruelle E, Shalloo L (2019) Associating cow characteristics with mobility scores in pasture-based dairy cows. J Dairy Sci 102:8332–8342. https://doi.org/10.3168/jds.2018-15719

    Article  CAS  PubMed  Google Scholar 

  25. Pierrakos C, Vincent JL (2010) Sepsis biomarkers: a review. Crit Care 14:R15. https://doi.org/10.1186/cc8872

    Article  PubMed  PubMed Central  Google Scholar 

  26. Murata H, Shimada N, Yoshioka M (2004) Current research on acute phase proteins in veterinary diagnosis: an overview. Vet J 168:28–40. https://doi.org/10.1016/S1090-0233(03)00119-9

    Article  CAS  PubMed  Google Scholar 

  27. Paltrinieri S (2008) The feline acute phase reaction. Vet J 177:26–35. https://doi.org/10.1016/j.tvjl.2007.06.005

    Article  CAS  PubMed  Google Scholar 

  28. O’Driscoll K, McCabe M, Earley B (2015) Differences in leukocyte profile, gene expression, and metabolite status of dairy cows with or without sole ulcers. J Dairy Sci 98:1685–1695. https://doi.org/10.3168/jds.2014-8199

    Article  CAS  PubMed  Google Scholar 

  29. Piersanti RL, Zimpel R, Molinari PCC, Dickson MJ, Ma Z, Jeong KC, Santos JEP, Sheldon IM, Bromfield JJ (2019) A model of clinical endometritis in Holstein heifers using pathogenic Escherichia coli and Trueperella pyogenes. J Dairy Sci 102:2686–2697. https://doi.org/10.3168/jds.2018-15595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Godson DL, Campos M, Attah-Poku SK, Redmond MJ, Cordeiro DM, Sethi MS, Harland RJ, Babiuk LA (1996) Serum haptoglobin as an indicator of the acute phase response in bovine respiratory disease. Vet Immunol Immunopathol 51:277–292. https://doi.org/10.1016/0165-2427(95)05520-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khaki A, Araghi A, Lotfi M, Nourian A (2021) Differences between some biochemical components in seminal plasma of first and second ejaculations in dual-purpose Simmental (Fleckvieh) bulls and their relationships with semen quality parameters. Vet Res Forum 12:39–46. https://doi.org/10.30466/vrf.2019.98781.2355

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pohl P, Prusisz B (2007) Determination of Ca, Mg, Fe and Zn partitioning in UHT cow milks by two-column ion exchange and flame atomic absorption spectrometry detection. Talanta 71:715–721. https://doi.org/10.1016/j.talanta.2006.05.030

    Article  CAS  PubMed  Google Scholar 

  33. Hershko C, Cook JD, Finch CA (1974) Storage iron kinetics. VI. The effect of inflammation on iron exchange in the rat. Br J Haematol 28:67–75. https://doi.org/10.1111/j.1365-2141.1974.tb06640.x

    Article  CAS  PubMed  Google Scholar 

  34. Ward CG, Bullen JJ, Rogers HJ (1996) Iron and infection: new developments and their implications. J Trauma 41:356–364. https://doi.org/10.1097/00005373-199608000-00030

    Article  CAS  PubMed  Google Scholar 

  35. Jacobsen S, Nielsen JV, Kjelgaard-Hansen M, Toelboell T, Fjeldborg J, Halling-Thomsen M, Martinussen T, Thoefner MB (2009) Acute phase response to surgery of varying intensity in horses: a preliminary study. Vet Surg 38:762–769. https://doi.org/10.1111/j.1532-950X.2009.00564.x

    Article  PubMed  Google Scholar 

  36. Smith JE, Cipriano JE (1987) Inflammation-induced changes in serum iron analytes and ceruloplasmin of Shetland ponies. Vet Pathol 24:354–356. https://doi.org/10.1177/030098588702400411

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Rakuno Gakuen University Research Fund (2019).

Author information

Authors and Affiliations

Authors

Contributions

Yoshiki Murakami contributed to the design and conception of the study. YM and Kazuyuki Suzuki participated in the data analysis. YM, Haruyuki Hirata, and Kenji Tsukano discussed the draft manuscript preparation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kazuyuki Suzuki.

Ethics declarations

Ethics Approval

All procedures were reviewed and approved by the Guide for the Care and Use of Laboratory Animals of the School of Veterinary Medicine at Rakuno Gakuen University (Approval#: VH18C10).

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murakami, Y., Tsukano, K., Hirata, H. et al. Evaluation of blood serum iron concentration as an alternative biomarker for inflammation in dairy cows. Biol Trace Elem Res 201, 4710–4717 (2023). https://doi.org/10.1007/s12011-022-03544-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03544-5

Keywords

Navigation