Skip to main content

Advertisement

Log in

Molybdenum-Induced Apoptosis of Splenocytes and Thymocytes and Changes of Peripheral Blood in Sheep

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To investigate the effects of molybdenum (Mo) on apoptosis of lymphocytes and changes of peripheral blood in sheep, a total of 20 5-month-old healthy female sheep were randomly divided into five groups of 4 and orally administered with water containing Na2MoO4·2H2O (0, 5, 10, 20, and 50 mg/kg BW/day) for 28 days. Jugular vein blood was taken on the 0th, 7th, 14th, 21st, and 28th day of Mo treatment, respectively. On the 28th day, the spleen and thymus were removed for observing histopathology and apoptosis-related DNA damage by hematoxylin and eosin (HE) staining and TdT‑mediated dUTP Nick-End Labeling (TUNEL) staining, respectively. The blood routine indexes were determined by an automatic blood analyzer. Further, the apoptosis of lymphocytes and changes in mitochondrial membrane potential (MMP) of peripheral blood were analyzed by flow cytometry. Results showed that excessive Mo induced apoptosis-related DNA damage in the splenocytes and thymocytes and significantly increased the apoptosis indexes of the splenocytes and thymocytes (P < 0.01). Furthermore, the treatment with excessive Mo significantly decreased the MMP (P < 0.01) and promoted apoptosis in peripheral blood lymphocytes (P < 0.01). And the number of WBC, Lymph, Gran, and RBC and the indexes of HGB and HCT were also significantly decreased (P < 0.05 or P < 0.01), while RDW was significantly increased by excessive Mo (P < 0.05 or P < 0.01). In conclusion, excessive Mo-induced DNA damage and apoptosis of the lymphocytes changed the RBC-related indexes of the peripheral blood in sheep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Code Availability

Not applicable.

References

  1. Barceloux DG (1999) Molybdenum. J Toxicol Clin Toxicol 37(2):231–237

    CAS  PubMed  Google Scholar 

  2. Hover BM, Tonthat NK, Schumacher MA, Yokoyama K (2015) Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis. Proc Natl Acad Sci U S A 112(20):6347–6352

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mendel RR (1823) Kruse T (2012) Cell biology of molybdenum in plants and humans. Biochim Biophys Acta 9:1568–1579

    Google Scholar 

  4. Dahl TW, Chappaz A, Hoek J, McKenzie CJ, Svane S, Canfield DE (2017) Evidence of molybdenum association with particulate organic matter under sulfidic conditions. Geobiology 15(2):311–323

    CAS  PubMed  Google Scholar 

  5. Kovács B, Puskás-Preszner A, Huzsvai L, Lévai L, Bódi É (2015) Effect of molybdenum treatment on molybdenum concentration and nitrate reduction in maize seedlings. Plant Physiol Biochem 96:38–44

    PubMed  Google Scholar 

  6. Turnlund JR (2002) Molybdenum metabolism and requirements in humans. Met Ions Biol Syst 39:727–739

    CAS  PubMed  Google Scholar 

  7. Kapp RW (2014) Molybdenum. In: Wexler P (ed) Encyclopedia of toxicology, 3rd edn. Academic Press, Waltham, MA, pp 383–388

    Google Scholar 

  8. Bi CM, Zhang YL, Liu FJ, Zhou TZ, Yang ZJ, Gao SY, Wang SD, Chen XL, Zhai XW, Ma XG, Jin LJ, Wang S (2013) The effect of molybdenum on the in vitro development of mouse preimplantation embryos. Syst Biol Reprod Med 59(2):69–73

    CAS  PubMed  Google Scholar 

  9. Liao Y, Cao H, Xia B, Xiao Q, Liu P, Hu G, Zhang C (2017) Changes in trace element contents and morphology in bones of duck exposed to molybdenum or/and cadmium. Biol Trace Elem Res 175(2):449–457

    CAS  PubMed  Google Scholar 

  10. Markesbery WR, Kryscio RJ, Lovell MA, Morrow JD (2005) Lipid peroxidation is an early event in the brain in amnestic mild cognitive impairment. Ann Neurol 58(5):730–735

    CAS  PubMed  Google Scholar 

  11. Gu X, Ali T, Chen R, Hu G, Zhuang Y, Luo J, Cao H, Han B (2015) In vivo studies of molybdenum-induced apoptosis in kidney cells of caprine. Biol Trace Elem Res 165(1):51–58

    CAS  PubMed  Google Scholar 

  12. Clarkson AH, Paine S, Martín-Tereso J, Kendall NR (2020) Copper physiology in ruminants: trafficking of systemic copper, adaptations to variation in nutritional supply and thiomolybdate challenge. Nutr Res Rev 33(1):43–49

    CAS  PubMed  Google Scholar 

  13. Gould L, Kendall NR (2011) Role of the rumen in copper and thiomolybdate absorption. Nutr Res Rev 24(2):176–182

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Novotny JA, Peterson CA (2018) Molybdenum. Adv Nutr 9(3):272–273

    PubMed  PubMed Central  Google Scholar 

  15. Zhang W, Zhang Y, Zhang SW, Song XZ, Jia ZH, Wang RL (2012) Effect of different levels of copper and molybdenum supplements on serum lipid profiles and antioxidant status in cashmere goats. Biol Trace Elem Res 148(3):309–315

    CAS  PubMed  Google Scholar 

  16. Underwood EJ, Suttle NF (1999) The mineral nutrition of livestock, 3rd edn. CABI Publishing, UK

    Google Scholar 

  17. Olivares RWI, Postma GC, Schapira A, Iglesias DE, Valdez LB, Breininger E, Gazzaneo PD, Minatel L (2019) Biochemical and morphological alterations in hearts of copper-deficient bovines. Biol Trace Elem Res 189(2):447–455

    CAS  PubMed  Google Scholar 

  18. Schuessel K, Schäfer S, Bayer TA, Czech C, Pradier L, Müller-Spahn F, Müller WE, Eckert A (2005) Impaired Cu/Zn-SOD activity contributes to increased oxidative damage in APP transgenic mice. Neurobiol Dis 18(1):89–99

    CAS  PubMed  Google Scholar 

  19. Wang Q, Cui KP, Xu YY, Gao YL, Zhao J, Li DS, Li XL, Huang HJ (2014) Coal-burning endemic fluorosis is associated with reduced activity in antioxidative enzymes and Cu/Zn-SOD gene expression. Environ Geochem Health 36(1):107–115

    CAS  PubMed  Google Scholar 

  20. Aupperle H, Schoon HA, Frank A (2001) Experimental copper deficiency, chromium deficiency and additional molybdenum supplementation in goats–pathological findings. Acta Vet Scand 42(3):311–321

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cui T, Jiang W, Yang F, Luo J, Hu R, Cao H, Hu G, Zhang C (2021) Molybdenum and cadmium co-induce hypothalamus toxicity in ducks via disturbing Nrf2-mediated defense response and triggering mitophagy. Ecotoxicol Environ Saf 228:113022

    CAS  PubMed  Google Scholar 

  22. Zhang G, Zheng S, Feng Y, Shen G, Xiong S, Du H (2018) Changes in nutrient profile and antioxidant activities of different fish soups, before and after simulated gastrointestinal digestion. Molecules 23(8):1965

    PubMed  PubMed Central  Google Scholar 

  23. Hu W, Zhang W, Shah SWA, Ishfaq M, Li J (2021) Mycoplasma gallisepticum infection triggered histopathological changes, oxidative stress and apoptosis in chicken thymus and spleen. Dev Comp Immunol 114:103832

    CAS  PubMed  Google Scholar 

  24. Dai X, Zhang D, Wang C, Wu Z, Liang C (2018) The pivotal role of thymus in atherosclerosis mediated by immune and inflammatory response. Int J Med Sci 15(13):1555–1563

    CAS  PubMed  PubMed Central  Google Scholar 

  25. N R C, (1985) Nutrient requirements of sheep, 6th edn. National Academy of Sciences, National Research Council, Washington, D.C.

    Google Scholar 

  26. Wu Y, Yang F, Zhou G, Wang Q, Xing C, Bai H, Yi X, Xiong Z, Yang S, Cao H (2022) Molybdenum and cadmium co-induce mitochondrial quality control disorder via FUNDC1-mediated mitophagy in sheep kidney. Front Vet Sci 9:842259

    PubMed  PubMed Central  Google Scholar 

  27. Feng J, Chen J, Xing C, Huang A, Zhuang Y, Yang F, Zhang C, Hu G, Mao Y, Cao H (2020) Molybdenum induces mitochondrial oxidative damage in kidney of goats. Biol Trace Elem Res 197(1):167–174

    CAS  PubMed  Google Scholar 

  28. Cao H, Xing C, Zhuang Y, Gu X, Luo J, Guo X, Liu P, Zhang C, Hu G (2016) Effect of stress from cadmium combined with different levels of molybdenum on serum free radical and expression of related apoptosis genes in goat livers. Biol Trace Elem Res 172(2):346–353

    CAS  PubMed  Google Scholar 

  29. Ward GM (1978) Molybdenum toxicity and hypocuprosis in ruminants: a review. J Anim Sci 46(4):1078–1085

    CAS  PubMed  Google Scholar 

  30. Yang F, Zhang C, Zhuang Y, Gu X, Xiao Q, Guo X, Hu G, Cao H (2016) Oxidative stress and cell apoptosis in caprine liver induced by molybdenum and cadmium in combination. Biol Trace Elem Res 173(1):79–86

    CAS  PubMed  Google Scholar 

  31. Zhuang Y, Liu P, Wang L, Luo J, Zhang C, Guo X, Hu G, Cao H (2016) Mitochondrial oxidative stress-induced hepatocyte apoptosis reflects increased molybdenum intake in caprine. Biol Trace Elem Res 170(1):106–114

    CAS  PubMed  Google Scholar 

  32. Clarkson AH, Kendall NR (2022) UK ruminant farmer understanding of copper-related terminology. Prev Vet Med 205:105693

    CAS  PubMed  Google Scholar 

  33. Palumaa P (2013) Copper chaperones. The concept of conformational control in the metabolism of copper. FEBS Lett 587(13):1902–1910

    CAS  PubMed  Google Scholar 

  34. O’Connor JM (2001) Trace elements and DNA damage. Biochem Soc Trans 29(Pt 2):354–357

    CAS  PubMed  Google Scholar 

  35. Fathy SM, Abdelkader IY (2021) Effect of resveratrol on the inflammatory status and oxidative stress in thymus gland and spleen of sulfoxaflor-treated rats. Environ Toxicol 36(7):1326–1337

    CAS  PubMed  Google Scholar 

  36. Wang C, Nie G, Yang F, Chen J, Zhuang Y, Dai X, Liao Z, Yang Z, Cao H, Xing C, Hu G, Zhang C (2020) Molybdenum and cadmium co-induce oxidative stress and apoptosis through mitochondria-mediated pathway in duck renal tubular epithelial cells. J Hazard Mater 383:121157

    CAS  PubMed  Google Scholar 

  37. Long J, Liu C, Sun L, Gao H, Liu J (2009) Neuronal mitochondrial toxicity of malondialdehyde: inhibitory effects on respiratory function and enzyme activities in rat brain mitochondria. Neurochem Res 34(4):786–794

    CAS  PubMed  Google Scholar 

  38. Jiao X, Yang K, An Y, Teng X, Teng X (2017) Alleviation of lead-induced oxidative stress and immune damage by selenium in chicken bursa of Fabricius. Environ Sci Pollut Res Int 24(8):7555–7564

    CAS  PubMed  Google Scholar 

  39. Liu J, Zhao H, Wang Y, Shao Y, Zhang L, Xing M (2018) Impacts of simultaneous exposure to arsenic (III) and copper (II) on inflammatory response, immune homeostasis, and heat shock response in chicken thymus. Int Immunopharmacol 64:60–68

    CAS  PubMed  Google Scholar 

  40. Liu Y, Zhang X, Zhou M, Nan X, Chen X, Zhang X (2017) Mitochondrial-targeting lonidamine-doxorubicin nanoparticles for synergistic chemotherapy to conquer drug resistance. ACS Appl Mater Interfaces 9(50):43498–43507

    CAS  PubMed  Google Scholar 

  41. Cui L, Gouw AM, LaGory EL, Guo S, Attarwala N, Tang Y, Qi J, Chen YS, Gao Z, Casey KM, Bazhin AA, Chen M, Hu L, Xie J, Fang M, Zhang C, Zhu Q, Wang Z, Giaccia AJ, Gambhir SS, Zhu W, Felsher DW, Pegram MD, Goun EA, Le A, Rao J (2021) Mitochondrial copper depletion suppresses triple-negative breast cancer in mice. Nat Biotechnol 39(3):357–367

    CAS  PubMed  Google Scholar 

  42. Perelman A, Wachtel C, Cohen M, Haupt S, Shapiro H, Tzur A (2012) JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death Dis 3(11):e430

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kroemer G, Zamzami N, Susin SA (1997) Mitochondrial control of apoptosis. Immunol Today 18(1):44–51

    CAS  PubMed  Google Scholar 

  44. Gao J, Wang Z, Guo Q, Tang H, Wang Z, Yang C, Fan H, Zhang W, Ren C, Liu J (2022) Mitochondrion-targeted supramolecular “nano-boat” simultaneously inhibiting dual energy metabolism for tumor selective and synergistic chemo-radiotherapy. Theranostics 12(3):1286–1302

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bock FJ, Tait SWG (2020) Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 21(2):85–100

    CAS  PubMed  Google Scholar 

  46. Chang JC, Lien CF, Lee WS, Chang HR, Hsu YC, Luo YP, Jeng JR, Hsieh JC, Yang KT (2019) Intermittent hypoxia prevents myocardial mitochondrial Ca2+ overload and cell death during ischemia/reperfusion: the role of reactive oxygen species. Cells 8(6):564

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yin S, Zhang L, Ding L, Huang Z, Xu B, Li X, Wang P, Mao J (2018) Transient receptor potential ankyrin 1 (trpa1) mediates il-1β-induced apoptosis in rat chondrocytes via calcium overload and mitochondrial dysfunction. J Inflamm (Lond) 15:27

    CAS  PubMed  Google Scholar 

  48. Wang C, Chen H, Ying W (2018) Cytosolic aspartate aminotransferase mediates the mitochondrial membrane potential and cell survival by maintaining the calcium homeostasis of BV2 microglia. NeuroReport 29(2):99–105

    CAS  PubMed  Google Scholar 

  49. Park H, Lim W, You S, Song G (2019) Oxibendazole induces apoptotic cell death in proliferating porcine trophectoderm and uterine luminal epithelial cells via mitochondria-mediated calcium disruption and breakdown of mitochondrial membrane potential. Comp Biochem Physiol C Toxicol Pharmacol 220:9–19

    CAS  PubMed  Google Scholar 

  50. Matak P, Zumerle S, Mastrogiannaki M, El Balkhi S, Delga S, Mathieu JR, Canonne-Hergaux F, Poupon J, Sharp PA, Vaulont S, Peyssonnaux C (2013) Copper deficiency leads to anemia, duodenal hypoxia, upregulation of HIF-2α and altered expression of iron absorption genes in mice. PLoS One 8(3):e59538

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Guo H, Hu R, Huang G, Pu W, Chu X, Xing C, Zhang C (2022) Molybdenum and cadmium co-exposure induces endoplasmic reticulum stress-mediated apoptosis by Th1 polarization in Shaoxing duck (Anas platyrhyncha) spleens. Chemosphere 298:134275

    CAS  PubMed  Google Scholar 

  52. Xiao J, Cui H, Yang F, Peng X, Cui Y (2011) Effect of dietary high molybdenum on peripheral blood T-cell subsets and serum IL-2 contents in broilers. Biol Trace Elem Res 142(3):517–522

    CAS  PubMed  Google Scholar 

  53. Saravanan M, Devi KU, Malarvizhi A, Ramesh M (2012) Effects of ibuprofen on hematological, biochemical and enzymological parameters of blood in an Indian major carp. Cirrhinus mrigala Environ Toxicol Pharmacol 34(1):14–22

    CAS  PubMed  Google Scholar 

  54. Zhou S, Zhang C, Xiao Q, Zhuang Y, Gu X, Yang F, Xing C, Hu G, Cao H (2016) Effects of different levels of molybdenum on rumen microbiota and trace elements changes in tissues from goats. Biol Trace Elem Res 174(1):85–92

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the National Natural Science Foundation of China (Grant No. 31972752) and Henan Province Science and Technology Research Projects (Grant No. 212102110361 and 222102110341).

Author information

Authors and Affiliations

Authors

Contributions

Shu-gang Cui: Performing the experiments, writing the initial draft, preparation of the data presented. Yu-ling Zhang: Provision of resources. Hong-wei Guo: Critical review. Bian-hua Zhou: Provision of resources, review and editing. Er-jie Tian: Funding acquisition, supervision. Jing Zhao: Supervision. Lin Lin: Methodology. Hong‑wei Wang: Ideas, creation of models, project administration, funding acquisition.

Corresponding author

Correspondence to Hong‑wei Wang.

Ethics declarations

Ethics Approval

The experimental design was approved by the Institutional Animal Care Welfare Committee of Henan University of Science and Technology (HAUST-EAW-2021-R00409, Henan, China).

Consent to Participate

Written informed consent for publication was obtained from all participants.

Consent for Publication

Written informed consent for publication was obtained from all participants.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Sg., Zhang, Yl., Guo, Hw. et al. Molybdenum-Induced Apoptosis of Splenocytes and Thymocytes and Changes of Peripheral Blood in Sheep. Biol Trace Elem Res 201, 4389–4399 (2023). https://doi.org/10.1007/s12011-022-03536-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03536-5

Keywords

Navigation